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Comment. Math. Helvetici 54 (1979) 42-60 Birkhiuser Verlag, Basel

Bestimmung konvexer Korper durch KrummungsmaBe

ROLF SCHNEIDER

1. Einleitung

Jede hinreichend glatte Eifliche im dreidimensionalen euklidischen Raum mit
konstanter mittlerer oder konstanter GauBscher Kriimmung ist eine Sphire.
Dieses erstmals (unter zusitzlichen Voraussetzungen) von Liebmann [11] be-
wiesene Ergebnis, einer der klassischen Satze der globalen Differentialgeometrie,
hat bekanntlich mannigfache Verallgemeinerungen in verschiedensten Richtungen
erfahren. Die unmittelbare Erweiterung auf hohere Dimensionen, also die Kenn-
zeichnung der Sphéren als der einzigen Eihyperflichen, auf denen eine elementar-
symmetrische Funktion der Hauptkrimmungen konstant ist, stammt von Siss
[16] (siehe auch Bonnesen-Fenchel [4, S. 117 f.]). Im folgenden soll dieser Satz
auf allgemeine konvexe Hyperflichen ohne Differenzierbarkeitsvoraussetzungen
ausgedehnt werden. Die Krummungsfunktionen miussen dann durch passend
definierte MaB3e ersetzt werden. Solche Maf3e sind in allgemeinerem Rahmen von
Federer [8] eingefiihrt worden.

Die Ausdehnung urspriinglich differentialgeometrischer Satze auf konvexe
(oder allgemeinere) Flichen ohne Differenzierbarkeitsvoraussetzungen ist be-
kanntlich seit langem mit groem Erfolg betrieben worden; Zusammenfassungen
findet man u.a. in den Biichern von Aleksandrov [2], Busemann [5], Pogorelov
[12]. Jedoch hat der Satz von Liebmann-Siiss bisher noch keine entsprechende
Verallgemeinerung erfahren.

Die hierfiir benotigten Federerschen KriimmungsmaBe kann man fiir konvexe
Korper folgendermaBen erhalten (siehe auch [13]). Ist K ein konvexer Korper
(kompakte, konvexe Teilmenge mit inneren Punkten) im n-dimensionalen eu-
klidischen Vektorraum E"(n=2) und ist x€ E", so sei p(K, x) der (eindeutig
bestimmte) Punkt in K mit kleinstem Abstand von x; dieser kleinste Abstand sei
mit r(K, x) bezeichnet. Fiir eine Borelmenge B < E" und eine Zahl p >0 werde
sodann

A (K, B):={xe E":0<r(K,x)=p und p(K x)ep}

gesetzt. Diese ‘‘Parallelmenge von dKNPB im Abstand p” ist ebenfalls eine
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Borelmenge, und ihr Lebesguesches Maf} 146t sich ausdriicken in der Form

n—1

2 AK )=~ ¥ o (") Gk B

m

Durch diese “‘lokale Steinerformel” werden dem konvexen Korper K positive

Male Cy(K,*),..., C,_{(K,-) auf den Borelmengen des E" zugeordnet. Sie
heiBen die Krimmungsmafle von K (und unterscheiden sich von Federers [8]
MaBen ®y(K, -),..., ®,_,(K, -) nur durch eine unterschiedliche Normierung). Ist

der Rand 0K von K eine zweimal stetig differenzierbare, regulare Hyperfliche, so
gilt

C.(K, B)= J H, .. dF, (1.1)

K NE

wo H, die k-te normierte elementarsymmetrische Funktion der Haupt-
krimmungen von dK und dF das Oberflichenelement bezeichnet. Einfache
anschauliche Deutungen der MaBe C,(K,-) sind auch fiir Polytope moglich,
ferner fur allgemeine konvexe Korper in den Fillen m=n—-1 und m=
0:C,_ (K, B) ist die Oberfliche (das (n— 1)-dimensionale HausdorffmaB8) von
dKNB, und Cy(K, B) ist das sphirische Lebesgue-MaB des spharischen Bildes
von dK N B (Menge aller duBBeren Normaleneinheitsvektoren an K in Punkten
von dK N B). Das MaBB Cy(K, -) ist schon von Aleksandrov [1, §6], [2, Kap. V, §2]
betrachtet worden.
Nach diesen Erlauterungen konnen wir unser Hauptergebnis formulieren.

(1.2) SATZ. Sei K< E" ein konvexer Korper, me{0,1, ..., n—2} und a eine
reelle Zahl. Gilt

Cm(K, ) = aCn‘I(K’ .)’ (13)
so ist K eine Kugel.

Ist der Rand von K eine zweimal stetig differenzierbare, regulire Hyperflache,
so ist die Bedingung (1.3) wegen (1.1) gleichwertig mit der Voraussetzung, daf
die Kriitmmungsfunktion H,_,_,., der Randfliche dK konstant ist. Durch (1.2)
wird also in der Tat der Satz von Liebmann-Siiss verallgemeinert. Der Spezialfall
m =0 ist nicht neu (vgl. a. [14, Satz 1]); er ist sogar in verschiarfter Form in
Gestalt eines Stabilitatssatzes bewiesen worden (Diskant [7]). Ahnliche Ergeb-
nisse sind bekannt fir die von Aleksandrov und Fenchel-Jessen eingefiihrten
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Oberflaichenfunktionen, welche die elementarsymmetrischen Funktionen der
Hauptkrimmungsradien verallgemeinern (siehe z.B. Busemann [5, S. 70]).

2. Beweis des Satzese erster Teil

Zunichst einige Bezeichnungen: S" ! sei die Einheitssphare (mit Mittelpunkt
0) des E". Das kartesische Produkt E" X $"~! bezeichnen wir mit {2 und versehen
es mit der Produkttopologie. Fur X =E", S"', 0 bezeichnet B(X) die o-
Algebra der Borelmengen in X. &¥" ist das n-dimensionale Lebesguemall und
A,._, das sphirische LebesguemaB auf $"~'. Die Menge der konvexen Korper des
E" sei mit 8" bezeichnet. Fir Ke®" ist R(K) die Menge der regularen und
S(K) die Menge der singuliren Randpunkte von K. Ein Paar (x, u)e 2 heift
Stiitzelement von K, wenn x € 0K und u ein auflerer Normalenvektor an K in x
ist. Y(K) sei die Menge aller Stiitzelemente von K. Fir w < S$"™! bezeichnet
7(K, ) die Menge aller Randpunkte von K, in denen ein zu w gehorender
Normalenvektor an K existiert.

Unser Beweis des Satzes erfordert es, zunidchst einen Zusammenhang zwi-
schen den KrimmungsmaBen und den Oberflaichenfunktionen herzustellen. Dies
geschieht, indem wir eine gemeinsame Verallgemeinerung beider Serien von
MaBen betrachten.

Fiir einen konvexen Korper K € 8" und einen Punkt x € E"\K sei

x —p(K, x)
K x):=———
u(K, x) 7K. %)
gesetzt. Sei p>0 und K, der Parallelkorper von K im Abstand p. Die Abbildung

fo : KZA\K— Q
x = (p(K x), u(K, x))

ist stetig, insbesondere meBbar. Sei u,(K,:) das BildmaB des (auf K, \K
eingeschriankten) Lebesgueschen MaBes unter f,. Fir ne B({2) ist also u, (K, )
das Maf3 der Menge

M,(K,n):=f,'(m)={xeE":0<r(K,x)=p und (p(K x),u(K, x))en}.

Speziell ist

ok, )= 2K K) = 3 o () Wi, @.1)
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wo W,(K) das j-te QuermaBintegral von K bezeichnet.

(2.2) BEHAUPTUNG. Ist (K;);cn ¢ine (im Sinne der Hausdorffmetrik) gegen
K konvergierende Folge in K", so ist die Folge (u,(K,, *));cn vOn Borelmaflen auf (2
schwach konvergent gegen u, (K, -).

Beweis. Sei mc{) offen. Sei xeM,(K,n) und r(K x)<p. Es gilt
r(K;, x) — r(K, x) und (p(K,, x), u(K;, x)) = (p(K, x), u(K, x)) fir i — . Fur fast
alle i gilt daher r(K;, x)<p und wegen der Offenheit von m auch (p(K, x),
u(K;, x))en, also x € M, (K;, ). Somit gilt

M, (K, n)\9K, < lim inf M, (K, )

{—>0

und daher

w, (K, n)=%"(M,(K, n)\dK,) = £"(lim inf M, (K}, 1))

i—»c0

=lim inf £"(M, (K, n)) =lim inf p, (K}, 1).

{—>0 i—>o0

Da dies fiir alle offenen Mengen 7 gilt und da wegen (2.1) auch u, (K, 2)—
u,(K, 2) gilt, folgt die Behauptung (2.2).

Nun sei Pe 8" ein Polytop. Durch passende Zerlegung der Menge M, (P, 7)
und Anwendung des Satzes von Fubini findet man

n—1 1
w(Pm)= Y pmm Y [ hrnlo® PR agni). 23)
m=0 =M pegmp)
F

Dabei ist #™(P) die Menge der m-dimensionalen Seiten von P, (P, F) das
spharische Bild der Seite F und

N ={ueS" ':(x,u)en}

Aufgrund von (2.2) und (2.3) konnen wir jetzt die SchluBweise, die zum
Beweis von [13, (3.11)] fuhrte, nahezu wortlich iibertragen und erhalten:

(2.4) BEHAUPTUNG. Zu jedem konvexen Korper K € &™ gibt es endliche,
positive Mafle Oy(K,-),. .., 0,_(K, ) auf B(2), so daB fiir ne B(NQ) und p>0
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das Maf3 u,(K, ) der Parallelmenge M, (K, n) gegeben ist durch

n—1

1 —
w(Km =% o (") ok m. 2.5)

m

Wie ein Vergleich mit der Definition der KrimmungsmaBe in der Einleitung
zeigt, ist

C.(K,B)=0,(K,BxS""), BeB(E") (2.6)
fur m=0,..., n—1. Andererseits ist durch
Su(K, 0)= 0,(K. E"xw),  wcB(S"), (2.7)

gerade die m-te Oberflichenfunktion von K im Sinne von Fenchel-Jessen [9]
gegeben, wie aus der letzten Gleichung in [9, S. 31] oder aus [13, §4] hervorgeht.

Die MaBe 0,,(K, ) sind konzentriert auf der Menge Y (K) der Stiitzelemente
von K: Ist xe M, (K, n), so ist (p(K, x), u(K, x))e n NY.(K); es ist also u,(K, 1) =
w, (K, n NY(K)) fiir p>0 und daher nach (2.5)

@m(K,n)=@m(K,nﬂZ(K)> fur ne®2), m=0,...,n—1. (2.8)

Nun kOnnen wir einen Zusammenhang zwischen Krimmungsmafen und
Oberflachenfunktionen in Form von Ungleichungen herleiten.

(2.9) HILFSSATZ. Sei me{0,..., n—1}, sei o <S" ' abgeschlossen. Dann
gilt

C.(K, 71(K, o) NR(K))=<S,.(K, )= C, (K, 7(K, w)).

Beweis. Sei (x,u)e)(K) ein Stutzelement von K mit xe7(K, w)N R(K).
Dann ist u Normalenvektor an K in x. Wegen x € 7(K, w) existiert in x ein
Normalenvektor aus w, der aber wegen x € R(K) mit u ubereinstimmen muB, es
ist also u € w. Damit ist

([+(K, ) NR(K)]1xS" YN Y.(K) = (E" X w) N Y, (K)

gezeigt. Die hier auftretenden Mengen sind Borelmengen (7(K, w) und ) (K) sind
abgeschlossen, 0K\ R(K) ist eine F,-Menge), also folgt

6, (K, ([v(K, ) NR(K)]xS"HN Z(K)) <0, (K, (E" X )N Z(K)>
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und damit nach (2.6), (2.7), (2.8)
C,.(K, 7(K, ®©) N R(K)) = 0,,(K, ([7(K, ®) " R(K)]x $" 1N Y (K))
<0, (K, (E"x )N Z(K)) =S,.(K, »).

Sei (x, u) € Y.(K) ein Stiitzelement von K mit u € w. Dann ist x € 7(K, w). Also
gilt

(E"xw)N Y (K)< (1(K, @) xS )N Y (K).
Analog wie oben ergibt sich

S,.(K, )= 0,, (K, (E" X )N Z(K))

<0, (K, (r(K, 0) xS" N Z(K)) =C,.(K, 7(K, »)).

Damit ist (2.9) bewiesen.

Fiir eine spatere Anwendung wollen wir zunachst noch eine weitere Aussage
tiber KrimmungsmaBle bereitstellen. Fir A >0 erklaren wir die Abbildung
T, : 2—Q durch T, (x, u): = (x + Au, u). Dann gilt fur K€ 8", n € B(2), A =0 und
m=0,..., n—1 die verallgemeinerte Steinersche Formel

O, (K, Tum)= Y. (']") 0,_,(K, ). (2.10)

i=0
Zum Beweis bemerken wir zunachst, daB fiir x € E"\K, die Gleichungen
p(K)o x) = p(K, x) + AU(K, X),W

u(K,, x)=u(K, x), > (2.11)

r(K,, x)=r(K,x)—A J

gelten. Sei namlich x € E"\K, und y der Schnittpunkt der Verbindungsstrecke
von x und p(K, x) mit dem Rand von K,. Angenommen, es wire p(K,, x) #y.
Dann ist ||x — p(K,, x)||<|[lx — y|l. Mit z:=p(K, p(K,, x)) gilt wegen p(K,, x) € 0K,
und y € 9K,

Ip(Ky, x)—z||= A <[ly —p(K, x)||
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also
x — zl|=llx — p(Ky, x)l|+[lp(Ky, x) — zl| <[lx — y||+]ly — p(K, x)| =[x — p(K, %),

was der Definition von p(K, x) widerspricht. Somit ist p(K,, x)=y. Dann muf}
u(K, y)=u(K, x) = u(K,, x) sein. Hieraus folgt (2.11).
Aus (2.11) gewinnt man nun sofort die disjunkte Zerlegung

Mp+x (K, 7!) =M, (K, n)U Mp (K, Tm)

und hieraus
Borr (K, m) = un (K, )+ p, (K, Tym).

Einsetzen von (2.5) und Vergleich der Potenzen von p ergibt die Behauptung
(2.10).

Nun beginnen wir mit dem Beweis von Satz (1.2). O.B.d.A. darf a=1
angenommen werden, da dies stets durch eine Streckung erreichbar ist. Es sei also
K € &" ein konvexer Korper mit

CulK,)=C,i(K, ). (2.12)

Da C, (K, B8) mit dem (n-—1)-dimensionalen Hausdorfimal von oKNpf
iibereinstimmt (siche [13, (3.21)]), gilt nach einem Satz von Reidemeister (siehe
z.B. Busemann [5, S. 13)])

C,_(K,dK\R(K))=0. (2.13)

Sei w = S"! abgeschlossen. Dann gilt

S. (K, w)=C,.(K, 1(K, w)) nach (2.9)
=C,.(K, 1(K, »)) nach (2.12)
=C,.(K, 7(K, ) N R(K)) nach (2.13)
=C,(K, 7(K, ®) N R(K)) nach (2.12)
=§,.(K, w) nach (2.9).

Es folgt, da3 hier uiberall das Gleichheitszeichen steht, insbesondere ist also

Sm(Ka w) = Cn—l(K’ T(Ka (1))) = Sn—l(K’ w)a
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letzteres nach [13, (4.19) und (3.21)]. Gilt die Gleichheit S,,.(K, w)=S,_(K, w)
fiir alle abgeschlossenen Mengen w < S"™!, so gilt sie firr alle Borelmengen
w<S" ! Esist also S,,(K,)=S,_,(K, ). Aus [15, (3.8)] folgt jetzt, daB K ein
m-Tangentialkorper einer Einheitskugel B ist. GemaB [15, (2.2)] ist hiermit
dquivalent:

(2.14) Jede (n—m —1)-extreme Stiitzebene an K ist Stiitzebene an B.

Es bleibt zu zeigen, dal K mit B zusammenfillt. Fir m =0 ist das klar, da
jede Stitzebene (n —1)-extrem ist. Im Fall m =1 ist K ein Kappenkorper von B
(Bonnesen-Fenchel [4, S. 17-18]). Angenommen, es wiare K# B. Dann besitzt K
wenigstens eine ‘“Kappe”’, das heif3t es gibt einen Punkt x € E™\B derart, daf3 die
Punktmenge

M :=[dconv (BU{ph\BU{p})

im Rand von K liegt. M ist Teil einer Kegelhyperfliche. Wegen (1.3) miiite auf
der zweimal stetig differenzierbaren Hyperfliche M die Kriimmungsfunktion
H, _, konstant sein, was nicht der Fall ist. Somit ist K = B.

Die hier angewandte SchluBweise wollen wir auf m =2 ausdehnen. Ist K# B,
so ist die Punktmenge dK\(B U S(K)) nicht leer. Jede ihrer Zusammenhangskom-
ponenten ist eine differenzierbare Hyperflache. Im Fall m =2 braucht sie aber,
wie Beispiele zeigen, nicht zweimal differenzierbar zu sein. Wir kénnen nicht
einmal ausschlieBen, daB die Punkte, in denen keine zweimalige Differenzierbar-
keit besteht, dicht liegen. Daher ist die obige Schluflweise nicht unmittelbar
ubertragbar. Nun sind konvexe Hyperflichen jedoch fast iiberall zweimal
differenzierbar. Dies reicht aus, um (im vierten Abschnitt) den Beweis zu Ende zu
fuhren. Der nichste Abschnitt enthalt die erforderlichen Vorbereitungen, im
wesentlichen eine Verallgemeinerung eines Satzes von Aleksandrov.

3. Normale Punkte

Wir wiahlen im E" einen Einheitsvektor e, und bezeichnen den dazu or-
thogonalen Unterraum mit E"'. Gegeben sei eine konvexe Funktion z auf
dem AbschluB U einer beschrinkten, offenen, konvexen Umgebung U von 0 in
E"™' mit z=0 und z(0) =0. Fiir h >0 schneidet dann die Hyperebene E" "'+ he,
den Epigraphen von z,

K, :={x+Ae,:xe U A =z(x)},
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in einer (n— 1)-dimensionalen kompakten, konvexen Menge. Die hieraus durch
Orthogonalprojektion in E"~! und Streckung mit dem Faktor 1/¥/2h entstehende
konvexe Menge sei mit D(h) bezeichnet. Existiert der (Hausdorffsche abgeschlos-
sene) Limes lim,_,o,D(h), so nennt man diese Menge die Indikatrix von K,
(oder z) in 0. Der Punkt O hei3t normaler Punkt von K,, wenn in 0 die Indikatrix
existiert und von einer Fliche zweiter Ordnung mit Zentrum 0 berandet wird.

Wir setzen jetzt voraus, daB 0 normaler Punkt von K, ist. Die
Hauptkrimmungen k., ..., k,_; von K, in 0 sind dann wie ublich erklart als die
reziproken Quadrate der (wegen der Konvexitiat der Indikatrix reellen) Halbach-
sen der Indikatrix. Wir wihlen in E"~' eine orthonormierte Basis e, ..., e,_; in
den Hauptachsenrichtungen der Indikatrix. Fiir x € E" bezeichnen dann in diesem
Abschnitt x,, ..., x, stets die Koordinaten beziiglich der Basis e,,...,e,.

Wie Aleksandrov [1] gezeigt hat, besitzt z im normalen Punkt O in einem
verallgemeinerten Sinn ein zweites Differential. Wir wollen (fir ie{1,...,n—1})
die Zahl ¢ eine verallgemeinerte Ableitung von z nach der i-ten Koordinate im
Punkt x € U nennen, wenn es Zahlen &,,...,&_,, &.1, ..., &, gibt derart, daf
der Vektor &,e,+ -+ +&,_1e._,—e, auBerer Normalenvektor einer Stiitzebene
an K, im Punkt x + z(x)e, ist. Eine Funktion z;: U — R hei}e veraligemeinerte
Ableitung von z nach der i-ten Koordinate, wenn fir jedes x € U der Wert z;(x)
eine verallgemeinerte Ableitung von z nach der i-ten Koordinate in x ist.
Aleksandrovs [1] Ergebnis 148t sich dann folgendermaBen formulieren. Es gibt
eine monoton nicht abnehmende Funktion ¢ mit

lim ¢(r)=0,

r—0+
so daB

|z:(x)— kx| = w(lxDllx|| fir xeU (3.1)
gilt fir i=1,...,n—1 und jede verallgemeinerte Ableitung z; von z nach der

i-ten Koordinate. Ohne Beschrinkung der Allgemeinheit kOnnen wir ¢ so
wihlen, daBl auch

|z(x)z;(x)| = ¢(|x|Dllx|| fir xeU (3.2)
gilt.

Fiir eine beschriankte Teilmenge B'< E™ ! setzen wir

18 = sup |x]|

xef’
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und fur € >0
U.(B):={xeE" ':|x—y|=e furein yep'}

Fur Teilmengen von E" ' ist die Randbildung 8 im folgenden relativ zu E"!
gemeint; entsprechendes gilt fur zu E"~' parallele Hyperebenen. Mit F bezeich-
nen wir das (n — 1)-dimensionale Hausdorffmal3.

DEFINITION. Die Folge (B!);cn von Teilmengen von E"~' heit normal
(bezuiglich 0), wenn folgendes gilt:B; ist kompakt, F(B;) #0 (ieN),

lim [B]|=0, (3.3)

i —>0C

und fir jede Folge (¢, );cn positiver Zahlen mit

lim H—Eﬂ =0 st (3.4)
. F(U_(B7))
}Tl ~—————F(B:) =0. (3.5)

Eine Folge (B,);cn von Teilmengen von 0K, heiflit normal, wenn ihr durch
Orthogonalprojektion in E""' eine normale Folge von Teilmengen von U ent-
spricht.

Fur jede Borelmenge B <0K,, der durch Orthogonalprojektion in E"~' eine
Teilmenge von U entspricht, ist das KrimmungsmaB3 C,(K,, B8) erklirbar als
C.(K,NH,B), wo H:={xe€ E":x, =A} mit geniigend gro3em A ist. Wie iiblich
bezeichnet H, die r-te normierte elementarsymmetrische Funktion der
Hauptkrimmungen k,, ..., k,_,, hier im Punkt 0. Wir konnen nun das Haupt-
ergebnis dieses Abschnitts formulieren.

(3.6) HILFSSATZ. Ist 0 ein normaler Punkt von K, und (B;);cn eine
(bezuiglich 0) normale Folge von Teilmengen von 3K, so gilt

. Cm(Kz’ Bl)
lim —m 22 BP0 g 3.7
g—>00 n~1(Kza Bl) : ( )

firm=0,...,n—1.
Fiir m =0 ist dies von Aleksandrov [1] bewiesen worden. Wir wandeln seine
Beweismethode passend ab. Sei also (B;);cn €ine normale Folge. Sei p>0. Wir
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bilden die Mengen

o(B):={x+puixep, (x we LK)},

also die Parallelfliche von B; im Abstand p, und die in der Ebene E" '—pe
liegende Menge

n

¢'(B): = {x +2z(x)e, +Au:xe B, (x+z(x)e,, u)e Z(Kz), z(x)+A(u, e,)=— p}.
Ferner sei die affine Abbildung ¢°: E"™' — E" ' —pe, erklart durch

n—1
0°(x):=—pe, + Z (1+pk;)xe;, - xeE" .

i=1

Dann ist

F(e°(BY) _ v ;(n—1
i~ (rek) - (rpkoy= 3 o ("), (3.8

Wegen (3.3) gilt

. F(B) _

}E{lom—l und (39)
. F(e'(B)) _

M FeB) G109

denn es gilt u — e, gleichmaBig fur x — 0 und (x, u) e (K,). Wir zeigen, daf}
auch

i F@(B)) _
m

im B | (3.11)

gilt. Zum Beweis setzen wir

&:=vn—1(+Dy(BDIBI, ieN; (3.12)

dann ist die Bedingung (3.4) und damit auch (3.5) erfiillt. Sei y € ¢'(B}). Dann
existiert ein Punkt x € 8} mit

y=x+2z(x)e, +Au,
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wobei u ein duBerer Normalenvektor an K, in x +z(x)e, ist, zum Beispiel
n—1
u=—e,+ . z(xe,
i=1

WO Zi,...,Z,—, verallgemeinerte Ableitungen von z sind, und wobei A so zu
wihlen ist, daB ye E" ' —pe, gilt. Es ist also

y =—pe,+ n_i [x; +(z(x)+p)z;(x)]e;.

ji=1

Fur den Punkt y°:= ¢%x) € ¢°(B}) gilt
n—1
y—y°= Y [p(z;(x)— kix;) + z(x)z;(x)]e;;
i=1

nach (3.1), (3.2), (3.12) ist also ||y — y°||<e,. Somit ist
@'(B) <= U, (¢°(B). (3.13)
Hieraus folgt nun

Fle'(BY) _, , F(U.(0°(B)
F(e(BY)) F(e"(B))

-1 fir i—>oo (3.14)

nach (3.5) und da die affine Abbildung ¢° fiir kleine p>0 (und nur diese
brauchen wir zu betrachten) nicht ausgeartet ist.
Analog zu (3.13) folgert man

¢°(B) = U, (¢'(BY),
woraus sich

¢ (BI\(U,, (30" (B)) = ¢'(BY) (3.15)
ergibt, und

¢'(0B) = U, (¢°(88)) = U, (8¢°(BY). (3.16)
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Nun gilt
3¢ (B) < ¢'(3B), (3.17)

wie man folgendermafBlen einsieht. Zu y e ¢'(U) sei f(y) der Punkt, der durch

Orthogonalprojektion des Punktes p(K,,y) auf E""' entsteht. Dann ist ye

¢'({f(y)}). Da die Abbildung f stetig ist, folgt nun leicht die Relation (3.17).
Aus (3.15), (3.16), (3.17) ergibt sich

@°(B)\ U, (3¢°(B)) = ¢'(B)).
Hieraus folgt

F(¢'(B)) _ | _F(Us(3¢°(8))
F@°B)  Fe“(B))

—1 fur i—x,

Zusammen mit (3.14) ergibt das die Behauptung (3.11).
Aus (3.8), (3.9), (3.10), (3.11) folgt nun

. Fle(B)) "¢ ,(n—1
im <~ e () Gt

Andererseits gilt
n—1 (n— 1

F(‘P(B;)): Z pl ( ] ) Cnvl—j(Kz’ Bi)7 (319)
i=0

wie sich wegen F(¢(B;)) = C,_((K.),, ¢(B;)) aus (2.10) und (2.6) ergibt. Da (3.18)
und (3.19) fiir alle kleinen p >0 gelten, folgt wegen F(B;) = C,_,(K,, B;) nun die
Behauptung (3.7). Damit ist Hilfssatz (3.6) bewiesen.

Da man den Rand eines konvexen Korpers in einer Umgebung eines gegebe-
nen Randpunktes durch eine konvexe Funktion darstellen kann, versteht es sich
von selbst, wie sich der Begriff des normalen Punktes und Hilfssatz (3.6) auf
beliebige konvexe Korper tibertragen. Wesentlich ist dann die folgende Aussage.

(3.20) HILFSSATZ. Fiir jeden konvexen Korper K€ 8" sind (im Sinne des
(n—1)-dimensionalen Hausdorffmafes) fast alle Randpunkte normal.

Dies ist fiir n =2 von Jessen [10], fur n =3 von Busemann-Feller [6] und fir
beliebiges n von Aleksandrov [1] gezeigt worden. Einen kiirzeren, aber weniger
elementaren Beweis findet man bei Bangert [3, (3.22)].
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4. Beweis des Satzes, Schluf§

Wir nehmen nun an, der konvexe Korper K, der (2.12) und daher (2.14) mit
einer Einheitskugel B < K erfiillt, falle nicht mit dieser Kugel zusammen (es muf3
also m=1 sein). Setze

M :=93K\(B U S(K)).

Sei x € M ein normaler Punkt von K. Durch x gibt es genau eine Stiitzebene H
an K; sei u ihr auBlerer Normaleneinheitsvektor. Da x ein regularer Randpunkt
ist, ist H eine extreme Stutzebene, nach (2.14) ist sie also auch Stiitzebene an B
und berithrt daher B in einem Punkt y. Der Strahl durch x mit Endpunkt y
verlat den Korper K in einem Punkt z. Dieser Punkt muf3 noch in einer von H
verschiedenen Stiitzebene an K liegen, er ist daher singular und somit verschieden
von X.

O.B.d.A. nehmen wir im folgenden an, daf3 z der Nullpunkt des E" ist. V sei
der zu y orthogonale (n— 1)-dimensionale lineare (also durch z =0 gehende)
Unterraum, und W< V sei der aullerdem zu u orthogonale (n —2)-dimensionale
lineare Unterraum.

Fiir einen konvexen Korper K'e 8" und einen Vektor v € E"\{0} bezeichne
H(K', v) die Stiitzebene an K’ mit auerem Normalenvektor v; speziell ist also
H(K, u) = H. Ein Randpunkt des konvexen KoOrpers K’ hei3t k-extrem, wenn er
nicht Mittelpunkt einer in K' enthaltenen (k + 1)-dimensionalen Kugel ist. Jeder
exponierte und daher (als Limes von exponierten Randpunkten) auch jeder
extreme Randpunkt eines konvexen KoOrpers mit mehr als einem Punkt ist
Hiufungspunkt von l-extremen Randpunkten. denn jeder nichtleere Durch-
schnitt des Korpers mit einer Hyperebene hat extreme Randpunkte, und diese
sind 1-extreme Randpunkte des Korpers selbst.

(4.1) BEHAUPTUNG. Sei L < W ein m-dimensionaler linearer Unterraum.
Dann gibt es eine Folge (u;);n von Einheitsvektoren mit folgenden Eigenschaften:

(a) Die Stiitzebene H(K, u;) ist Stiitzebene an B und geht durch z;
(b) lim w; = u;

U;

(c) w:=1lim

™ :Z” existiert und liegt in L.

Beweis. Nor (K, z) sei der Kegel aller duleren Normalenvektoren an K in z.
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Der Durchschnitt N:=(H+u)NNor (K, z) ist eine abgeschlossene konvexe
Menge, die nicht ganz in V liegt (denn es gibt eine Stiitzebene an K in z, die nicht
durch y geht). Es sei E die (m + 1)-dimensionale Ebene, die von L + u und einem
nicht in V gelegenen Punkt von N aufgespannt wird. Setze N':=NNE. Da H
eine extreme Stutzebene von K ist, ist u extremer Randpunkt von N und daher
auch extremer Randpunkt von N'. Wie oben bemerkt, ist u daher Limes einer
Folge (v;);cn 1-extremer, von u verschiedener Randpunkte von N’'. Wir setzen
u; : =vf|lv;]l. O.B.d.A. diirfen wir (nach Auswahl einer Teilfolge) annehmen, daB
der Grenzwert

ui'—u

lim =W (4.2)
i—oo [|u; — ul

existiert. Da v; ein l-extremer Randpunkt von N’ und daher ein (n—m—1)-
extremer Randpunkt von N ist, ist i; ein (n—m —1)-extremer Normalenvektor
von K. Nach (2.14) ist die Stiitzebene H(K, u;), die wegen u; € Nor (K, z) durch z
geht, auch Stitzebene an B. Daher gilt, da y —u der Mittelpunkt der Einheits-
kugel B ist, (y—u, u;)=—1 fiir ieN. Wegen (4.2) und (y, u)=0 folgt hieraus
(y, w)=0, also we V. Mit (4.2) gilt auch

Ui—u

lim =w,
i—oo U —
wegen v;,—ucE—u ist also we VN (E—u)= L. Damit ist (4.1) bewiesen.
Es sei nun D < H die Indikatrix von K im Punkt x. Mit h. (D, -) sei die

Stiitzfunktion von D beziiglich x bezeichnet, also

h, (D, v):=sup (p—x, v).

peD

(4.3) BEHAUPTUNG. Jeder m-dimensionale lineare Unterraum Lc< W
enthdlt einen Einheitsvektor w mit

h (D, w)= ﬂ_x_:_z_ﬂ
ly —z|

Beweis. Zu dem m-dimensionalen Unterraum L < W sei (i);.n €ine Folge
gemaB (4.1) mit zugehoOrigem Vektor we L. Sei i e N. Die Stutzebene H(K, u;)
hat nach (4.1.a) mit K (mindestens) die Strecke mit Endpunkten z und y;:=y—
u+u; gemeinsam. Sei A € |0, 1] bestimmt durch x = Ay. Sei H; die zu H parallele
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Hyperebene durch Ay, und h; ihr Abstand von H, also

hy = A(1—(u, u;)).

Der konvexe Korper KNH,; hat in H; die (n—2)-dimensionale Stiitzebene
H(K, u;)NH;; in ihr liegt der Randpunkt Ay, von KNH, Der duBlere Nor-
maleneinheitsvektor v; der Stiitzebene H(K, u;) N H; wird erhalten durch Or-
thogonalprojektion von u; in den Unterraum H und anschlieBende Normierung,
es ist also

o = u; —(u, u)u
VA T

Wegen (w, u)=0 gilt auch

lim v; = w. (4.4)

i—>

Der konvexe Korper D; entstehe aus K N H; durch orthogonale Projektion in
H und Streckung mit dem Faktor 1/v/2h; aus dem Punkt x. Der auf gleiche Weise
aus Ay, hervorgehende Punkt

1 1
D °_'\Fhi(/\)}i+hiu)+( —m*) Ay

ist Randpunkt von D; und liegt in der Stiitzebene H(D,, v;). Daher ist

h.(D;, v;) =(p; — Ay, Ui>:\/<% (1+u, ui))-
Es folgt

lim h,(D,, v;)=VA.

i—>00

Nun konvergiert die Folge (D,);.n gegen die Indikatrix D von K in x. Hieraus
folgt wegen (4.4)

h (D, w)<lim h (D, v,) = VA = Hx——zn.
o ly =zl
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womit (4.3) bewiesen ist.
Da x ein normaler Randpunkt von K ist, gilt

D={peH:(A(p—x),p—x)=1}
mit einer (positiv semidefiniten) selbstadjungierten linearen Abbildung A des

Unterraums H in sich. Die Hauptkrimmungen k,=k,=:--=k,_, von 0K in x
sind gerade die Eigenwerte von A; speziell ist

A
k,= Max WA, v)-
veH\{0} (U, V)

Sei nun we W ein Einheitsvektor gemal (4.3), und sei a >0 so gewahlt, daB3
p:=x+taw im Rand von D liegt. Dann ist also

x|

a=|p—x||=h/(D, w)=
ly —z|

und folglich

_(Ap-x).p=x) 1 _ly—z

k, = — Ay el
T p—x,p—x) @ |x—z|

Im Fall m=n-3 konnen wir folgendermaBBen weiterschlieBen. Der
zweitgroflte Eigenwert k, von A ist gegeben durch

A
k,= Max (Av, v)

veH 0} (U, V)’
(v, e)=0

wo e ein Eigenvektor zum Eigenwert k, ist. Der Unterraum {v e W:(v, e) =0}
enthdlt wegen m =<dim W —1 nach (4.3) einen Einheitsvektor w, mit

lx 2|

h. (D, w,) < .
ly —z|l

Analog wie oben folgt

ly —z||
k,= .
2T x—z|
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Durch Forsetzung dieses Verfahrens erhalten wir dieselbe Abschatzung fur die
r groBten Eigenwerte, solange m <dim W —(r—1) ist, also bis r=n—1—m. Fur
die Krimmungsfunktion

n—1\"" :
o= (" 1) ik b )
m

des Korpers K, wo die Punkte fiir weitere nichtnegative Summanden stehen,
ergibt sich daher die Ungleichung

("; 1) H, , ,.(x)= (M)"Al’m. 4.5)

lx —z||

Diese Ungleichung haben wir erhalten aus der Voraussetzung, daf3 x € M ein
normaler Punkt von K sei. Nach Annahme ist nun M nicht leer, und wegen (2.14)
und K#B muB3 K wenigstens einen singulairen Randpunkt besitzen. Nach
Hilfssatz (3.20) und (2.13) gibt es also in M eine Folge (x;);.n normaler Punkte,
die gegen einen singularen Randpunkt s konvergiert. Zu jedem Punkt x; gehoren,
wie am Anfang des 4. Abschnitts fur x erklart, ein Punkt y,€dB und ein
singuldrer Randpunkt z; derart, daf} die Strecke S; mit Endpunkten y; und z; in K
liegt und den Punkt x; enthalt. Wir diirfen (nach Auswahl einer Teilfolge)
annehmen, daf} die Streckenfolge (S;);cn gegen eine Strecke S konvergiert. Die
Strecke S mufl dann im Rand von K liegen, die Kugel B in einem Punkt y
beruhren und den Punkt s enthalten. Da durch s eine Stiitzebene an K geht, die
nicht die Kugel B geriihrt, ist s Endpunkt der Strecke S. Hieraus folgt, daB (z;);cn
gegen s konvergiert. Offensichtlich konvergiert (y;);cn gegen y. Nach (4.5) ist

(”; 1) H, (%)= (Hyj;gjﬂ)n-um'

| =zl
Wegen [ly, — 2]l = lly —sll %0 und |lx; — z| — 0 folgt
Hn—l—m(xj)_)oo fur ]—_)OO

Aus (2.12) folgt nach Hilfssatz (3.6) (und der offensichtlichen Existenz nor-
maler Teilmengen-Folgen) aber H, _, ,.(x;) = 1. Dieser Widerspruch 16st sich nur,
wenn K =B ist.
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