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Ùber Extremalprobleme fur schlichte Losungen elliptischer
Differentialgleichungssysteme

Heinrich Renelt

Eînleitung

Die Théorie der Extremalprobleme fur konforme Abbildungen kann auf
natùrliche Weise in verschiedenen Richtungen verallgemeinert werden.

Eine Richtung -ohne Zweifel die Hauptrichtung der môglichen
Verallgemeinerungen- besteht darin, daG anstelle konformer Abbildungen
quasikonforme Abbildungen betrachtet werden, die (auGer gewissen Nor-
mierungsbedingungen) nur einer vorgegebenen Dilatations beschrànkung genùgen
mûssen. (Dièse Richtung - erstmals betrachtet von H. Grôtzsch [5] — ist bisher in
zahlreichen Arbeiten verfolgt worden, siehe die in [8], [17] zitierte diesbezùgliche
Literatur.) Als Hauptergebnis hat sich dabei gezeigt, daG die Extremalfunktionen
in diesen Klassen quasikonformer Abbildungen mit vorgeschriebener
Dilatationsbeschrânkung durch dieselben quadratischen Differentiale beschrieben
werden wie im konformen Falle. Als den eigentlichen Grund hierfûr hat man
wohl den Umstand anzusehen, daG in diesen Abbildungsklassen dieselben konformen

Schifferschen Randvariationen môglich sind wie bei den konformen
Abbildungen. DaG dièse quadratischen Difïerentiale bei den Extremalfunktionen in
diesen Klassen quasikonformer Abbildungen nicht nur das Randverhalten, son-
dern auch das Verhalten in inneren Punkten beherrschen, findet dadurch seine

Erklàrung, daG die Variationen mittels geeigneter Beltramiabbildungen (siehe
[12]) gedeutet werden kônnen als "Verdichtungen" konformer Randvariationen
(vgl. [10], §9).

Eine andere (und meines Wissens hier erstmalig nàher betrachtete) Richtung
der Verallgemeinerung (-die Anregung hierzu verdanke ich Herrn R. Kùhnau,
vgl. auch [9], §6, sowie eine verwandte Problemstellung in [3]-) besteht darin,
daG das Cauchy-Riemannsche Differentialgleichungssystem durch irgendein an-
deres lineares gleichmâGig elliptisches Differentialgleichungssystem ersetzt wird
und man analog zum konformen Fall in passend normierten Klassen von
Abbildungen, die sâmtlich das vorgeschriebene Differentialgleichungssystem erfùllen,
die Extremalabbildungen zu geeigneten Funktionalen zu charakterisieren sucht.
Hierbei stellt sich zunâchst das Problem, zu den konformen Randvariationen
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18 HEINRICH RENELT

analoge Randvariationen zu finden, die nicht aus der vorgegebenen Abbil-
dungsklasse herausfùhren. Es zeigt sich, da8 man solche Randvariationen in Form
geeigneter Transformierten der konformen Randvariationen finden kann (siehe

1.10,3.7 unten) und daB demzufolge die die Extremalabbildungen charak-
terisierenden verallgemeinerten "quadratischen Differentiale" Transformierte der

entsprechenden quadratischen Difïerentiale im konformen Fall sind (siehe das

"Àhnlichkeitsprinzip" in 4.15 unten). Dies beinhaltet gleichzeitig eine

Ùbertragung des Teichmùllerschen Prinzipes ùber die Lage der Singularitàten bei
den quadratischen Differentialen. Bei diesen Transformationen spielen singulàre
Integraloperatoren (nâmlich gewisse "Verwandte" der zweidimensionalen Hil-
berttransformation) die Hauptrolle. Es hat ùberhaupt den Anschein, daB gewisse

singulàre Integraloperatoren eng mit Extremalproblemen bei konformen und

quasikonformen Abbildungen zusammenhàngen (siehe z.B. [16], [11], [14]).
Der Einfachheit halber habe ich hier einige Voraussetzungen an das Diflferen-

tialgleichungssystem und die Normierungen gemacht, die an spàterer Stelle

abgeschwâcht oder eliminiert werden kônnen. AuBerdem sind natùrlich Er-
weiterungen der Problemstellung môglich (z.B. daB das Differentialgleichungs-
system nur teilweise vorgeschrieben wird), die auch vorerst beiseite gelassen
worden sind.

Zur Beschreibung der Endergebnisse bei der Charakterisierung der Extremal-
funktionen zu den hier betrachteten Extremalproblemen môge folgendes Beispiel
dienen.

In der Klasse aller derjenigen Abbildungen /(z) eines Gebietes Gz ^>{\z\>R},
die das DiflEerentialgleichungssystem

mit jLf.(z)EC0°, jh(z) 0 fur |z|>l? und in einer Umgebung des Randes dGz von
Gz erfùllen und fur |z|>jR eine Entwicklung

besitzen, sollen diejenigen Abbildungen charakterisiert werden, die xlf]= Re Q>\

zum Maximum machen.
Das Differentialgleichungssystem bedeutet bekanntlich, daB infinitésimale

Kreise |dz|2 djc2 + dy2 const. durch /(z) auf infinitésimale Ellipsen y{z)du2 +
2j3(z) dudv + a(z)dv2 const. abgebildet werden, wobei (a(z), ]8(z), y(z)) mit
ay — /32 1 nur von jjl(z), nicht aber vom jeweiligen /(z) abhàngt. Sei nun /0(z)
eine (aus Kompaktheitsgrunden stets existierende) Extremalfunktion. Denkt man
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sich in jedem Punkt w /0(z), z e Gz, die zugehôrige infinitésimale Ellipsenschar
mit den Parametern (a(z), /3(z), y(z)) angeheftet und betrachtet nun diejenige
schlichte Abbildung SQ(w) der vollen w-Ebene, die die infinitesimalen Ellipsen
(a, j3, y) in die gespiegelten infinitesimalen Ellipsen (a, —j3, 7) ùberfùhrt und in
w=°° eine Entwicklung S8(w) w + (bjw) + • • • besitzt (in den Punkten der w-
Ebene, die nicht Bildpunkte von fo(z) sind, sei (a, j3, y) (1, 0,1)), so wird die
Extremalfunktion fo(z) durch 33(w) in folgender Weise beschrieben:

Das Bildgebiet von Gz unter der Abbildung fo(z) ist ein Schlitzgebiet mit
analytischen Randschlitzen, die auj den Trajektorien des "quadratischen Differen-
tials"

W>0
dw

liegen.

1. ProblemsteUung und vorbereitende Betrachtungen

Gegeben sei ein Gebiet Gz der z-Ebene, z x + iy, mit {\z\^R}<^Gz fur ein
gewisses festes endliches jR. G sei die Klasse aller schlichten Abbildungen /(z) von
Gz mit folgenden Eigenschaften:
(I) Jedes /gQ erfûllt in Gz ein und dasselbe fest vorgegebene Differential-
gleichungssystem (in komplexer Schreibweise)

1.1 U v
wobei v v(z), ijl jll(z) in Gz stetige partielle Ableitungen beliebig hoher Ord-
nung haben und fur |z|>JR identisch 0 sein sollen. Das System 1.1 sei in Gz

gleichmâBig elliptisch, d.h. es gelte

1.2 |i>(z)| + |/x(z)|^q<l fûralle zeGz,

q sei eine feste positive Konstante. AuBerdem sei /ll(z) identisch 0 in einer
Umgebung des Randes dGz von Gz.

(II) Die fe G sollen hydrodynamisch normiert sein, d.h. jedes f besitze fur |z| > R
eine LAURENTentwicklung

1.3
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Die /gQ sind also insbesondere K-quasikonforme Abbildungen mit

Auf Grund der Normierung 1.3 ist Q kompakt in sich bezùglich gleichmàBiger
Konvergenz in kompakten Teilgebieten von Gz. Mit Konvergenz in Q ist im
folgenden stets gleichmâBige Konvergenz in kompakten Teilgebieten von Gz

(=lokal gleichmàBige Konvergenz in Gz) gemeint.
Sei x nun ein auf Q definiertes und bezùglich der Konvergenz in Q oberhalb

stetiges Funktional, d.h.

lim sup *[/„]Si x\f] ^r fn -> / in C,
n—^°°

mit gewissen weiteren Eigenschaften, die weiter unten formuliert werden sollen
(siehe Abschnitt 4 unten). Man denke bei x vorlâufig z.B. an

] Re au ax der Koeffizient von 1/z in 1.3,

oder

xlf] — Re f(x0), z0 ein fester Punkt aus Gz,

oder auch an

p(z) eine in Gz definierte beschrânkte meBbare Funktion, deren Trâger supp p
eine in Gz enthaltene beschrânkte Menge ist. Das Intégral ist dabei hier wie auch

im folgenden, wenn kein Integrationsgebiet angegeben ist, iïber den gesamten
Trâger des Integranden zu nehmen.

Das Extremalproblem

1-5 x[f]-*m&x fur /gQ

hat dann mindestens eine Losung f0 e C Als Extremalfunktion muB f0 besondere

Eigenschaften besitzen. Da seine Glattheitseigenschaften in inneren Punkten von



Ùber Extremalprobleme fur schlichte Losungen elliptischer Differentialgleichungssysteme 21

Gz durch das Diflferentialgleichungssystem 1.1 bereits festgelegt sind, bleibt als

besonderes Charakteristikum analog zum konformen Fall das Randverhalten.
Dièses soll hier untersucht werden.

Sei f irgendeine Abbildung aus Q und Gw =/(G2). Zu einem solchen f soll eine

Schar von Abbildungen /(-,à)gQ konstruiert werden, die fur A —»0 gegen f in û
konvergieren. Wie man leicht nachrechnet, gilt:

1.6 Sei 3f(w) eine hydrodynamisch normierte schlichte Abbildung von Gw, die das

Differentialgleichungssystem

1.6.1 g*

erfûllt mit

zr <

M2-M2'

wobei v v(z(w)), /x ix(z(w)) und z(w) die Umkehrabbildung zu f(z) ist. Dann
ist g(z) 3f(/(z)) Lôsung von 1.1 und gehôrt wieder zu Q.

Gesucht werden nun Losungen g(w, À) von 1.6.1 mit $(w, \)—>w lokal
gleichmâBig fur A -> 0. Dann werden |Ç(/(z), A) gesuchte /(•, A).

Sei c ein Kontinuum mit mindestens zwei verschiedenen Punkten, dessen

Komplement ein Gebiet Dc ist, c<^df(Gz), und w0 ein Punkt aus c. Sei F(c) die
Menge aller schlichten konformen und hydrodynamisch normierten Abbildungen
von Dc. In F(c) gibt es Folgen von Abbildungen Fn mit nachstehend genannten
Eigenschaften (siehe [15], [7]):

1.7 Jedem Fn einer solchen Folge ist ein Parameterwert An^0 mit An -» 0 fur
n —» oo in eindeutiger Weise zugeordnet, so daB fur

1.7.1 nF(w,An) w
w-w0

gilt

1.7.2 ^Uo fur n
An

gleichmâBig in jedem Gebiet D\ das kompakt in Dc enthalten ist.
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Wenn ein FeF(c) als Elément einer solchen Folgefungiert, so soll es konforme
Randvariation von Gw bezùglich c und w0 hei6en.(1)

Der Koeffizient k(w) in 1.6.1 wird nun durch die Festlegung

1.8 k(w)= - p_, |2
fur wgGw=/(G2)

^
sonst

in der ganzen w-Ebene erklârt. Sei w(£) die Umkehrabbildung zu einer konfor-
men Randvariation F(w,\)eF(c). Mit dem in 1.8 definierten k(w) sei t)(£) die

hydrodynamisch normierte schlichte Abbildung der vollen £-Ebene, die das

Diflferentialgleichungssystem

1.9

erfùllt, wobei k(w(£))(w'(£)/w'(£)) und k(w(£)) gleich 0 zu setzen sind ùberall
dort, wo w(£) und w'(£) nicht mehr erklârt sind.

Sei nun

1.10 g(w,À)

Dièses g(w, À) ist eine schlichte hydrodynamisch normierte Abbildung von Dc,
also erst recht von Gw, und g(w, À) ist Lôsung des Differentialgleichungssystems
1.6.1. AuBerdem gilt

1.11 g( w, À) —» w fur À —» 0 gleichmàBig fur aile wgG'

und

1.12 ||gw(w,

wobei G' ein beliebiges, aber festes kompakt in Gw liegendes Gebiet bedeutet
und p nur die in 1.18 unteft genannte Bedingung erfûllen muB. (Man sieht leicht
unmittelbar, daB fÇ(w, À) fur genùgend kleines À nicht die Identitât sein kann.

(1)Der Index n bei Àn wird in Zukunft weggelassen. Nichtsdestoweniger bedeutet "/.->0" nichts
anderes, als dap irgendeine Folge konformer Randvariationen F(w, Àn) gegeben ist und À die Nullfolge
der Àn durchlâuft. Dementsprechend bedeutet z.B. die Ausdrucksweise "genùgend kleines À" nichts
anderes, als daB n genùgend groB ist in der jeweiligen Nullfolge {An}.
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Dies ergibt sich aber auch von selbst aus den folgenden Betrachtungen, siehe
insbesondere 1.25 unten.) Jedes solche durch 1.10 definierte 3f(w, À) soll k-
konforme Randvariation von Gw bezùglich und vv0 heiBen.

Beweis von 1.11 und 1.12. Fur v(Ç) gilt

und

1 ff2ncx(a)Im(n,-l) 1

JJ£^ ^--1 ff1.14

mit

d63 das "Râchenelement" in der 3-Ebene E3 (E mit oder ohne Index bedeutet
stets in Zusammenhang mit Integrierbarkeit die endliche komplexe Zahlenebene
und sonst die voile komplexe Zahlenebene). Daraus folgt (hier sogar fur be-
liebiges p > 1 wegen der hydrodynamischen Normierung von o(£) und o(£) g C°°)

1.15 ||oe -111^ g c; • 2|kiL • Ik - Hk+q,||KAD{||v

Dabei bedeutet Cp die Norm der HILBERTtransformation

1.16

in Lp Lp(E). Wegen 1.2, 1.8 ist

Hieraus und wegen Cp -^ 1 fur p -* 2 (siehe z.B. [1], Kap. VA) folgt die Existenz
zweier positiver Konstanten q' und eo< 1 mit



24 HEINRICH RENELT

AuBerdem folgt aus dem KOEBEschen Viertelsatz unter Beachtung der in (I)
und (II) gemachten Voraussetzungen die Existenz eines #*<<», so da6 kx(£) —0

ist in {|f|>JR*} fur jedes feG, jedes F(w,À)eF(c), jedes c<=d/(Gz)
und jedes woec. Dies ailes zusammen mit 1.15 ergibt

1.19 ||o,-l||^CpJK||M{|fl<R*}) mit

fur jedes p mit |p —2|^e0- Die Ungleichung 1.19 liefert weiter bei genùgend
kleinem À

(ttR*2)1/p
1.20 IM^
Wegen ||kx||x^~> 0 fur A —» 0 folgt aus den letzten beiden Abschâtzungen

1.21 \\vc - IL, -* 0 fur A -> 0.

Hieraus und aus 1.13, 1.20 folgt

1.22 v(0-* C fur A -»0 gleichmàfiig fur aile £

Fur 3f(w, A) folgt dann aus 1.22, 1.7 die Behauptung 1.11. Weiterhin ist

||3fw(w, A)-1||mg^||(d,-1)F(w, A^^ + HFdv, A)-1^(00

^ Ik - 1|L * max |F(w, A)|(p"2)/P+||F(w, A) - 1||L (G>^* weG' p

Mittels CAUCHYscher Integralformel (fur die Abschâtzung von F(w, A)) und
z.B. des BIEBERBACHschen Flâchensatzes (fur die Abschâtzung von ||F(w, A)-

r)) erkennt man dann auf Grund von 1.21 die Richtigkeit von 1.12.
Aus 1.13 erhâlt man

tt J J 3~F(w, A)
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Setzt man nun 3 F(r, À) und transformiert die Intégrale auf die neue Integ-
rationsvariable t, so erhâlt man

1.23 gf(w, A) F(w, A) —— T —— dôT
7T J J F(r, A) —F(w, A)

•2iK(r)[ImF(T,A)]@T-l)
F(r,A)-F(w,A)

dST.

Mit Hilfe der CAUCHYschen Integralformel (man beachte, daG das in 1.7.1

genannte o(A) in Dc analytisch von w abhàngt) folgt

1.24 F'(t, A) 1 ——^—ô + o(A), F(t, A)-F(w, A)

- + o(À)

wo die beiden o(A) in 1.24 die in 1.7.2 genannte Eigenschaft besitzen. Aus 1.12

unter Beachtung von k(t) 0 in einer Umgebung von dGw folgt dann

1.25
w — w0

1 rr2ÎK(T)Im[gT-l]
ttJJ t — w

wobei o(A) in 1.25 wieder 1.7.2 erfùllt.
Aus fÇw(w, A) t)^(F(w, A))F'(w, A) und 1.14 folgt auf analoge Weise wie bei

1.25 die Beziehung

1.26

mit ^(AVAII^g»)—>0 fur A—»0, G' beliebig, aber fest und kompakt in Gw

enthalten, |p-2|^e0-
Setzt man nun A lelt*K, ak reell, und betrachtet nur solche Folgen A —» 0, fur

die limax=a existiert- dièse Voraussetzung wird im folgenden stets ge-

macht-, so wird

1.27 gw(w,A) l-- 75 r$ d

Fur

1.28 5(w,wo,a,A)=8-(V)"1
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gilt dann die Integralgleichung

eia o(À) 1 f f2ÎK(T)Ims(T, w0, a, A)ion1.29 s(w, w0, a, A) -- -5+—(W-Wo) l 7T J J(W-Wo) l 7T J J (t-w)Z

Ùbergang zum Imaginârteil auf beiden Seiten in 1.29 ergibt, daB h(w)
Im s(w, w0, a, A) die Integralgleichung

1.30 l

erfùllt.
Um weiteren AufschluB ûber $(w, A) zu erhalten, wird man also den singulâren
Integraloperator

1 f f 2k(t)
1.31 S£fi(w) Ji(t)K(t, w)dôT mit K(r, w) Re- ^7T J J (T—W)

zu untersuchen haben.

2. Einige Eigenschaften des Operators S

Sei GK eine offene Menge mit GK ^>supp k. Fur h g Lp(Gk) ist k • /i g Lp Lp(£)
(sofern man kJi=0 setzt fur k=0), und da der T-Operator 1.16 LP in sich

abbildet, so bildet St den Raum Lp(GK) in Lp ab.

2.1 5t isf kontrahierend in LP(GK) (und erst recht natûrlich kontrahierend in Lp)
fur jedes p mit \p — 2| ^ e0-

Denn nll^^) HH^ ||) (M
ikII^ S 2 ||k|LCp

(siehe 1.17, 1.18). Fur jedes p mit |p — 2|^e0 g^t dann bekanntlich:

2.2 Wenn /n(w)->/(w) in Lp(GK) und ^(w) Lôsung der Gleichung

in Lp(GK) ist, so strebt hn(w)-*Mw) in Lp(GK), wobei h (die eindeutig be-
stimmte) Lôssung der Gleichung
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2.2.1 h=f+%.h
in Lp(GK) ist.

2.3 Die Aussagen 2.1, 2.2 gelten auch fur den Operator

_
1 f C2iK(r)Im h(r)

'""ûJJ (r-w)2
'

Denn fur £ erhàlt man dieselbe Normabschâtzung wie fur X. AuBerdem ist £
zwar nicht (komplex) linear, aber additiv.

Eine besondere Rolle in der Variationsformel fur §f(w, À) sowie in den daran
anschlieBenden Betrachtungen spielen, was im 3. und 4. Abschnitt nàher

ausgefùhrt wird, die Losungen der beiden speziellen Gleichungen

2.4 <P(w, t) — f [<Î>(t, t)K(r9 w) dôT
W-t TT J J

und

2.5 ^(w, 0 7—^ I I ^(t, t)K(r, w) dÔT.
(W-O 77 J J

Dabei ist t ein zunàchst fester, aber beliebiger Punkt mit einem positiven Abstand
zu GK. Fur ein solches t ist

eLD(GK) mit 2<p und -z e^G") mit Kp.w-t (w — t)

Wenn der Abstand von t zu supp k grôBer als ô>0 ist, so kann z.B. GK

{|w-r|>ô} gewàhlt werden. Wegen 2.1 und weil 8 beliebig klein sein kann, gibt
es also genau ein <f>(w, t) und ein ^(w, t), das jeweils Lôsung der entsprechenden
Gleichung 2.4 bzw. 2.5 in Ll™(E\{t}) ist mit beliebigem p mit 2<p^2 + e0 bzw.

|p-2|^ e0 (das bedeutet z.B. fur <î>, daB <P fur fast aile w^ t definiert ist, daB *
fur fast aile weJ5\{f} 2.4 erfùllt und daB die Einschrânkung von <t> auf irgendein
G', das positiven Abstand zu t hat, zu Lp(G') gehôrt).

Sei <p(f) eine beliebig oft stetig partiell nach t und F diflferenzierbare Funktion
rhit kompaktem Trâger. Die HILBERTtransformation T<p(w) (siehe 1.16) gehôrt
zu Lp fur jedes p > 1 und

2.6 ,(*)
7T J J t-W
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gehôrt zu Lp fur jedes p>2. Folglich haben die Gleichungen

2.7.1 H('9q>)

2.7.2 H(-, <p)

2.7.3 H(-,<p)

jeweils eine eindeutig bestimmte Lôsung in LP(E) fur 2<p^2 + e0. Es gilt

2.8 H(-,<p)

und

2.9 H(w, <p) + nr<p(w) H(w,

Die Relationen 2.8 folgen direkt aus den Relationen zwischen P- und T-Operator
(siehe z.B. [1], Kap. VA) und der eindeutigen Bestimmtheit der Lôsungen der

Gleichungen 2.7. Die Beziehung 2.9 folgt unter Beachtung der Linearitât von T
und der eindeutigen Bestimmtheit der Lôsung von 2.2.1 aus

w) dôT~^ JJ[H(t, cp) + i7rcp(r)]K(r, w) dôT

JJ (w —
d3t

r)

Sei nun B(w) eine im Gebiet 12 eindeutige analytische Funktion, il=5supp k,
3) (fi) sei wie ùblich der Raum der unendlich oft stetig partiell diflferenzierbaren
Funktionen <p(-) mit kompaktem Tràger in Q, und der entsprechenden Topologie
(siehe z.B. [6], S. 5/).

2.10 SATZ. Sie Distribution

2.10.1 93(<p) ^B(w)<p(w) dô^ +^ ^H(w, <p) Re

ist Lôsung des linearen gleichmâRig elliptischen Differentialgleichungssystems

2.10.2 33* k93w - k93w in 17.
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Beweis. Zunàchst ist zu zeigen, daB 93 tatsàchlich eine Distribution ist. 93 ist
natùrlich auf Se (fi) definiert und linear. Dies folgt aus der Linearitàt von P und
der eindeutigen Lôsbarkeit der Gleichung 2.7.1. Zu zeigen bleibt also die
Beschrànktheit.

Sei O! kompakt enthalten in Cl. Dann ist

B(w)<p(w) ^ sup \<p(w)\ • sup \B(w)\ • \nf[
wefi' wetï'

\(2'\ das zweidimensionale LEBESGUE-MaB von fl\ und

^ J J H(w, <p) Re [2

^- sup |B'(w)| • |supp
wesupp k

mit l/p+l/q l, 2<p^2 + e0. Fur ||H(w, 9)^ folgt aus 2.7, 1.18

C(p, /2') eine nur von p und /2' abhângige Konstante (z.B. kann

C(p, O') 4TrR'(irR'2)1/p + 2ttR'[(p - l)(2i?')p~1]~1/p

gesetzt werden, R' gleich dem Durchmesser von Q'. Dies ergibt insgesamt

2.11

C eine nur von /2' und p abhângige Konstante, 2<p^=2 + e0. Damit ist 93

beschrânkt in Q){Q) (und sogar von O-ter Ordung).
Das Bestehen des Differentialgleichungssystems 2.10.2, d.h. der Relation

2.12

ergibt sich aus der Définition von 93 sowie aus den Beziehungen 2.8, 2.9. Damit
ist Satz 2.10 bewiesen.

Satz 2.10 besagt mit anderen Worten:
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2.13 Jede analytische Distribution $$ B(w)<p(w) d8we3)'({l) wird durai die

"singulâre Distribution" H(w,<p) gemâR Formel 2.10.1 in eine Lôsung des

Differentialgleichungssystems 2.10.2 transformiert.
Zerlegt man 93 in Real- und Imaginârteil, 93 93R + £93j, so werden 93R und 93r

jeweils Losungen einer elliptischen DiflEerentialgleichung 2. Ordnung mit
Koeffizienten aus C°°. Folglich sind 93R, 93r und damit auch 93 Funktionen aus

2.14 93(<p) JJ93(w)(p(w) dôw mit 93(w)e C°°(n\ 93* =2i Im k(w)93

(siehe z.B. [2], Teil II, §4.2). 93(w) ist also das Bild der analytischen Funktion
JB(w) unter einer durch 2.10.1 definierten Transformation, die durch $ bezeich-
net werden soll,

2.15 33(w) ftB(w).

Um folgenden wird noch eine weitere Transformation fi wichtig, nàmlich

2.16
dw

B(w) und H môgen wieder die in Zusammenhang mit Satz 2.10 genannten
Bedingungen erfûllen.

2.17 Satz: Sei Of eine offene Teilmenge von fl und /2'ci Ew\supp k. Fur aile
weO' gilt

2.17.1 ftB(w) 93(w) B(w)+- [J*(t, w) Re [2ïk(t)B'(t)] dôT,

2.17.2 fiB'(w) 93'(w) B/(w)4-- j[^(r, w)Re[2k(T)B/(r)] dôT.

Dabei sind <P und W die in 2.4, 2.5 genannten Funktionen.

Beweis. Sei Wx ein beliebiger, aber tester Punkt aus fl' und ô > 0 so klein, daB

{\w-w1\<8}<^Qf ist. <pn(w, wj sei eine Folge von Funktionen aus C°°, die nur
von Iw-Wxl abhàngen, mit <pn(w, Wx)^0 fur aile w, <pn(w, w1) 0 fur |w- Wx|>
1/n, JJ <pn(w, wO dôw 1 fur aile n mit l/n<8. Fur irgendeine in {|vv — Wx^ô}
analytische
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Funktion /(w) gilt dann JJ/(w)cpn(w, w^ dôw =f(w1). Da 93(w) insbesondere fur
analytisch ist, gilt

pn(w, Wl) d8w =®(w1) B(W!)+^ jJh(t, <pn) Re [2îic(t)B'(t)] <tëT,

(t, <pn) Re[2ïK(r)B'(T)] <tôT

mit den in 2.7 definierten Funktionen (man beachte auch 2.8)

H(w, <pn)=i^<Pn^™tl)d8t+%H(; <Pn)=^— + ZH(-, <pn)

letzteres, weil (bei festem w) (w - t)~k, k eine réelle ganze Zahl, analytisch in t ist
fur |r-W!|<S, solange Iw-w^ô ist. Folglich ist H(w,<pn) <P(w,w1) und
H(w, <pn) ^(w, wx) fur |vv — wj > 1/n auf Grund der eindeutigen Lôsbarkeit der
Gleichungen 2.4, 2.5 in {\w-wj> 1/n}. Damit ist Satz 2.17 bewiesen. 2.17

bedeutet, daB die Transformationen ® und £ fur w € B\supp k durch
Integraltransformationen mit Hilfe der singulàren Kerne <f>(f, w), W(t, w) darges-
tellt werden kônnen. (Mit ewas mehr Aufwand, aber sonst analog zum Beweis

von 2.17 làBt sich zeigen, daB 2.17A fur aile weO gilt. Dagegen kann vorerst
nichts ùber die Existenz von ^(w, wx) fur beliebiges wx gesagt werden, ge-
schweige denn ùber die Gùltigkeit von 2.17.2 fur beliebiges weft, wobei dann
93'(w) durch 93w(w) zu ersetzen wàre.)

Sei nun A(w) eine rationale Funktion mit einem Pol in wu wx èsupp k. Es ist

(r, w) Re [2îic(t)A(t)] d8T

in einer hinreichend kleinen Umgebung von wa analytisch (und natùrlich ein-
deutig). Dies folgt sofort aus 2.10, 2.14, 2.17, indem man dort B'(w) A(w) setzt
und eine evtl. aufgeschnittene Umgebung von vvt betrachtet. Weiter ist

| JV(r, w) Re [2îk(t)A(t)] dôT

beschrânkt in einer Umgebung von wx. Also gilt:
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2.18 Sei A(w) eine rationale Funktion, deren sàmtliche Pôle auRerhalb von supp

k liegen. Dann hat

dieselben Singularitâten wie A(w).

Sei A(w) nun eine in Q =>supp k eindeutige meromorphe Funktibn mit der(nicht
notwendig eindeutigen) Stammfunktion B(w), und aile Pôle von A(w) in O
(sofern vorhanden) môgen auBerhalb des supp k: liegen. Dann hat <i8(w) ^B(w)
auf Grund des Darstellungstheorems fur Lôsungen gleichmàBig elliptischer
Difîerentialgleichungssysteme (siehe z.B. [2], Teil II, §6.4) nur endlich viele
Nullstellen in jedem kompakten Teilgebiet O! von Cl oder ist identisch 0. Es gilt
aber noch mehr:

2.19 9I(w) 2A(w) hat nur endlich viele Nullstellen in jedem kompakten
Teilgebiet von Q oder ist identisch 0.

Denn wegen 93(w), k(w)gC°° kann die komplexe Diflferentialgleichung 2.10.2 auf
beiden Seiten partiell nach w differenziert werden. Dies liefert fur 2l(w) 23w(w)
das gleichmàBig elliptische Difïerentialgleichungssystem

W + Kw + KK* 51
KKw

Aus dem Darstellungstheorem folgt dann die Behauptung 2.19.

3. Die Variationsfonneln

Wegen ||o(A)/I||MGO->0 fur A ^0 mit dem o(A) aus 1.29 und wegen 2.3 gilt

3.1 s(w, w0, a, A) s(w, w0, a)H—y-, woec<^ df(Gz)

mit o(A)//-»0 in Lp(GK) fur /—>0, wobei s(w,wo,a) Lôsung der Integral-
gleichung

e"*
3.2 s(w, w0, a) s + £s(-, w0, a)
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in LP(GK) mit |p-2|^e0 und GK ein kompaktes Teilgebiet von Gw=f(Gz) ist,
das supp k enthâlt. Aus 2.3 folgt dann weiter

3.3 s(w, w0, a) s(w, w0, 0) cos a + s(w, w(), tt/2) sin a.

Wie bei 1.30 erkennt man sofort aus 3.2, da8

3.4 Im s(w, w0, a) Re ([Im s(w, w0,0)- i Im s(w, w0, 7r/2)]elot)

Lôsung der Gleichung

elOL ielCL

h(w) -Im- -z + ^/i Re; -ï + Xh
(w-w0)2 (w-w0)2

ist. Folglich ist Im s(w, w0, 0)-/ Ims(w, vv0, tt/2) Lôsung der Integralgleichung

3.5 h(w)
(w-w0)

und wegen der eindeutigen Bestimmtheit der Lôsung dieser Integralgleichung
in Ll°c(E\{w0}) gilt unter Beachtung von 2.5

3.6 ^(w, vv0) Im s(w, w0, 0) — i Im s(w, w0, tt/2).

Zusammen mit 1.25-1.28, 3.1, 3.4 erhàlt man hieraus

w4-

-i— i —

W-Wo TT J J T-W

2w(T)Re[A*(T,w0)]
(W-Wo)2

1 ff
7T J J

wobei fur o(À) in 3.7 wieder gilt o(A)/A -> 0 fur A -* 0 gleichmâBig in G' und fur
o(À) in 3.8 ||o(A)/A||jLp(GO->0 fur A -» 0, |p-2|^eo, fur jedes kompakt in Gw
liegende Gebiet G', woedGw. Mit Hilfe der CAUCHYschen Integralformel folgt
natùrlich aus 3.7 auch fur das in 3.8 genannte o(A)

3.9 o(A)/A—»0 fur A-^0 gleichmàlîig in jeder kompakten Teilmenge irgend-
einer ofïenen Mengec: Gw, in der k(w) 0 ist.
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Fur die gesuchten Vanationen /(z, A)=$(/(z), A) zu einer (festen) Abbildung
/ € & erhalt man aus 3 7 die asymptotische Darstellung

3,o

mit (o(A))/A —>0 fur À ->0 gleichmaBig in jedem Gebiet G', das kompakt m Gz

enthalten ist, und wegen /2(z, A) - gw(/(z), A)/z + gw(/(z), A)/ 1 6 1, 3 8 und 2 5

A/2(z) fz(z) f f 2ik(t) Re [A^(t, w0)] jc,/^.A)=/«W-(/(2)_Wo)2-—JJ ^r^)i ^
l)/z Re[A^(/(z),

mit ||o(A)/A||1Lp(G }—>0 fur A->0, G2 wie bei 3 10 und p eine behebige réelle Zahl
mit |p-2|^(e§)/2(l + e0) Analog zu 3 8, 3 9 gilt Wenn v(z) fi(z) 0 ist in
einer Umgebung eines Punktes zxe Gz (dann ist k(w) 0 in einer Umgebung von
Wi =/(z1)), so gilt fur jede (feste) naturliche Zahl n 1, 2,

3 12 fel -^XX- 2ïic(t)

w0)]-

mit (o(A)/A)—>0 fur gleichmaBig in einer Umgebung von zx Die Be-
ziehungen 3 10-3 12 sind die gesuchten Vanationsformeln fur die g(z, A)

4. Charakterisierung der Funktionale und ihrer Extremalfunktionen

Sei K(z) eine beschrankte meBbare Funktion in Gz mit l^K(z) fur aile

zeGz, K(z)=l fur |z|>JR Q Q(K(z)) sei die Klasse der hydrodynamisch
normierten quasikonformen Abbildungen /(z) mit

4 1 Df(z)=êrzu\~ K^ îm fast alle zeGz
\îz I \îz I

X sei ein auf einer solchen Klasse Q(K(z)) defimertes oberhalb stetiges Funk-
tional (insbesondere ist dann \ auch auf der Klasse der hydrodynamisch normierten

konformen Abbildungen von Gz defîniert)
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Die mit Hilfe der konformen Randvariationen F(w, À) von f(Gz) (siehe 1.7)

gebildeten variierten Funktionen

4.2

fùhren (bei beliebigem, aber festem K(z) mit den oben genannten Eigenschaften)
nicht aus Q(K(z)) heraus. Eine wesentliche Eigenschaft der Funktionale x vom
GRÔTZSCH-TEICHMÛLLERschen Typ besteht nun darin, daB fur Var-
iationen 4.2 eine asymptotische Beziehung

4.3

gilt mit einer gewissen in w analytischen Funktion A(w,f) mit geeignetem
Definitionsbereich, die bei (geeignetem) festgehaltenem w ein Funktional in / ist,
und o(À)/À-*0 fur A -» 0. A(w,f)dw2 ist dann das zu x "an der Stelle /"
gehôrige TEICHMÙLLERsche quadratische Differential.

Bei vorgegebenem Q Q(i>, /ut) findet man natùrlich K(z) mit obigen
Eigenschaften, so daB

ist, d.h. wenn x auf Q definiert ist, so erst recht natùrlich auf Q. In C kann aber
nicht konform variiert werden, sondern man hat die variierten Funktionen zu

/(z)gC mit Hilfe der zu v, jjl und / gehôrigen k-konformen Randvariationen
§f(w, À) durch

4.4 /(z,À)

zu bilden. Es wird nun definiert:

4.5 DEFINITION. Das Funktional X heiBt vom GROTZSCH-TEICHMULLERschen

Typ bezùglich G(i>, jx), wenn x auf Q(v, /ll) definiert und oberhalb
stetig ist und wenn es zu jedem fe Q(i/, jul) eine Funktion 93(w, /) gibt, die

4.5.1 Lôsung von 93*, =2i Im k93w fur fast aile w ist, K K(w) Kf(w) (siehe
1.6.2),

4.5.2 die Darstellung B(w,f) gf°hf(w) besitzt, wobei hf(w) ein quasikon-
former Homôomorphismus der vollen w-Ebene und gf Stammfunktion einer
rationalen Funktion+ 0 ist, und fur die gilt
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45 3 ^[/(•,A)] x[/] + ReA?l(wo,/) + o(A)mita(w,/) a3w(w,/)^oo Vw g

a/(Gz), o(A)/A-»0 fur A-»O bei jedem festen /eû(v, jll)
Naturlich konnte man die Définition analog zu [13] etwas weiter fassen

und anstelle von 4 5 1, 45 2 nur fordern, da8 93(w,/) nur m einer Umge-
bung des Randes von f(Gz) die obige komplexe Differentialgleichung erfullt
und in kemer Komponente emer solchen Umgebung des Randes konstant ist oder
Smgulantaten hat Bei gewissen, und keineswegs pathologischen Funktionalen
(siehe z B 4 17 unten) wird man in der Tat sich mit solchen "verkurzten" 93(w, /)
und 9ï(w, /) begnugen mussen Ein x mit solch einem verkurzten 9I(w, /) soll vom
verkurzten GROTZSCH-TEICHMULLERschen Typ heiBen Der Emfachheit
halber soll hier noch vorausgesetzt werden, daB die geforderte Umgebung des

Randes (d h eine offene Menge Of mit d/(Gz)c: Of), m der 2l(w, /) existiert und
die geforderten Eigenschaften hat, stets nur aus endhch vielen Komponenten
bestehen soll

Da C(i/, /lc) kompakt bezughch gleichmaBiger Konvergenz in kompakten
Teilgebieten von Gz ist, hat das Extremalproblem *[/]-» max in &(v, n) stets
mindestens eine Losung fo(z) Eine direkte Folgerung aus dem SCHIFFERschen
Lemma (siehe [15], [7]) unter Beachtung des Beweises zu 2 19 ist der folgende

4 6 SATZ Sei X vom verkurzten GROTZSCH-TEICHMULLERschen Typ
bezughch Q(i/, /x) Unter den in Abschnitt 1 gemachten Voraussetzungen an v, n
bildetjede Extremalfunktion f0 von x m Q(i^, ju,) das Gebiet Gz auf ein Schhtzgebiet
ab, dessen Randschhtze mit Ausnahme endhch vieler Punkte auf den Trajektonen
des auf dfo(Gz) analytischen quadratischen Differentials 5I(w, fo)dw2>0 hegen

Durch 9l(w, f) dw2>0 wird îm ganzen Defimtionsgebiet von 2l(w, /) (also z B

in der gesamten w-Ebene mit Ausnahme endhch vieler Punkte, wenn Sl(w, /) aus

einem rationalen A(w,f) hervorgeht, siehe 4 11, 4 14, 4 15 1 unten) ein Rich-
tungsfeld defimert Diesem Richtungsfeld entsprechen nach Satz 4 6 auch die
Randschhtze des Bildgebiets von Gz bei einer Extremalfunktion / Ein anderes

Richtungsfeld, das jedoch unter den hier uber v, fi gemachten Voraussetzungen
in einer Randzone von f(Gz) mit dem durch 9t(w, f)dw2>0 definierten
uberemstimmt, wird durch

dS& dw [ÏH(w,f)dw+S8w(w,f)dw]dw>0

gegeben Welches von beiden Richtungsfeldern nun das "nchtige" ist bzw ob

uberhaupt eines von beiden (und dann in welchem Sinne) das nchtige ist, muB

hier offen bleiben Im Hmbhck auf 4 5 3, 4 6 und 4 15 1 unten scheint unter den
hier getroffenen Voraussetzungen uber v, /jl folgende Définition angebracht
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4.7 DEFINITION. Der Ausdruck 5ï(w,/)dw2 mit dem in 4.5.3 genannten
91 (w,/) heiBe verallgemeinertes quadratisches Differential des Funktionals x m

Es sollen nun einige Beispiele fur Funktionale vom GRÔTZSCH-TEICH-
MÙLLERschen Typ bezùglich Q(i>, fx) betrachtet werden. Sei als erstes Beispiel

4.8

ax der Koeffizient von 1/z m der Entwicklung 1.3 von f(z) fur |z|>l?. Wegen 3.10

4.9 *[/(-, A)] Re at -h Re À + Re- JJ 2îk(t) Re[A^(r, wo)l d8T + o(À)

Setzt man also (siehe 2.15)

4.10

d.h. 2?(w) w, so erfùllt dièses 93(w, /) fur jedes feS*(v, jjl) wegen 2.14, dem

Darstellungstheorem, 2.17.1 und der daraus sofort ablesbaren Tatsache, dalî
93(w,/) in oo einen einfachen Pol besitzt, also nicht konstant sein kann, die

Bedingungen 4.5.1, 4.5.2, und wegen 2.17.2 und 4.9 kann man mit diesem
33(w, /) schreiben

4.11 3ï(w,/) 93w(w,/)

Aus 4.9, 1.6.2 und Satz 4.6 ergibt sich gleich noch das folgende Résultat.

4.12 Seien v, fi meRbare Funktionen mit \v\ + \ix\^q< 1 fur fast aile zeGz^>
{|z|>2?}, v ijl O fur \z\>R, /ll reell fur aile zeGz und jul(z)^O in einer
Umgebung des Randes von Gz. Dann bildet jede Lôsung f0 des Extremalproblems
Re ax —* max in Q(v, jli) das Gebiet Gz auf ein Parallelschlitzgebiet mit horizon-
talen Randschlitzen ab. Wenn Gz darùberhinaus endlich vielfach
zusammenhàngend ist, so gibt es genau eine Extremalfunktion in Q(ï^, /x), nâmlich
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die (dann eindeutig bestimmte) hydrodynamisch normierte Abbildung von Gz auf
ein Parallelschlitzgebiet mit horizontalen Randschlitzen, die das Differential-
gleichungssystem 1.1 erfûllt.

(Glattheitsvoraussetzungen an v, jjl sind hier deswegen nicht nôtig, weil man in
diesem Spezialfall keine distributionentheoretischen Betrachtungen anstellen

mu8, um die notwendigen Eigenschaften von 93(w, f) und 31 (w, /) zu ergrùnden.
Aus 4.9 folgt nâmlich hier sofort 2l(w,/)=1.)

Mit Hilfe von zumindest fur endlich vielfach zusammenhângende Gebiete Gz

auf der Hand liegenden Approximationsbetrachtungen kann man sich auch noch

von der Voraussetzung /ll =0 in einer Umgebung von dGz befreien und erhàlt:

4.12' Wenn Gz endlich vielfach zusammenhângend ist und sonst aile Vorausset-

zungen des Satzes 4.12 erfùllt sind auRer der Voraussetzung (jl Q in einer

Umgebung des Randes von Gz, so gibt es unter den Extremalfunktionen zum
Extremalproblem Rea^max in Q(i>, jll) mindestens eine, die Gz

hydrodynamisch normiert auf ein Parallelschlitzgebiet mit horizontalen Randschlitzen
abbildet

Mit anderen Worten, dann ist die (eindeutig bestimmte) hydrodynamisch
normierte Abbildung von Gz auf ein Parallelschlitzgebiet mit horizontalen
Randschlitzen Lôsung des Extremalproblems Reax^max in &(v, jlc). (Fur
endlich vielfach zusammenhângende Gebiete ergibt sich 4.12, 4.12' auch aus

einem allgemeineren Résultat in [10], Satz 2, worauf mich Herr R. KÙHNAU
hinwies. Dort ist allerdings, die Existenz der Parallelschlitzabbildung gesondert zu

zeigen, wâhrend sie hier "gleich mitgeliefert wird.)
Das nàchste Beispiel sei das GOLUSINsche Funktional

4.13
Zl Z]

wobei die zu zN fest vorgegebene Punkte aus Gz sind und der jeweilige
Zweig des Logarithmus wie in [4] gewàhlt werden soll. Bei yu^0 ist mit
(f(zl) — f(zl))l(zl — zl) stets f(zt) gemeint. Die yl} sind beliebige komplexe Zahlen.
Es muB lediglich vorausgesetzt werden, daB die Matrix r={(yls)) nicht schiefsym-
metrisch ist, JV — rT. Die Koeffizienten v, fi des Difïerentialgleichungssystems
1.1 môgen auBer den in (I) genannten Bedingungen noch v(z) n(z) 0 fur
\z — zx\ < r erfullen mit einem festen positiven r, i 1,..., N.

Aus 3.12 erhâlt man (vgl. [12], Extremalproblem 2) wieder eine asymptotische
Entwicklung 4.5.3 mit

4.14 ?l(w,/) 2A(-,/)(w),A(w,/)= £
,„, ~Jl_«~
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Wegen 2.18, 2.19 hat 2l(w,/) nur endlich viele Nullstellen in der w-Ebene. Das

GOLUSINsche Funktional ist also auch vom GRÔTZSCH-TEICHMÙLLER-
schen Typ bezùglich <Q(v, n) mit obigen v, jll.

4.15 Bemerkung. Die Beziehungen 4.11, 4.14 (und auch 4.19 unten) sind
Ausdruck eines "Àhnlichkeitsprinzipes" fur die verallgemeinerten quadratischen
Diflferentiale 9I(w, f) dw2 in Q(vy /x): Wenn A{w,f) dw2 das quadratische
Diflferential von \ m der Klasse der konformen hydrodynamisch normierten
Abbildungen (oder einer entsprechenden konform variierbaren Klasse von Abbil-
dungen) eines Gebietes Gz ist, so ist ^\{w,f)dw2 mit

4.15.1 2l(w,/) «A(-,/)(w)

das verallgemeinerte quadratische Diflferential von x m Q(^, /^). (S hângt
natùrlich ûber k von v, /ut und / ab.) Auf Grund von 2.18 bedeutet dies auch eine

Ùbertragung des TEICHMÙLLERschen Prinzipes (ùber die Lage der
Singularitâten der quadratischen Difïerentiale A(w, f) dw2) auf die
verallgemeinerten quadratischen Difïerentiale 9l(w, /) dw2.

Dièses Ahnlichkeitsprinzip kann fur groBe Klassqn von Funktionalen bewiesen

werden, z.B. ohne nennenswerte Schwierigkeiten fur aile Funktionale x der Form

4.16 x[f] F(f(zl)9.. f(zN\ f(Zl)9..., f (2N),. fn\zx)9..., fn)(zN)\

wobei F eine stetig partiell nach uip vl} diflferenzierbare Funktion F(w01,..., w(W,

wu,. w1N,..., wnl,..., wnN) in den wt] ux] +1^ ist, / 0,..., m, /
1,. JV, mit

dF

dwt]
>0 fur aile wtJ mit wy =fl\zj), /eC(y, /x),

und wo v, (jl neben den in (I) genannten Bedingungen noch die Bedingung
v Ijl O in einer Umgebung der fest vorgegebenen zu zNeGz erfùllen
sollen.

Ein weiteres Beispiel sei

4.17

wobei p{z) eine beschrânkte meBbare Funktion mit beschrànktem Tràger
supp p^Gz sein soll, die auBerdem (der Einfachheit halber) die Bedingung
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supp p fïsupp /lc 0 erfùllen soll. Dann gilt

JJ L /(Z)-WO 77 JJ T-f(z)
+ o(À)J<tôz

+ o(À).

Nun ist fur w g E\supp k (d.h. also insbesondere fur die w aus einér Umgebung
von df(Gz)

4.18

JJV(t, w) Re [2^W}}^37 <*82] dr.

Man erkennt dies leicht, indem man unter Beachtung von v, [l g C°° die Integ-
rationsvariable z rechts in 4.18 durch w=/(z) in die w-Ebene transformiert,
wobei dann die Anwendung des Satzes von FUBINI môglich wird. Also gilt fur
das Funktional 4.17 wieder eine Entwicklung 4.5.3 mit

4.19

und dièses A(w,f) gehôrt zu \ im konformen Falle. Um zu sichern, daB
2l( w, f) ^ 0 ist in einer Umgebung einer jeden Randkomponente, mùssen hier ùber
p(z) noch zwei weitere Voraussetzungen gemacht werden, nâmlich daB ein Gebiet
Gp in der z-Ebene existiert mit

4.20 oo e Gp, dGz a Gp und supp ju, ci Gp c £\supp p,

und

4.21
j j - • -

Unter diesen Voraussetzungen ist 9l(w, /) dw2 das verallgemeinerte quadratische
DiflEerential zu einem Funkional vom verkùrzten GRÔTZSCH-
TEICHMÙLLERschen Typ. Denn A(w,f) ist auBerhalb von /(supp p) eine

analytische Funktion in w mit

A(w,/)= +—5
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fur w aus einer Umgebung von ». Da JJ *"(t, w) Re [2ik(t)A(t, /)] d8T in w =00

mindestens eine zweifache Nullstelle hat, wie man sofort aus 2 5 auf Grund von
2.1 abliest (man wâhle dort ein beschrànktes GK), hat 9ï(w, /) in einer Umgebung

von 00 eine Entwicklung

w w

und ist folglich^O. Nun ist wieder 2.19 anwendbar, und Satz 4 6 tritt in Kraft.
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