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Comment. Math. Helvetici 54 (1979) 42-60 Birkhâuser Verlag, Basel

Bestimmung konvexer Kôrper durch Krùmmungsmafie

Rolf Schneider

1. Einleitung

Jede hinreichend glatte Eiflâche im dreidimensionalen euklidischen Raum mit
konstanter mittlerer oder konstanter GauBscher Krùmmung ist eine Sphâre.
Dièses erstmals (unter zusàtzlichen Voraussetzungen) von Liebmann [11] be-
wiesene Ergebnis, einer der klassischen Sâtze der globalen Diflferentialgeometrie,
hat bekanntlich mannigfache Verallgemeinerungen in verschiedensten Richtungen
erfahren. Die unmittelbare Erweiterung auf hôhere Dimensionen, also die Kenn-
zeichnung der Sphâren als der einzigen Eihyperflâchen, auf denen eine elementar-
symmetrische Funktion der Hauptkrùmmungen konstant ist, stammt von Sùss

[16] (siehe auch Bonnesen-Fenchel [4, S. 117 f.]). Im folgenden soll dieser Satz

auf allgemeine konvexe Hyperflàchen ohne Differenzierbarkeitsvoraussetzungen
ausgedehnt werden. Die Krùmmungsfunktionen mùssen dann durch passend
definierte MaBe ersetzt werden. Solche MaBe sind in allgemeinerem Rahmen von
Fédérer [8] eingefùhrt worden.

Die Ausdehnung ursprùnglich diflferentialgeometrischer Sâtze auf konvexe
(oder allgemeinere) Flàchen ohne Differenzierbarkeitsvoraussetzungen ist
bekanntlich seit langem mit groBem Erfolg betrieben worden; Zusammenfassungen
findet man u.a. in den Bùchern von Aleksandrov [2], Busemann [5], Pogorelov
[12]. Jedoch hat der Satz von Liebmann-Sûss bisher noch keine entsprechende
Verallgemeinerung erfahren.

Die hierfùr benôtigten Federerschen KrùmmungsmaBe kann man fur konvexe

Kôrper folgendermaBen erhalten (siehe auch [13]). Ist K ein konvexer Kôrper
(kompakte, konvexe Teilmenge mit inneren Punkten) im n-dimensionalen
euklidischen Vektorraum JEn(n>2) und ist xeEn, so sei p(K, x) der (eindeutig
bestimmte) Punkt in K mit kleinstem Abstand von x ; dieser kleinste Abstand sei
mit r(K, x) bezeichnet. Fur eine Borelmenge j3 <= En und eine Zahl p >0 werde
sodann

und p(K,x)e&}

gesetzt. Dièse "Parallelmenge von dKDfi im Abstand p" ist ebenfalls eine
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Borelmenge, und ihr Lebesguesches MaB lâBt sich ausdrùcken in der Form

1 "y*. _ In
9 n m=0

Vm

Durch dièse "lokale Steinerformel" werden dem konvexen Kôrper K positive
MaBe C0(K, •),..., Cn_x(K, •) auf den Borelmengen des En zugeordnet. Sie

heiBen die Krùmmungsmafie von K (und unterscheiden sich von Federers [8]
MaBen <$>0(^ *)>•••> ^n-iiK, •) nur durch eine unterschiedliche Normierung). Ist
der Rand dK von K eine zweimal stetig differenzierbare, regulàre Hyperflàche, so

gilt

(1.1)

wo Hk die fc-te normierte elementarsymmetrische Funktion der Haupt-
krùmmungen von dK und dF das Oberflàchenelement bezeichnet. Einfache
anschauliche Deutungen der MaBe Cm(K, •) sind auch fur Polytope môglich,
ferner fur allgemeine konvexe Kôrper in den Fâllen m n -1 und m
0:Cn^x(K, (3) ist die Oberflàche (das (n- l)-dimensionale HausdorffmaB) von
dKHfr und C0(K, /3) ist das sphârische Lebesgue-MaB des sphârischen Bildes
von dKPi/3 (Menge aller àuBeren Normaleneinheitsvektoren an K in Punkten
von dKH |3). Das MaB C0(K, •) ist schon von Aleksandrov [1, §6], [2, Kap. V, §2]
betrachtet worden.

Nach diesen Erlàuterungen kônnen wir unser Hauptergebnis formulieren.

(1.2) SATZ. Sei K^En ein konvexer Kôrper, m e{0,1,..., n-2} und a eine
réelle Zahl. Gilt

Cm(K,') aCn^(K,-\ (1.3)

so ist K eine Kugel.

Ist der Rand von K eine zweimal stetig diflferenzierbare, regulàre Hyperflàche,
so ist die Bedingung (1.3) wegen (1.1) gleichwertig mit der Voraussetzung, daB
die Krùmmungsfunktion Hn_!_m der Randflâche dK konstant ist. Durch (1.2)
wird also in der Tat der Satz von Liebmann-Sûss verallgemeinert. Der Spezialfall
m =0 ist nicht neu (vgl. a. [14, Satz 1]); er ist sogar in verschârfter Form in
Gestalt eines Stabilitâtssatzes bewiesen worden (Diskant [7]). Àhnliche Ergeb-
nisse sind bekannt fur die von Aleksandrov und Fenchel-Jessen eingefùhrten
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Oberflàchenfunktionen, welche die elementarsymmetrischen Funktionen der

Hauptkrûmmungsradien verallgemeinern (siehe z.B. Busemann [5, S. 70]).

2. Beweis des Satzes, erster Teil

Zunàchst einige Bezeichnungen: Sn~l sei die Einheitssphâre (mit Mittelpunkt
0) des En. Das kartesische Produkt En x Sn~1 bezeichnen wir mit il und versehen

es mit der Produkttopologie. Fur X En, Sn~\ il bezeichnet 38(X) die a-
Algebra der Borelmengen in X. 5£n ist das n-dimensionale LebesguemaB und
Àn_! das sphârische LebesguemaB auf Sn'1. Die Menge der konvexen Kôrper des

En sei mit ®n bezeichnet. Fur KeSn ist R(K) die Menge der regulàren und

S(K) die Menge der singulâren Randpunkte von K. Ein Paar (x, u)eil heiBt
Stutzelement von K, wenn x e dK und u ein âuBerer Normalenvektor an K in x
ist. £(K) sei die Menge aller Stùtzelemente von K. Fur coczS""1 bezeichnet

t(K, o)) die Menge aller Randpunkte von K, in denen ein zu a) gehôrender
Normalenvektor an K existiert.

Unser Beweis des Satzes erfordert es, zunàchst einen Zusammenhang zwi-
schen den KrummungsmaBen und den Oberflàchenfunktionen herzustellen. Dies

geschieht, indem wir eine gemeinsame Verallgemeinerung beider Serien von
MaBen betrachten.

Fur einen konvexen Kôrper Ke®n und einen Punkt xeEn\K sei

,„ x-p(K,x)u(K,x): —r(K, x)

gesetzt. Sei p > 0 und Kp der Parallelkôrper von K im Abstand p. Die Abbildung

fp:Kp\K^ il
x

ist stetig, insbesondere meBbar. Sei jutp(iC, •) das BildmaB des (auf KP\K
eingeschrânkten) Lebesgueschen MaBes unter fp. Fur t] g /3(f2) ist also ixp(K,r\)
das MaB der Menge

; und (p(K, x), u(K,

Speziell ist
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wo Wj(K) das /-te QuermaBintegral von K bezeichnet.

(2.2) BEHAUPTUNG. Ist (K()ieN eine (im Sinne der Hausdorffmetrik) gegen
K konvergierende Folge in ®n, so ist die Folge (fip(Kt, *)XeN von BorelmaBen auf fl
schwach konvergent gegen np(K, •)•

Beweis. Sei rjczil oflfen. Sei xeMp(K, -q) und r(K, x)<p. Es gilt
r(Kt, x) -* r(K, x) und (p(Kl5 x), u(K,, x)) -> (p(K, x), m(K, x)) fur i -> oo. Fur fast
aile i gilt daher r(Knx)<p und wegen der Offenheit von 17 auch (p(K,, x),
w(Kl5 x)) e 7], also x e Mp(Kt, 7]). Somit gilt

MP(K, T|)\dKp cHm inf Mp(Kn t,)

und daher

<lim inf ^n(Mp(K,, tj)) lim inf jip(K,, tj).

Da dies fur aile offenen Mengen y\ gilt und da wegen (2.1) auch jjLp(Kt, il)-^
up(K,{2) gilt, folgt die Behauptung (2.2).

Nun sei Pe ®n ein Polytop. Durch passende Zerlegung der Menge MP(P, 17)

und Anwendung des Satzes von Fubini findet man

^CP,T,)=n£ Pn~m-^- Z f An_1
m=o n m Fe<Fm(P) J

(2.3)

Dabei ist ^m(F) die Menge der m-dimensionalen Seiten von F, a(P,F) das

sphârische Bild der Seite F und

Aufgrund von (2.2) und (2.3) kônnen wir jetzt die SchluGweise, die zum
Beweis von [13, (3.11)] fiihrte, nahezu wôrtlich ùbertragen und erhalten:

(2.4) BEHAUPTUNG. Zu jedem konvexen Kôrper Ke®n gibt es endliche,
positive Majie O0(K, •),•••, 0n_i(K, •) auf 38(17), 50 da& fur t\ e 38(fl) und p > 0



46 ROLF SCHNEIDER

das Mafi julp(K, t)) der Parallelmenge MP(K, tj) gegeben ist durch

f p()m(,î) (2.5)

Wie ein Vergleich mit der Définition der KrùmmungsmaBe in der Einleitung
zeigt, ist

Cm(Ky 0) 6>m(K, 0 x S"-1), j3 g ®(En) (2.6)

fur m 0,..., n -1. Andererseits ist durch

Sm(K, ai) 0m(K, En x a>), co g ^(S""1), (2.7)

gerade die m-te Oberflàchenfunktion von K im Sinne von Fenchel-Jessen [9]
gegeben, wie aus der letzten Gleichung in [9, S. 31] oder aus [13, §4] hervorgeht.

Die MaBe ©m(K, •) sind konzentriert auf der Menge £(K) der Stùtzelemente

von K: Ist x e MP(K, t)), so ist (p(K, x), u(K, x)) e r\ n£(K); es ist also julp(K, 17)

HP(K, ri nl(K)) fur p>0 und daher nach (2.5)

fur tîGflB(fl), m 0,...,n-l. (2.8)

Nun kônnen wir einen Zusammenhang zwischen KrùmmungsmaBen und
Oberflâchenfunktionen in Form von Ungleichungen herleiten.

(2.9) HILFSSATZ. Sei m e{0,..., n - 1}, sei ù) a Sn~x abgeschlossen. Dann
gilt

Beweis. Sei (x,u)eY,(K) ein Stùtzelement von K mit xer(K,ù))C\R(K).
Dann ist u Normalenvektor an K in x. Wegen x e r(K, œ) existiert in x ein
Normalenvektor aus a>, der aber wegen x g R(K) mit u ùbereinstimmen muB, es

ist also ue<x). Damit ist

x S"'1) H £(K) c(E"xw)n^ (K)

gezeigt. Die hier auftretenden Mengen sind Borelmengen (t(K, w) und £(10 sind
abgeschlossen, dK\R(K) ist eine F^-Menge), also folgt

x S""1)H
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und damit nach (2.6), (2.7), (2.8)

Cm(K, r(K, co) H R(K)) &m(K, ([r(K, co) H R(K)]x S""1) H £(K))

< 6>m (x, (En x co) H X(K)) Sm(K, co).

Sei (x, u) e Y,(K) ein Stùtzelement von K mit m g w. Dann ist x g t(K, o>). Also
gilt

(En x <o) n X(K)c (t(JC, co) x S""1) H

Analog wie oben ergibt sich

Sm(K, co) ©m (k, (En x co) H

(r(X, co) x S""1) H X(K)) Cm(K, r(K, co)).

Damit ist (2.9) bewiesen.

Fur eine spâtere Anwendung wollen wir zunàchst noch eine weitere Aussage
ùber KrùmmungsmaBe bereitstellen. Fur À > 0 erklàren wir die Abbildung
Tk : n^O durch Tx(x, u): (x + Au, m). Dann gilt fur Ke®n, r) g S8(/2), A 0 und
m 0,..., n -1 die verallgemeinerte Steinersche Formel

m /m\
@m(K,, Txt,)= I A' 0m_,(K, t,). (2.10)

j=o \J /

Zum Beweis bemerken wir zunàchst, daB fur X6E"\KX die Gleichungen

(2.11)

gelten. Sei nàmlich xeEn\KK und y der Schnittpunkt der Verbindungsstrecke
von x und p(K, x) mit dem Rand von Kx. Angenommen, es wâre p(Kx, x) # y.
Dann ist ||x-p(Kx, x)||<||x-y||. Mit z : p(K, p(KK, x)) gUt wegen p(KK, x)edKk
und
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also

||x - z|| < ||x - p(Kk9 x)\\ + \\p(Kk, x) - z\\ < \\x - y|| + ||y - p(K9 x)\\ \\x - p(K, x)\\,

was der Définition von p(K, x) widerspricht. Somit ist p(KA, x) y. Dann muB

u(K, y) u(K, x) u(Kk9 x) sein. Hieraus folgt (2.11).
Aus (2.11) gewinnt man nun sofort die disjunkte Zerlegung

P pKk, 7»
und hieraus

lip+k(K9 tj) fix(K, tî) + /lip(Ka, Tatî).

Einsetzen von (2.5) und Vergleich der Potenzen von p ergibt die Behauptung
(2.10).

Nun beginnen wir mit dem Beweis von Satz (1.2). O.B.d.A. darf a 1

angenommen werden, da dies stets durch eine Streckung erreichbar ist. Es sei also

K e ®n ein konvexer Kôrper mit

Cm(K,-) Cn_1(K,-). (2.12)

Da Cn_x(K, /3) mit dem (n - l)-dimensionalen HausdorffmaB von dKC\p
ûbereinstimmt (siehe [13, (3.21)]), gilt nach einem Satz von Reidemeister (siehe
z.B. Busemann [5, S. 13])

0. (2.13)

Sei o) c Snl abgeschlossen. Dann gilt

(K, oi)) nach (2.9)

Q-1(K,T(K,a>)) nach (2.12)

Cn^(K, r(K, ûi)nR(K)) nach (2.13)

Cm(K, r(X, a>)n,R(X)) nach (2.12)

<Sm(K,<o) nach (2.9).

Es folgt, da8 hier ùberall das Gleichheitszeichen steht, insbesondere ist also

Sm(K, a>) Cn^(K, t(K, o))) Sn^(K9 w)9
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letzteres nach [13, (4.19) und (3.21)]. Gilt die Gleichheit Sm(K, co) Sn_1(X, a>)

fur aile abgeschlossenen Mengen œcS""1, so gilt sie fur aile Borelmengen
wcr1. Es ist also Sm(K, •) Sn_1(K, •). Aus [15, (3.8)] folgt jetzt, daB K ein

m-Tangentialkôrper einer Einheitskugel B ist. GemâB [15, (2.2)] ist hiermit
âquivalent:

(2.14) Jede (n — m-l)-extreme Stùtzebene an K ist Stùtzebene an B.

Es bleibt zu zeigen, daB K mit B zusammenfâllt. Fur m 0 ist das klar, da

jede Stùtzebene (n — l)-extrem ist. Im Fall m 1 ist K ein Kappenkôrper von B
(Bonnesen-Fenchel [4, S. 17-18]). Angenommen, es wàre K^B. Dann besitzt K
wenigstens eine "Kappe", das heiBt es gibt einen Punkt xeEn\B derart, daB die

Punktmenge

M : [a conv (B U {p})]\(B U {p})

im Rand von K liegt. M ist Teil einer Kegelhyperflàche. Wegen (1.3) mùBte auf
der zweimal stetig differenzierbaren Hyperflàche M die Krùmmungsfunktion
Hn_2 konstant sein, was nicht der Fall ist. Somit ist K B.

Die hier angewandte SchluBweise wollen wir auf m>2 ausdehnen. Ist K^B,
so ist die Punktmenge dK\(B U S(K)) nicht leer. Jede ihrer Zusammenhangskom-
ponenten ist eine differenzierbare Hyperflàche. Im Fall m>2 braucht sie aber,
wie Beispiele zeigen, nicht zweimal differenzierbar zu sein. Wir kônnen nicht
einmal ausschlieBen, daB die Punkte, in denen keine zweimalige Diflferenzierbar-
keit besteht, dicht liegen. Daher ist die obige SchluBweise nicht unmittelbar
ûbertragbar. Nun sind konvexe Hyperflâchen jedoch fast ùberall zweimal
differenzierbar. Dies reicht aus, um (im vierten Abschnitt) den Beweis zu Ende zu
fùhren. Der nàchste Abschnitt enthâlt die erforderlichen Vorbereitungen, im
wesentlichen eine Verallgemeinerung eines Satzes von Aleksandrov.

3. Normale Punkte

Wir wâhlen im En einen Einheitsvektor en und bezeichnen den dazu or-
thogonalen Unterraum mit En~1. Gegeben sei eine konvexe Funktion z auf
dem AbschluB Û einer beschrânkten, offenen, konvexen Umgebung U von 0 in
En~l mit z >0 und z(0) 0. Fur h>0 schneidet dann die Hyperebene E""1 + hen

den Epigraphen von z,

Kz : {x + Ken : x e Û, A >
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in einer (n - l)-dimensionalen kompakten, konvexen Menge. Die hieraus durch

Orthogonalprojektion in En~l und Streckung mit dem Faktor 1/J2h entstehende
konvexe Menge sei mit D(h) bezeichnet. Existiert der (Hausdorffsche abgeschlos-
sene) Limes limh_*0+D(fe), so nennt man dièse Menge die Indikatrix von Kz

(oder z) in 0. Der Punkt 0 heiBt normaler Punkt von Kz, wenn in 0 die Indikatrix
existiert und von einer Flàche zweiter Ordnung mit Zentrum 0 berandet wird.

Wir setzen jetzt voraus, da6 0 normaler Punkt von Kz ist. Die
Hauptkriimmungen fcl5..., kn^x von Kz in 0 sind dann wie ùblich erklàrt als die

reziproken Quadrate der (wegen der Konvexitàt der Indikatrix reellen) Halbach-
sen der Indikatrix. Wir wâhlen in JEnl eine orthonormierte Basis eu en_1 in
den Hauptachsenrichtungen der Indikatrix. Fur x e En bezeichnen dann in diesem
Abschnitt xl9..., xn stets die Koordinaten bezùglich der Basis el5..., en.

Wie Aleksandrov [1] gezeigt hat, besitzt z im normalen Punkt 0 in einem

verallgemeinerten Sinn ein zweites Differential. Wir wollen (fur i e{l,..., n -1})
die Zahl £, eine verallgemeinerte Ableitung von z nach der i-ten Koordinate im
Punkt xeU nennen, wenn es Zahlen £1?..., ê_1? £t+i> • • • èn-i gibt derart, daB

der Vektor Ç1e1+ • • • +£n__ien_1-en âuBerer Normalenvektor einer Stùtzebene

an Kz im Punkt x + z(x)en ist. Eine Funktion z, : U—>R heiBe verallgemeinerte
Ableitung von z nach der i-ten Koordinate, wenn fur jedes xeU der Wert zt(x)
eine verallgemeinerte Ableitung von z nach der i-ten Koordinate in x ist.
Aleksandrovs [1] Ergebnis lâBt sich dann folgendermaBen formulieren. Es gibt
eine monoton nicht abnehmende Funktion ip mit

lim tMr) O,
r-»O+

so daB

^(||x||)||x|| fur xeU (3.1)

gilt fur i 1,..., n -1 und jede verallgemeinerte Ableitung z, von z nach der
i-ten Koordinate. Ohne Beschrânkung der Allgemeinheit kônnen wir i/f so

wâhlen, daB auch

|z(x)zl(x)|<i|r(||x||)||x|| fur xeU (3.2)

gilt.
Fur eine beschrânkte Teilmenge fi'<^En~l setzen wir

ll/3'l|:=sup||x||
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und fur €>0

[/e(j8/): {xGEri-1:||x-y||<€ fur ein yep'}.

Fur Teilmengen von En~l ist die Randbildung d im folgenden relativ zu En~l
gemeint; entsprechendes gilt fur zu En~1 parallèle Hyperebenen. Mit F bezeich-

nen wir das (n- l)-dimensionale HausdorffmaB.

DEFINITION. Die Folge O;)ieN von Teilmengen von En~l heiBt normal
(bezùglich 0), wenn folgendes gilt:|3; ist kompakt, F(p[)^0 (ieN),

:|| 0, (3.3)

und fur jede Folge (et)IGN positiver Zahlen mit

§j O ist (3.4)

=0' (35)

Eine Folge (j3,)ieN von Teilmengen von dKz heiBt normal wenn ihr durch

Orthogonalprojektion in En~x eine normale Folge von Teilmengen von U ent-
spricht.

Fur jede Borelmenge (3<^dKz, der durch Orthogonalprojektion in En~l eine

Teilmenge von U entspricht, ist das KrûmmungsmaB Cm{Kz, |3) erklârbar als

Cm(Kz HH, /3), wo H: {xeEn :xn<A} mit genùgend groBem A ist. Wie ùblich
bezeichnet Hr die r-te normierte elementarsymmetrische Funktion der

Hauptkrùmmungen fc1?..., kn_1? hier im Punkt 0. Wir kônnen nun das Haupt-
ergebnis dièses Abschnitts formulieren.

(3.6) HILFSSATZ. Ist 0 ein normaler Punkt von Kz und (ft)ieN eine

(bezùglich 0) normale Folge von Teilmengen von dKz, so gilt

m
(K B) Hn-l'm { ]

/ûrm=0,...,n-l.
Fur m =0 ist dies von Aleksandrov [1] bewiesen worden. Wir wandeln seine

Beweismethode passend ab. Sei also (ft)ieN eine normale Folge. Sei p>0. Wir



52 ROLF SCHNEIDER

bilden die Mengen

also die Parallelflâche von j3t im Abstand p, und die in der Ebene En~1-pen
liegende Menge

Ferner sei die affine Abbildung (pQ:En~l —>Enl-pen erklârt durch

° t y% xeEn'\

Dann ist

l. (3.8)
,=o V /

Wegen (3.3) gilt

(39)

lim

denn es gilt u—»en gleichmâBig fur x—»0 und (x, u)gX(Kz). Wir zeigen, daB

auch

gilt. Zum Beweis setzen wir

V (3.12)

dann ist die Bedingung (3.4) und damit auch (3.5) erfùllt. Sei y g (p'(Pl). Dann
existiert ein Punkt x e /3[ mit
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wobei u ein âuBerer Normalenvektor an Kz in x + z(x)en ist, zum Beispiel

wo z1?..., zn_! verallgemeinerte Ableitungen von z sind, und wobei À so zu
wâhlen ist, daB yeEn~1 — pen gilt. Es ist also

Fur den Punkt y°:= ço(x)e<p°(p[) gilt

n —1

J l

nach (3.1), (3.2), (3.12) ist also ||y — y°|| ^ €,- Somit ist

cp'(|3;)c Uei(<p°(p[)). (3.13)

Hieraus folgt nun

—77 >1 fur i-^œ (3.14)

nach (3.5) und da die affine Abbildung <p° fur kleine p>0 (und nur dièse

brauchen wir zu betrachten) nicht ausgeartet ist.

Analog zu (3.13) folgert man

woraus sich

<p°o:)\(t/ei(d<p'o:))c<pro:) (3.15)

ergibt, und

<PW.)c f/Cl(cpo(a|3;)) L/€iO(po(/3;)). (3.16)
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Nun gilt

d<p'O:)<=<pW.)> (3.17)

wie man folgendermaBen einsieht. Zu ye<p'(L0 sei /(y) der Punkt, der durch
Orthogonalprojektion des Punktes p(Kz, y) auf En~l entsteht. Dann ist ye
<p'({/(y)}). Da die Abbildung / stetig ist, folgt nun leicht die Relation (3.17).

Aus (3.15), (3.16), (3.17) ergibt sich

Hieraus folgt

WWra^1 fiir
:))

Zusammen mit (3.14) ergibt das die Behauptung (3.11).
Aus (3.8), (3.9), (3.10), (3.11) folgt nun

(3,8,
\ / '

Andererseits gilt

ft)) "f PJ (" 7 l) £,_,_, (tfz, ft), (3.19)
V / /

wie sich wegen F(<p(ft)) Q_i((K2)p, <p(/3t)) aus (2.10) und (2.6) ergibt. Da (3.18)
und (3.19) fur aile kleinen p>0 gelten, folgt wegen F(ft) Cn_!(Kz, ft) nun die

Behauptung (3.7). Damit ist Hilfssatz (3.6) bewiesen.
Da man den Rand eines konvexen Kôrpers in einer Umgebung eines gegebe-

nen Randpunktes durch eine konvexe Funktion darstellen kann, versteht es sich

von selbst, wie sich der Begriff des normalen Punktes und Hilfssatz (3.6) auf
beliebige konvexe Kôrper ûbertragen. Wesentlich ist dann die folgende Aussage.

(3.20) HILFSSATZ. Fur jeden konvexen Kôrper Ke®n sind (im Sinne des

(n - l)-dimensionalen Hausdorffmafies) fast aile Randpunkte normal.

Dies ist fur n 2 von Jessen [10], fur n 3 von Busemann-Feller [6] und fiir
beliebiges n von Aleksandrov [1] gezeigt worden. Einen kûrzeren, aber weniger
elementaren Beweis findet man bei Bangert [3, (3.22)].
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4. Beweis des Satzes, Schlufi

Wir nehmen nun an, der konvexe Kôrper K, der (2.12) und daher (2.14) mit
einer Einheitskugel fîc K erfûllt, falle nicht mit dieser Kugel zusammen (es muB

also m>l sein). Setze

M: dK\(BUS(K)).

Sei xeM ein normaler Punkt von K. Durch x gibt es genau eine Stùtzebene H
an K; sei u ihr àuBerer Normaleneinheitsvektor. Da x ein regulàrer Randpunkt
ist, ist H eine extrême Stùtzebene, nach (2.14) ist sie also auch Stùtzebene an B
und berùhrt daher B in einem Punkt y. Der Strahl durch x mit Endpunkt y
verlâBt den Kôrper K in einem Punkt z. Dieser Punkt muB noch in einer von H
verschiedenen Stùtzebene an K liegen, er ist daher singulàr und somit verschieden

von x.
O.B.d.A. nehmen wir im folgenden an, daB z der Nullpunkt des En ist. V sei

der zu y orthogonale (n - l)-dimensionale lineare (also durch z 0 gehende)
Unterraum, und Wc V sei der auBerdem zu u orthogonale (n-2)-dimensionale
lineare Unterraum.

Fur einen konvexen Kôrper K'e ®n und einen Vektor ugE"\{0} bezeichne

H(K\v) die Stùtzebene an K' mit âuBerem Normalenvektor v; speziell ist also

H(K, u) H. Ein Randpunkt des konvexen Kôrpers K' heiBt k-extrem, wenn er
nicht Mittelpunkt einer in K' enthaltenen (k + l)-dimensionalen Kugel ist. Jeder

exponierte und daher (als Limes von exponierten Randpunkten) auch jeder
extrême Randpunkt eines konvexen Kôrpers mit mehr als einem Punkt ist

Hâufungspunkt von 1-extremen Randpunkten, denn jeder nichtleere Durch-
schnitt des Kôrpers mit einer Hyperebene hat extrême Randpunkte, und dièse

sind 1-extreme Randpunkte des Koipcrs selbst.

(4.1) BEHAUPTUNG. Sei LcW ein m-dimensionaler linearer Unterraum.
Dann gibt es eine Folge (!0ieN von Einheitsvektoren mit folgenden Eigenschaften:

(a) Die Stùtzebene H(K, uj ist Stùtzebene an B und geht durch z;

(b) lim u, u ;

l—?oo

u ~~ u
(c) w : lim tt—1 r, existiert und liezt in L.

,—ik-uii

Beweis. Nor (K, z) sei der Kegel aller âuBeren Normalenvektoren an K in z.
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Der Durchschnitt IV : (H + u) n Nor (K, z) ist eine abgeschlossene konvexe
Menge, die nicht ganz in V liegt (denn es gibt eine Stùtzebene an K in z, die nicht
durch y geht). Es sei E die (m + l)-dimensionale Ebene, die von L + u und einem
nicht in V gelegenen Punkt von N aufgespannt wird. Setze N' : NDE. Da H
eine extrême Stùtzebene von K ist, ist u extremer Randpunkt von N und daher
auch extremer Randpunkt von N'. Wie oben bemerkt, ist u daher Limes einer
Folge (iOl€N 1-extremer, von u verschiedener Randpunkte von JV'. Wir setzen

wt : =uI/||vl||. O.B.d.A. dùrien wir (nach Auswahl einer Teilfolge) annehmen, da6
der Grenzwert

lim UlU =:w (4.2)
.— Ik-wli

existiert. Da vt ein 1-extremer Randpunkt von N' und daher ein (n-m-1)-
extremer Randpunkt von N ist, ist ux ein (n-m-1)-extremer Normalenvektor
von K. Nach (2.14) ist die Stùtzebene H(K, ut), die wegen ut g Nor (K, z) durch z

geht, auch Stùtzebene an B. Daher gilt, da y - u der Mittelpunkt der Einheits-
kugel B ist, (y — u,ul) -l fur ieN. Wegen (4.2) und (y, u) 0 folgt hieraus

(y, w) 0, also weV. Mit (4.2) gilt auch

,-H-olk-up

wegen vt — ueE-u ist also weVn(E-u) L. Damit ist (4.1) bewiesen.
Es sei nun DaH die Indikatrix von K im Punkt x. Mit fix(D, •) sei die

Stùtzfunktion von D bezùglich x bezeichnet, also

hx(D, v): sup(p-x, v).
pe£>

(4.3) BEHAUPTUNG. Jeder m-dimensionale lineare Unterraum LczW
enthàlt einen Einheitsvektor w mit

Beweis. Zu dem m-dimensionalen Unterraum Le: W sei (u,)^^ eine Folge
gemâB (4.1) mit zugehôrigem Vektor weL. Sei ieN. Die Stùtzebene H(K, u,)
hat nach (4.1.a) mit K (mindestens) die Strecke mit Endpunkten z und y, := y-
u + u, gemeinsam. Sei À e ]0,1[ bestimmt durch x Ày. Sei Ht die zu H parallèle
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Hyperebene durch Ayt und hx ihr Abstand von H, also

Der konvexe Kôrper KnHt hat in Ht die (n-2)-dimensionale Stûtzebene

jHH,; in ihr liegt der Randpunkt Ay, von KDH,. Der àuBere Nor-
maleneinheitsvektor vt der Stûtzebene H(K, m,) H H, wird erhalten durch Or-
thogonalprojektion von wt in den Unterraum H und anschlieBende Normierung,
es ist also

Vi Ji-(u,uy

Wegen (w, u) 0 gilt auch

lim ut w. (4.4)

Der konvexe Kôrper Dt entstehe aus KH^ durch orthogonale Projektion in
H und Streckung mit dem Faktor \j\l2\ aus dem Punkt x. Der auf gleiche Weise
aus Ày( hervorgehende Punkt

ist Randpunkt von Dt und liegt in der Stûtzebene H(Dt, u,). Daher ist

Es folgt

lim hx(Dnvt) VA.

Nun konvergiert die Folge (A)l6N gegen die Indikatrix D von K in x. Hieraus
folgt wegen (4.4)

MA w)<lir
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womit (4.3) bewiesen ist.

Da x ein normaler Randpunkt von K ist, gilt

D {p6H:(A(p-x),p-x)<l}

mit einer (positiv semidefiniten) selbstadjungierten linearen Abbildung A des

Unterraums H in sich. Die Hauptkrûmmungen fca>k2> • • • >kn_1 von dK in x
sind gerade die Eigenwerte von A ; speziell ist

f x. (Av, v)
kj Max — —.

t)6H\{0} \V, V)

Sei nun weW ein Einheitsvektor gemâB (4.3), und sei a >0 so gewâhlt, daB

p:=x + aw im Rand von D liegt. Dann ist also

und folglich

_(A(p-x),p-x)^ 1 _l|y-zll
(p-x, p-x) a2 ||x-z||*

Im Fall m<n-3 kônnen wir folgendermaBen weiterschlieBen. Der
zweitgrôBte Eigenwert k2 von A ist gegeben durch

k2= Maxf2
H\{0} (f, V)

wo e ein Eigenvektor zum Eigenwert kx ist. Der Unterraum {ve W:(v, e) 0}
enthâlt wegen m<dim W-l nach (4.3) einen Einheitsvektor wx mit

Analog wie oben folgt

2~h-z\ï
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Durch Forsetzung dièses Verfahrens erhalten wir dieselbe Abschâtzung fur die

r grôGten Eigenwerte, solange m<dim W-(r-l) ist, also bis r n-l-m. Fur
die Krummungsfunktion

(l2 K-l-
m 1

des Kôrpers K, wo die Punkte fur weitere nichtnegative Summanden stehen,

ergibt sich daher die Ungleichung

^Wg) (4.5)
m / \||xz||/

Dièse Ungleichung haben wir erhalten aus der Voraussetzung, da6 xeM ein
normaler Punkt von K sei. Nach Annahme ist nun M nicht leer, und wegen (2.14)
und KiéB muB K wenigstens einen singulâren Randpunkt besitzen. Nach
Hilfssatz (3.20) und (2.13) gibt es also in M eine Folge (x,)jgN normaler Punkte,
die gegen einen singulâren Randpunkt s konvergiert. Zu jedem Punkt x, gehôren,
wie am Anfang des 4. Abschnitts fur x erklàrt, ein Punkt y, € dB und ein
singulàrer Randpunkt z] derart, da6 die Strecke S, mit Endpunkten y, und z, in K
liegt und den Punkt x} enthàlt. Wir dùrfen (nach Auswahl einer Teilfolge)
annehmen, daB die Streckenfolge (Sj)jeN gegen eine Strecke S konvergiert. Die
Strecke S muB dann im Rand von K liegen, die Kugel B in einem Punkt y
berùhren und den Punkt s enthalten. Da durch s eine Stùtzebene an K geht, die
nicht die Kugel B gerùhrt, ist s Endpunkt der Strecke S. Hieraus folgt, daB (z,)jeN

gegen s konvergiert. Offensichtlich konvergiert (yj)jeN gegen y. Nach (4.5) ist

Wegen Hy, - zjl-> ||y-S|| ^ 0 und l^-zJ^O folgt

Hn_1_m(xJ)->oo fur /-»oo.

Aus (2.12) folgt nach Hilfssatz (3.6) (und der offensichtlichen Existenz
normaler Teilmengen-Folgen) aber flw_1_m(xl) 1. Dieser Widerspruch lôst sich nur,
wenn K B ist.
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