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Comment. Math. Helvetici 54 (1979) 17-41 Birkhduser Verlag, Basel

Uber Extremalprobleme fiir schlichte Losungen elliptischer
Differentialgleichungssysteme

HeNrRICH RENELT

Einleitung

Die Theorie der Extremalprobleme fiir konforme Abbildungen kann auf
naturliche Weise in verschiedenen Richtungen verallgemeinert werden.

Eine Richtung -ohne Zweifel die Hauptrichtung der moglichen
Verallgemeinerungen- besteht darin, daB anstelle konformer Abbildungen
quasikonforme Abbildungen betrachtet werden, die (auBer gewissen Nor-
mierungsbedingungen) nur einer vorgegebenen Dilatations beschrankung geniigen
miissen. (Diese Richtung — erstmals betrachtet von H. Grotzsch [5] - ist bisher in
zahlreichen Arbeiten verfolgt worden, siehe die in [8], [17] zitierte diesbeziigliche
Literatur.) Als Hauptergebnis hat sich dabei gezeigt, daB die Extremalfunktionen
in diesen Klassen quasikonformer Abbildungen mit vorgeschriebener
Dilatationsbeschrankung durch dieselben quadratischen Differentiale beschrieben
werden wie im konformen Falle. Als den eigentlichen Grund hierfir hat man
wohl den Umstand anzusehen, daB in diesen Abbildungsklassen dieselben konfor-
men Schifferschen Randvariationen moglich sind wie bei den konformen Abbil-
dungen. DaB8 diese quadratischen Differentiale bei den Extremalfunktionen in
diesen Klassen quasikonformer Abbildungen nicht nur das Randverhalten, son-
dern auch das Verhalten in inneren Punkten beherrschen, findet dadurch seine
Erklarung, daf3 die Variationen mittels geeigneter Beltramiabbildungen (siche
[12]) gedeutet werden kdnnen als “Verdichtungen” konformer Randvariationen
(vgl. [10], §9).

Eine andere (und meines Wissens hier erstmalig niher betrachtete) Richtung
der Verallgemeinerung (- die Anregung hierzu verdanke ich Herrn R. Kiihnau,
vgl. auch [9], §6, sowie eine verwandte Problemstellung in [3]-) besteht darin,
daB das Cauchy-Riemannsche Differentialgleichungssystem durch irgendein an-
deres lineares gleichmiBig elliptisches Differentialgleichungssystem ersetzt wird
und man analog zum konformen Fall in passend normierten Klassen von Abbil-
dungen, die simtlich das vorgeschriebene Differentialgleichungssystem erfiillen,
die Extremalabbildungen zu geeigneten Funktionalen zu charakterisieren sucht.
Hierbei stellt sich zunichst das Problem, zu den konformen Randvariationen
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18 HEINRICH RENELT

analoge Randvariationen zu finden, die nicht aus der vorgegebenen Abbil-
dungsklasse herausfithren. Es zeigt sich, dal man solche Randvariationen in Form
geeigneter Transformierten der konformen Randvariationen finden kann (siehe
1.10, 3.7 unten) und daB demzufolge die die Extremalabbildungen charak-
terisierenden verallgemeinerten ‘‘quadratischen Differentiale” Transformierte der
entsprechenden quadratischen Differentiale im konformen Fall sind (siehe das
“Ahnlichkeitsprinzip” in 4.15 unten). Dies beinhaltet gleichzeitig eine
Ubertragung des Teichmiillerschen Prinzipes iiber die Lage der Singularitiiten bei
den quadratischen Differentialen. Bei diesen Transformationen spielen singulare
Integraloperatoren (namlich gewisse ‘“Verwandte” der zweidimensionalen Hil-
berttransformation) die Hauptrolle. Es hat iiberhaupt den Anschein, daf} gewisse
singulidre Integraloperatoren eng mit Extremalproblemen bei konformen und
quasikonformen Abbildungen zusammenhingen (siehe z.B. [16], [11], [14]).

Der Einfachheit halber habe ich hier einige Voraussetzungen an das Differen-
tialgleichungssystem und die Normierungen gemacht, die an spiterer Stelle
abgeschwiacht oder eliminiert werden konnen. AuBlerdem sind naturlich Er-
weiterungen der Problemstellung moglich (z.B. daB das Differentialgleichungs-
system nur teilweise vorgeschrieben wird), die auch vorerst beiseite gelassen
worden sind.

Zur Beschreibung der Endergebnisse bei der Charakterisierung der Extremal-
funktionen zu den hier betrachteten Extremalproblemen moge folgendes Beispiel
dienen.

In der Klasse aller derjenigen Abbildungen f(z) eines Gebietes G, 2{|z| > R},
die das Differentialgleichungssystem

fi = ""fz

mit p(z)e C°, u(z)=0 fiir |z]> R und in einer Umgebung des Randes G, von
G, erfiillen und fiir |z|> R eine Entwicklung

f(z)=z+—(ﬂ+---
z

besitzen, sollen diejenigen Abbildungen charakterisiert werden, die x[f]=Re a,
zum Maximum machen.

Das Differentialgleichungssystem bedeutet bekanntlich, daB infinitesimale
Kreise |dz|* = dx*+ dy*=const. durch f(z) auf infinitesimale Ellipsen y(z) du®+
2B(z) du dv+ a(z) dv®=const. abgebildet werden, wobei (a(z), B(z), y(z)) mit
ay—B*=1 nur von u(z), nicht aber vom jeweiligen f(z) abhingt. Sei nun f,(z)
eine (aus Kompaktheitsgriinden stets existierende) Extremalfunktion. Denkt man
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sich in jedem Punkt w = fi(z), z € G,, die zugehorige infinitesimale Ellipsenschar
mit den Parametern (a(z), B(z), y(z)) angeheftet und betrachtet nun diejenige
schlichte Abbildung B(w) der vollen w-Ebene, die die infinitesimalen Ellipsen
(a, B, v) in die gespiegelten infinitesimalen Ellipsen (a, —B, y) uberfithrt und in
w = eine Entwicklung B(w)=w+(b,/w)+ - - - besitzt (in den Punkten der w-
Ebene, die nicht Bildpunkte von f(z) sind, sei (a, B, ¥)=(1,0, 1)), so wird die
Extremalfunktion fy(z) durch B(w) in folgender Weise beschrieben:

Das Bildgebiet von G, unter der Abbildung f,(z) ist ein Schlitzgebiet mit
analytischen Randschlitzen, die auf den Trajektorien des ‘‘quadratischen Differen-
tials”

J
—SB aw?>0
ow

liegen.

1. Problemstellung und vorbereitende Betrachtungen

Gegeben sei ein Gebiet G, der z-Ebene, z =x +iy, mit {|z]= R}< G, fir ein
gewisses festes endliches R. & sei die Klasse aller schlichten Abbildungen f(z) von
G, mit folgenden Eigenschaften:

(I) Jedes fe @ erfiillt in G, ein und dasselbe fest vorgegebene Differential-
gleichungssystem (in komplexer Schreibweise)

11 fi=v-fi+p-f,

wobei v =v(z), u = pn(z) in G, stetige partielle Ableitungen beliebig hoher Ord-
nung haben und fiir |z|> R identisch O sein sollen. Das System 1.1 sei in G,
gleichmaBig elliptisch, d.h. es gelte

1.2 |v(2)|+|n(2)|=q<1 firalle ze G,
q sei eine feste positive Konstante. AuBerdem sei w(z) identisch O in einer
Umgebung des Randes 3G, von G,.

(I) Die fe S sollen hydrodynamisch normiert sein, d.h. jedes f besitze fiir |z|> R
eine LAURENTentwicklung

13 f(2)=z+8%- ..,
Z



20 HEINRICH RENELT

Die fe € sind also insbesondere K-quasikonforme Abbildungen mit

AR

ST T bt

IA

Auf Grund der Normierung 1.3 ist @ kompakt in sich bezuiglich gleichmaBiger
Konvergenz in kompakten Teilgebieten von G,. Mit Konvergenz in Q ist im
folgenden stets gleichmaBige Konvergenz in kompakten Teilgebieten von G,
(=lokal gleichmaBige Konvergenz in G,) gemeint.

Sei x nun ein auf Q definiertes und beziiglich der Konvergenz in Q oberhalb
stetiges Funktional, d.h.

lim sup x[f.1=x[f] fur f,—fin g,

mit gewissen weiteren Eigenschaften, die weiter unten formuliert werden sollen
(siehe Abschnitt 4 unten). Man denke bei x vorldufig z.B. an

x[f1=Re a,, a, der Koeffizient von 1/z in 1.3,
oder

x[f1=Re f(x,), z, €in fester Punkt aus G,,

oder auch an

xifl=Re| [p@)f(2) dxdy,

p(z) eine in G, definierte beschrinkte meBBbare Funktion, deren Trager supp p
eine in G, enthaltene beschrinkte Menge ist. Das Integral ist dabei hier wie auch
im folgenden, wenn kein Integrationsgebiet angegeben ist, uber den gesamten
Trager des Integranden zu nehmen.

Das Extremalproblem

1.5 x[f]— max fir feQ

hat dann mindestens eine Losung f,€ . Als Extremalfunktion muf} f, besondere
Eigenschaften besitzen. Da seine Glattheitseigenschaften in inneren Punkten von
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G, durch das Differentialgleichungssystem 1.1 bereits festgelegt sind, bleibt als
besonderes Charakteristikum analog zum konformen Fall das Randverhalten.
Dieses soll hier untersucht werden.

Sei f irgendeine Abbildung aus Q und G,, = f(G,). Zu einem solchen f soll eine
Schar von Abbildungen f(-, A) € Q konstruiert werden, die fiir A —0 gegen f in Q
konvergieren. Wie man leicht nachrechnet, gilt:

1.6 Sei &(w) eine hydrodynamisch normierte schlichte Abbildung von G,, die das
Differentialgleichungssystem

1.6.1 ¥, =2ik(w)ImF,

erfullt mit

162 kW =W =~ 55

wobei v = v(z(w)), 0 = u(z(w)) und z(w) die Umkehrabbildung zu f(z) ist. Dann
ist g(z) =%(f(z)) Losung von 1.1 und gehort wieder zu Q.

Gesucht werden nun Losungen F(w,A) von 1.6.1 mit &(w, A)—> w lokal
gleichmaBig fiir A — 0. Dann werden ¥(f(z), A) gesuchte f(-, A).

Sei ¢ ein Kontinuum mit mindestens zwei verschiedenen Punkten, dessen
Komplement ein Gebiet D, ist, c <df(G,), und w, ein Punkt aus c. Sei F(c) die
Menge aller schlichten konformen und hydrodynamisch normierten Abbildungen
von D.. In F(c) gibt es Folgen von Abbildungen F, mit nachstehend genannten
Eigenschaften (siehe [15], [7]):

1.7 Jedem F, einer solchen Folge ist ein Parameterwert A,#0 mit A, = 0 fur
n — « in eindeutiger Weise zugeordnet, so daB fiir

171 E,=F(w,A)=w+ An +o(A,)
W_W()

gilt

A
1.7.2 ¥—>O fur A,—0

n

gleichméBig in jedem Gebiet D’, das kompakt in D, enthalten ist.
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Wenn ein Fe F(c) als Element einer solchen Folgefungiert, so soll es konforme
Randvariation von G,, beziiglich ¢ und w, heiBen.”
Der Koeffizient x(w) in 1.6.1 wird nun durch die Festlegung

o m
1+ {uf? =]
0

1.8 k(w)= fir weG, =f(G.)

sonst

in der ganzen w-Ebene erklirt. Sei w({) die Umkehrabbildung zu einer konfor-
men Randvariation F(w, L)€ F(c). Mit dem in 1.8 definierten «(w) sei v({) die
hydrodynamisch normierte schlichte Abbildung der vollen ¢-Ebene, die das
Differentialgleichungssystem

’

w'(0)

L9 oy = k(W) s o~ k(W(D)o,

erfiillt, wobei x(w({))(Ww'(£)/w'({)) und «k(w({)) gleich 0 zu setzen sind uberall
dort, wo w(¢{) und w’'({) nicht mehr erklart sind.
Sei nun

1.10 F(w, A) =v(F(w, A)).

Dieses (w, A) ist eine schlichte hydrodynamisch normierte Abbildung von D,,
also erst recht von G,,, und $§(w, A) ist Losung des Differentialgleichungssystems
1.6.1. AuBBerdem gilt

1.11 &(w, A) - w fiir A — 0 gleichmaBig fir alle we G’

und

1.12 ”%}W(W, /\)‘—1”1_"(G')'_)0 fur A —)O,

wobei G’ ein beliebiges, aber festes kompakt in G,, liegendes Gebiet bedeutet

und p nur die in 1.18 unten genannte Bedingung erfiillen muB3. (Man sieht leicht
unmittelbar, daB (w, A) fiir geniigend kleines A nicht die Identitat sein kann.

™ Der Index n bei A, wird in Zukunft weggelassen. Nichtsdestoweniger bedeutet ;. — 0” nichts
anderes, als dap irgendeine Folge konformer Randvariationen F(w, A,,) gegeben ist und A die Nullfolge
der A, durchlduft. Dementsprechend bedeutet z.B. die Ausdrucksweise "geniigend kleines A" nichts
anderes, als daB n geniigend groB ist in der jeweiligen Nullfolge {A,}.
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Dies ergibt sich aber auch von selbst aus den folgenden Betrachtungen, siche
insbesondere 1.25 unten.) Jedes solche durch 1.10 definierte $(w, A) soll k-
konforme Randvariation von G,, beziiglich und w, hei3en.

Beweis von 1.11 und 1.12. Fur o({) gilt

113 ”(g)zg_?lr'”;—ig - 71TjJZiKA(g)?;iH{l(Da~l)daﬁ_%“’i;(a);ads
und

e gL [ L
mit k@ =0, 70 =xn) (220 1)

dé, das “Flachenelement” in der 3-Ebene E, (E mit oder ohne Index bedeutet
stets in Zusammenhang mit Integrierbarkeit die endliche komplexe Zahlenebene
und sonst die volle komplexe Zahlenebene). Daraus folgt (hier sogar fur be-
liebiges p>1 wegen der hydrodynamischen Normierung von v({) und o({)e C)

1.15 ”Uc - 1“11, =G, - 2”KA”L,, ’ ”Uc - 1“11, + Cp”'z/\ U{“L,,-

Dabei bedeutet C, die Norm der HILBERTtransformation

116 Th(g)= -1 ”( h(?)z ds,

in L,=L,(E). Wegen 1.2, 1.8 ist

1. (1—qp
117 il =l =5 1552

|<3
2 1+q 2

Hieraus und wegen C, — 1 fiir p — 2 (siehe z.B. [1], Kap. VA) folgt die Existenz
zweier positiver Konstanten q’ und g,<1 mit

1.18 2|kl - C,=q'<1 firr alle p mit [p—2|=¢,
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Auflerdem folgt aus dem KOEBEschen Viertelsatz unter Beachtung der in (I)
und (II) gemachten Voraussetzungen die Existenz eines R* <o, so daB K, ()=0
ist in {|Z|>R*} fir jedes fef, jedes F(w,A)eF(c), jedes cc<af(G,)
und jedes wy e c. Dies alles zusammen mit 1.15 ergibt

C _ Cp”k)\”lm

119 o U, = Galloglr, qi<rmy  mit G == 7

fir jedes p mit |p—2|=g, Die Ungleichung 1.19 liefert weiter bei geniigend
kleinem A

(WR*2)1/P
1.20 ol qa<rm == Cor

Wegen ||, || — O fiir A — 0 folgt aus den letzten beiden Abschiatzungen

121 [jo,—1||, = 0 fiir A — 0.

Hieraus und aus 1.13, 1.20 folgt

1.22 v({)— ¢ fir A —0 gleichmaBig fiir alle .

Fur &(w, A) folgt dann aus 1.22, 1.7 die Behauptung 1.11. Weiterhin ist
“?S’W(W, A)— IHL,,(G’) = "(Uc —1)F'(w, ’\)”L,(G') + ”F’(W, A)— 1“1,,,(6’)

= o, =1, - max |F'(w, M)|P~2P+|[F'(w, M) = 1|, -

Mittels CAUCHYscher Integralformel (fir die Abschiatzung von F'(w, A)) und
z.B. des BIEBERBACHSschen Flichensatzes (fiir die Abschatzung von ||F'(w, A)—
1)l s») erkennt man dann auf Grund von 1.21 die Richtigkeit von 1.12.

Aus 1.13 erhalt man

Bw, 1) = Fw, 1) [ [ 2 h: -[?c?iwff’ N Wl

1 [ [(«wRIWE W R.(wG),A)
T JJ 3—F(w, A) ds,
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Setzt man nun 3= F(7,A) und transformiert die Integrale auf die neue Integ-
rationsvariable 7, so erhalt man

2irc(r) Im [, ~ DF'(r, ]
F(7,A)—F(w, A) !
1 J J' 2i()[Im F'(r, )&, —1)
F(7,A\)— F(w, A)

aw

1.23 F(w, A) = F(w, )\)—;1; JJ

ds..

Mit Hilfe der CAUCHYschen Integralformel (man beachte, dafl das in 1.7.1
genannte o(A) in D, analytisch von w abhéngt) folgt

124 F(rA)=1-—240(), FlzA)—Fw,A)
(17— wo)

A
(17— wo)(w — wy)

=(T—-w)<l— +0()\))

wo die beiden o(A) in 1.24 die in 1.7.2 genannte Eigenschaft besitzen. Aus 1.12
unter Beachtung von «(7)=0 in einer Umgebung von 9G,, folgt dann

105 A 1 IJZiK(T) Im [, —1] d6. +o(A),

Fw, A)=w+ ——
wW—Ww, T T—W

wobei o(A) in 1.25 wieder 1.7.2 erfiillt.
Aus F., (w, A) =v,(F(w, A))F'(w, A) und 1.14 folgt auf analoge Weise wie bei
1.25 die Beziehung

A1 (f2ik(D)Im([F —1]
1.26 X,.(w,A)=1 W w” T—w) ds. +o(A)

mit [lo(A)/AllpGy—>0 fir A—0, G’ beliebig, aber fest und kompakt in G,
enthalten, |p —2|= ¢,.
Setzt man nun A =le'», a, reell, und betrachtet nur solche Folgen A — 0, fir

die )ljnz) a, =a existiert—diese Voraussetzung wird im folgenden stets ge-

macht—, so wird

. le™ 1 2ik(7) Im[F, —1]
127 Buw ) =1 (w— wp)* WJJ (r—w)? dd, +0(A).

Fur

Bwlw, A)—1

128 S(W, Wy, @, A) = l
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gilt dann die Integralgleichung

e +0()\)__1_ J‘J‘2i:<(7) Im s(7, wo, a, A)

1.29 S(W, Wy, &, /\)z _(W—W0)2 l w (T_W)z

dé..

Ubergang zum Imaginirteil auf beiden Seiten in 1.29 ergibt, daB h(w)=
Im s(w, wg, a, A) die Integralgleichung

2k(7)

(1—w)?

e +o()\)]

(W —w,)? !

1.30 h(w)= g(w)—% jjh(f) Re ds, mit g(w)= —Im[

erfullt.
Um weiteren AufschluB} iiber F(w, A) zu erhalten, wird man also den singuldren
Integraloperator

2k(7)
(r—w)’

1
1.31 Zhw)= - JJh(T)K(T, w) dé, mit K(t, w)=Re
zu untersuchen haben.

2. Einige Eigenschaften des Operators <

Sei G* eine offene Menge mit G* D supp «. Fiur he L,(G*) ist k- he L, =L,(E)
(sofern man kh =0 setzt fir «k =0), und da der T-Operator 1.16 L, in sich
abbildet, so bildet ¥ den Raum L,(G*) in L, ab.

2.1 X ist kontrahierend in L,(G*) (und erst recht natiirlich kontrahierend in L,)
fiir jedes p mit |p—2|= &,.

Denn |[Th, oo =IEhy, =IT(he)+ T(he)ly,
=2G, |hlle, =2 l«ll.G, Al o= 4" Al 60

(siche 1.17, 1.18). Fiir jedes p mit |p—2|= g, gilt dann bekanntlich:
2.2 Wenn f,(w)— f(w) in L,(G*) und h,(w) Losung der Gleichung

h,=f.+%h,

in L,(G*) ist, so strebt h,(w)—h(w) in L,(G*), wobei h (die eindeutig be-
stimmte) Lossung der Gleichung
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221 h=f+%h
in L,(G") ist.

2.3 Die Aussagen 2.1, 2.2 gelten auch fiir den Operator

Fh(w)= ";1; jJ'ZiK(T) Im h(7) ds..

(1—w)?

Denn fiirr & erhilt man dieselbe Normabschiatzung wie fur $. AuBerdem ist &
zwar nicht (komplex) linear, aber additiv.

Eine besondere Rolle in der Variationsformel fiir §(w, A) sowie in den daran
anschlieBenden Betrachtungen spielen, was im 3. und 4. Abschnitt naher
ausgefiithrt wird, die Losungen der beiden speziellen Gleichungen

1
244Mmﬂ=;%T7;”¢h0K@wﬁﬁ
und

i1
2.5 wmuyxw_m—;jﬁmﬂm«nmdm

Dabei ist t ein zunachst fester, aber beliebiger Punkt mit einem positiven Abstand
zu G*. Fur ein solches t ist

i

(w—1)?

€ L,(G*) mit 2<p und e L,(G*) mit 1<p.

w—t

Wenn der Abstand von t zu supp « groBer als >0 ist, so kann z.B. G*=
{lw —1t|> 8} gewihlt werden. Wegen 2.1 und weil & beliebig klein sein kann, gibt
es also genau ein @(w, t) und ein ¥(w, t), das jeweils Losung der entsprechenden
Gleichung 2.4 bzw. 2.5 in LY°(E\{}) ist mit beliebigem p mit 2<p=2+¢, bzw.
|Ip—2|=¢€, (das bedeutet z.B. fir @, daB @ fiir fast alle w# ¢t definiert ist, daB @
fir fast alle w e E\{t} 2.4 erfiillt und daB die Einschrankung von @ auf irgendein
G’, das positiven Abstand zu t hat, zu L,(G') gehort).

Sei ¢(t) eine beliebig oft stetig partiell nach t und 7 differenzierbare Funktion
rhit kompaktem Triger. Die HILBERTtransformation To(w) (siche 1.16) gehort
zu L, fiir jedes p>1 und

26 Po(w)=—— [ [20 g,

13 t—w
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gehort zu L, fur jedes p>2. Folglich haben die Gleichungen

271 H(, ¢)=imPe(-)+ZTH(-, ¢)
272 H(, ¢)=—inTe(-)+TH(, ¢)
273 H(, ¢)=—ime(-)+ZH(, ¢)

jeweils eine eindeutig bestimmte Losung in L,(E) fur 2<p=2+e¢,. Es gilt

2.8 H(-,¢)=—H(-,%‘f), ﬁ(',(p)‘—‘—H(',?if)
und
2.9 H(w, )+ ime(w)= H(w, ko)— H(w, k).

Die Relationen 2.8 folgen direkt aus den Relationen zwischen P- und T-Operator
(siehe z.B. [1], Kap. VA) und der eindeutigen Bestimmtheit der Losungen der
Gleichungen 2.7. Die Beziehung 2.9 folgt unter Beachtung der Linearitat von T
und der eindeutigen Bestimmtheit der Losung von 2.2.1 aus

H(w, ¢)+imp(w)= l'J-J’(p(T)K(T, w) d8,--11; . .[ﬁ(T, @) +ime(T)]K (T, w) db,

o o

=i”“’(’)"“) da,—,-“¢(t)x(t) a5, — L [([A(r, o)+ imo(]K (x. w) ds.

(w—1)? (w—1)* )

Sei nun B(w) eine im Gebiet (2 eindeutige analytische Funktion, 2 Ssupp k,
P(Q) sei wie ublich der Raum der unendlich oft stetig partiell differenzierbaren
Funktionen ¢(-) mit kompaktem Trager in {2 und der entsprechenden Topologie
(siche z.B. [6], S. 5f).

2.10 SATZ. Sie Distribution

dB(w)
dw

2.10.1 B(e)= jjB(W)(p(W) ds,, +—71; JJH(W, ¢) Re [2iK(W) ]d&w eP'(N2)

ist Losung des linearen gleichmdBig elliptischen Differentialgleichungssystems

2102 B, =«kB, — 3B, in Q.



Uber Extremalprobleme fiir schlichte Losungen elliptischer Differentialgleichungssysteme 29

Beweis. Zunichst ist zu zeigen, daB3 B tatsiachlich eine Distribution ist. B ist
natiirlich auf @(£2) definiert und linear. Dies folgt aus der Linearitat von P und
der eindeutigen Losbarkeit der Gleichung 2.7.1. Zu zeigen bleibt also die
Beschranktheit.

Sei 2’ kompakt enthalten in 2. Dann ist

[ Bvetw) do.| = sup lew)] - sup 1BOw) - |2,

|(2'| dds zweidimensionale LEBESGUE-Ma8 von (2, und

\.71; J J H(w, ¢) Re [2ix(w)B'(w)] b,

=|H(w, ¢, - sup [B'(w)| - |supp x|

W ESuUpp K

mit 1/p+1/q=1, 2<p=2+¢,. Fiir |[H(w, )|, folgt aus 2.7, 1.18

7 - |\Poll, _ 7
H = = !

C(p, 2') eine nur von p und 2’ abhingige Konstante (z.B. kann
C(p, 2)=47R'(wR™*)'"" +27R[(p—1)(2R')P '] VP

gesetzt werden, R’ gleich dem Durchmesser von (2'. Dies ergibt insgesamt
211 [Ble)|=C- sup |o(w)],

C eine nur von Q' und p abhingige Konstante, 2<p=2+¢, Damit ist B
beschriankt in () (und sogar von O-ter Ordung).
Das Bestehen des Differentialgleichungssystems 2.10.2, d.h. der Relation

212 B(ex) =B((ke)..) —B(k@)..),

ergibt sich aus der Definition von B sowie aus den Beziehungen 2.8, 2.9. Damit
ist Satz 2.10 bewiesen.

Satz 2.10 besagt mit anderen Worten:
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2.13 Jede analytische Distribution [§f B(w)e(w) dé,, € D'(2) wird durch die
“singuldre Distribution” H(w, ¢) gemdfl Formel 2.10.1 in eine Losung des
Differentialgleichungssystems 2.10.2 transformiert.

Zerlegt man B in Real- und Imaginirteil, B =Bg +iB,, so werden Bi und B,
jeweils Losungen einer elliptischen Differentialgleichung 2. Ordnung mit
Koeffizienten aus C”. Folglich sind Bg, B; und damit auch B Funktionen aus

(),

2.14 Be)= JJ%(W)(p(W) ds,, mit B(w)e C*(2), B, =2i Im k(w)B,,

(siehe z.B. [2], Teil II, §4.2). B(w) ist also das Bild der analytischen Funktion
B(w) unter einer durch 2.10.1 definierten Transformation, die durch & bezeich-
net werden soll,

2.15 B(w)=8/B(W).

Um folgenden wird noch eine weitere Transformation & wichtig, namlich

2.16 QB'(W)=E’@££W)=%W(W).

B(w) und 2 mogen wieder die in Zusammenhang mit Satz 2.10 genannten
Bedingungen erfiillen.

2.17 Satz: Sei 2 eine offene Teilmenge von 2 und Q' < E,\supp k. Fiir alle
we ' gilt

2.17.1 {B(w)=B(w)= B(w)+% .[I@(T, w) Re [2ik(7)B'(1)] dé§.,
2172 LB'(w)=%8'(w)= B'(w)+;lr— IJ‘I’(T, w) Re [2ik(7)B'(1)] d8..

Dabei sind @ und ¥ die in 2.4, 2.5 genannten Funktionen.

Beweis. Sei w; ein beliebiger, aber fester Punkt aus 2’ und 6 >0 so klein, daB
{lw—w,|<8}c ' ist. @,(w, w,) sei eine Folge von Funktionen aus C~, die nur
von |w —w;| abhingen, mit ¢,(w, w;) =0 fir alle w, ¢,(w, w;) =0 fir |w—w,|>
1/n, §§ ¢.(w, wy) dé,, =1 fur alle n mit 1/n<§. Fur irgendeine in {{jw—w,|< 8}
analytische



Uber Extremalprobleme fiir schlichte Losungen elliptischer Differentialgleichungssysteme 31

Funktion f(w) gilt dann ff f(w)e,(w, wy) d8,, = f(w;). Da B(w) insbesondere fur
|w—w,| < & analytisch ist, gilt

[ [B0010(w, w0 8., =B = BOw) +2 [ [H(r, 0 Re 2ix(mB (] s,

- j%(wmw(w, w) b, =B (w) = Bw)+= [ [H(r, 0,) Re 2ix(nB (] d,

mit den in 2.7 definierten Funktionen (man beachte auch 2.8)

How, o) =i [ 520 4o LS H(, ¢,) =——+TH(, 6,)
1

w—t w—
. _ [ enlt, W) . _ i T(- o)
Fitw, o) =i [ 225 45, 4 RHC, 0) = s *BHC 00)

letzteres, weil (bei festem w) (w—t)7*, k eine reelle ganze Zahl, analytisch in ¢ ist
fur |t—w,| <8, solange |w—w|>8 ist. Folglich ist H(w, ¢,)= ®(w, w;) und
H(w, @,) = ¥(w, w,) fiir |[w—w;|>1/n auf Grund der eindeutigen Losbarkeit der
Gleichungen 2.4, 2.5 in {{w—w,|>1/n}. Damit ist Satz 2.17 bewiesen. 2.17
bedeutet, daB die Transformationen & und ¥ fiir we E\supp« durch
Integraltransformationen mit Hilfe der singularen Kerne ®(t, w), ¥(t, w) darges-
tellt werden konnen. (Mit ewas mehr Aufwand, aber sonst analog zum Beweis
von 2.17 1aBt sich zeigen, dal 2.17.1 fiir alle we 2 gilt. Dagegen kann vorerst
nichts uber die Existenz von ¥(w, w;) fur beliebiges w, gesagt werden, ge-
schweige denn uiber die Giltigkeit von 2.17.2 fiir beliebiges w € (), wobei dann
B'(w) durch B, (w) zu ersetzen wiire.)

Sei nun A(w) eine rationale Funktion mit einem Pol in w,, w, & supp «. Es ist

LA(w)= A(w)+l JJ‘I’(T, w) Re [2ik(T)A(1)] d6,
iy

in einer hinreichend kleinen Umgebung von w; analytisch (und naturlich ein-
deutig). Dies folgt sofort aus 2.10, 2.14, 2.17, indem man dort B'(w) = A(w) setzt
und eine evtl. aufgeschnittene Umgebung von w, betrachtet. Weiter ist

JJ"I’(T, w) Re [2ik(7)A(7)] dé,

beschrinkt in einer Umgebung von w,. Also gilt:
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2.18 Sei A(w) eine rationale Funktion, deren sdmtliche Pole au3erhalb von supp
k liegen. Dann hat

A(w)=LA(w)
dieselben Singularititen wie A (w).

Sei A(w) nun eine in 2 S supp k eindeutige meromorphe Funktion mit der(nicht
notwendig eindeutigen) Stammfunktion B(w), und alle Pole von A(w) in
(sofern vorhanden) mogen auB3erhalb des supp « liegen. Dann hat $B(w) =& B(w)
auf Grund des Darstellungstheorems fiir Losungen gleichmaflig elliptischer
Differentialgleichungssysteme (sieche z.B. [2], Teil II, §6.4) nur endlich viele
Nullstellen in jedem kompakten Téilgebiet ' von 2 oder ist identisch 0. Es gilt
aber noch mehr:

2.19 AU(w)=LA(w) hat nur endlich viele Nullstellen in jedem kompakten
Teilgebiet von (2 oder ist identisch 0.

Denn wegen B(w), k(w) e C” kann die komplexe Differentialgleichung 2.10.2 auf
beiden Seiten partiell nach w differenziert werden. Dies liefert fiir A(w) =B, (w)
das gleichmaBig elliptische Differentialgleichungssystem

=2 - ety
220 A, = K oA K A +KW+KKW%~KKW+KW

=P " 1=[cP ™ 1=|«P © 1-|x]

9.

Aus dem Darstellungstheorem folgt dann die Behauptung 2.19.

3. Die Variationsformeln

Wegen [0(A)/1[l,n—> O fiir A — 0 mit dem o(A) aus1.29 und wegen 2.3 gilt

A
3.1 s(w, wy, a, L) =s(w, w, a)+2—(l——), wo € ¢ < 3f(G,)

mit o(A)/l =0 in L,(G*) fur [— 0, wobei s(w, w,, «) Losung der Integral-
gleichung

eia
2+tS(‘, Wo, a)

(w—wy)

32 s(w,wy, a)=—
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in L,(G*) mit |p—2|=¢, und G* ein kompaktes Teilgebiet von G,, =f(G,) ist,
das supp k enthilt. Aus 2.3 folgt dann weiter

3.3 s(w, wy, a)=s(w, wy, 0) cos a + s(w, w,, 7/2) sin a.

Wie bei 1.30 erkennt man sofort aus 3.2, daf}

3.4 Ims(w, wo, a)=Re ([Im s(w, wy, 0)—i Im s(w, wy, 7/2)]e**)
Losung der Gleichung

iox ol

l
(W_WO)2+Eh —Re————(w_wO)2+$h

h(w)=— Im —2

ist. Folglich ist Im s(w, wy, 0)—i Im s(w, wy, 7/2) Losung der Integralgleichung

i

3.5 h(W):m

+<h,

und wegen der eindeutigen Bestimmtheit der LOsung dieser Integralgleichung
in LY(E\{w,}) gilt unter Beachtung von 2.5

3.6 Y(w, wo)=Ims(w, wy, 0)—i Im s(w, w,, 7/2).

Zusammen mit 1.25-1.28, 3.1, 3.4 erhalt man hieraus

37w, A)=wt—r L J J 2ik (1) Re [A¥(r, wo)]

W—Wo T T—W

ds, +o(A),

38 F(wa)=1-—2nr 1 HZiK(T)Re[MP(T, wo)]

(W—wo)? (t—w)?

ds, +o(A),

wobei fiir 0(A) in 3.7 wieder gilt 0(A)/A — 0 fur A — 0 gleichmiBig in G’ und fiir
o(A) in 3.8 lo(A)/Allp 6y — O fiir A =0, |p—2|=¢g,, fur jedes kompakt in G,
liegende Gebiet G’, w, € dG,,. Mit Hilfe der CAUCHYschen Integralformel folgt
naturlich aus 3.7 auch fur das in 3.8 genannte o(A)

3.9 o(A)/A—0 fir A—0 gleichmiBig in jeder kompakten Teilmenge irgend-
einer offenen Menge = G, in der k(w)=0 ist.
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Fir die gesuchten Variationen f(z, A) =%(f(z), A) zu einer (festen) Abbildung
f € & erhalt man aus 3.7 die asymptotische Darstellung

310 f(z0) = f(z) 45—t J sz(m:e_[f)zg@,wo)]

m—w ds. +o(A)

mit (0(A))/A — 0 fiir A — 0 gleichmiaBig in jedem Gebiet G’, das kompakt in G,
enthalten ist, und wegen f,(z, A) = &, (f(z), AM)f, + . (f(z), A) /-, 1.6.1, 3.8 und 2.5

M.(z)  f.(2) J J 2ik(7) Re [AW(T, wy)]
(f(z2)—wo)*  m (1—f(z))?
+2ik(f(2))f: - Re [AW(f(2), wy)]+0(A)

311 f(z,A)=f.(2)~ do,

mit [|o(A)/All, G, —0 fir A—0, G wie bei 3.10 und p eine beliebige reelle Zahl
mit |p—2|=(g3)/2(1+¢,). Analog zu 3.8, 3.9 gilt: Wenn v(z)=u(z)=0 ist in
einer Umgebung eines Punktes z, € G, (dann ist k(w) =0 in einer Umgebung von
w, = f(z,)), so gilt fur jede (feste) natiirliche Zahl n=1,2, ...

1
dn
" _ fon __fz2)=wq 1((5;
R -
x[Re AY(r, wo)]% ds. +o(A)

mit (0(A)/A)— 0 fiar gleichmiaBig in einer Umgebung von z,. Die Be-
ziehungen 3.10-3.12 sind die gesuchten Variationsformeln fiir die g(z, A).

4. Charakterisierung der Funktionale und ihrer Extremalfunktionen

Sei K(z) eine beschrinkte meBbare Funktion in G, mit 1=K(z) fur alle
zeG,, K(z)=1 fur |z|>R Q=Q(K(z)) sei die Klasse der hydrodynamisch
normierten quasikonformen Abbildungen f(z) mit

_IAI+IA
AR A
x sei ein auf einer solchen Klasse Q(K(z)) definiertes oberhalb stetiges Funk-

tional (insbesondere ist dann y auch auf der Klasse der hydrodynamisch normier-
ten konformen Abbildungen von G, definiert).

4.1 Dy(z) K(z) fur fast alle z € G,.
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Die mit Hilfe der konformen Randvariationen F(w, A) von f(G,) (siche 1.7)
gebildeten variierten Funktionen

42 fi(z)=F(f(z),A)

fuhren (bei beliebigem, aber festem K(z) mit den oben genannten Eigenschaften)
nicht aus Q(K(z2)) heraus. Eine wesentliche Eigenschaft der Funktionale xy vom
GROTZSCH-TEICHMULLERschen Typ besteht nun darin, daB fir Var-
iationen 4.2 eine asymptotische Beziehung

4.3 x[fil=x[f1+Re AA(wo, /) +0(A)

gilt mit einer gewissen in w analytischen Funktion A(w,f) mit geeignetem
Definitionsbereich, die bei (geeignetem) festgehaltenem w ein Funktional in f ist,
und o(A)/A =0 fir A > 0. A(w, f) dw? ist dann das zu y “an der Stelle f”
gehorige TEICHMULLERsche quadratische Differential.

Bei vorgegebenem Q= Q(v, u) findet man natirlich K(z) mit obigen
Eigenschaften, so daf3

(v, u) = Q(K(2))

ist, d.h. wenn y auf Q definiert ist, so erst recht natiirlich auf Q. In & kann aber
nicht konform variiert werden, sondern man hat die variierten Funktionen zu

f(z)e & mit Hilfe der zu v, » und f gehorigen k-konformen Randvariationen
%(w, A) durch

4.4 f(z, \)=F(f(2), A)
zu bilden. Es wird nun definiert:

45 DEFINITION. Das Funktional x heift vom GROTZSCH-TEICH-
MULLERschen Typ beziiglich Q(v, u), wenn x auf Q(v, w) definiert und oberhalb
stetig ist und wenn es zu jedem fe Q(v, u) eine Funktion B(w, f) gibt, die

4.5.1 Losung von B, =2iIm «B,, fir fast alle w ist, k = k(w) = k(W) (siche
1.6.2),

4.5.2 die Darstellung B(w, f) =g ° h(w) besitzt, wobei hs(w) ein quasikon-
former Hom6omorphismus der vollen w-Ebene und g Stammfunktion einer
rationalen Funktion=0 ist, und fir die gilt
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453 x[fCG, M= x[f1+Re AUA(wy, )+ 0o(A) mit A(w, ) =B, (w, f)#xo Vwe
9f(G,), o(A)/A =0 fur A =0 bei jedem festen fe Q(v, ).

Naturlich konnte man die Definition analog zu [13] etwas weiter fassen
und anstelle von 4.5.1, 4.5.2 nur fordern, daB B(w, f) nur in einer Umge-
bung des Randes von f(G,) die obige komplexe Differentialgleichung erfiillt
und in keiner Komponente einer solchen Umgebung des Randes konstant ist oder
Singularititen hat. Bei gewissen, und keineswegs pathologischen Funktionalen
(siche z.B. 4.17 unten) wird man in der Tat sich mit solchen ‘‘verkiirzten” B(w, f)
und 2A(w, ) begniigen missen. Ein x mit solch einem verkiirzten A(w, f) soll vom
verkiirzten GROTZSCH-TEICHMULLERschen Typ heiBen. Der Einfachheit
halber soll hier noch vorausgesetzt werden, da3 die geforderte Umgebung des
Randes (d.h. eine offene Menge O; mit df(G,) < Oy), in der A(w, f) existiert und
die geforderten Eigenschaften hat, stets nur aus endlich vielen Komponenten
bestehen soll.

Da Q(v, u) kompakt beziiglich gleichmaBiger Konvergenz in kompakten
Teilgebieten von G, ist, hat das Extremalproblem x[f]— max in Q(v, u) stets
mindestens eine Losung fy(z). Eine direkte Folgerung aus dem SCHIFFERschen
Lemma (siehe [15], [7]) unter Beachtung des Beweises zu 2.19 ist der folgende

4.6 SATZ. Sei x vom verkiirzten GROTZSCH-TEICHMULLERschen Typ
beziiglich Q(v, ). Unter den in Abschnitt 1 gemachten Voraussetzungen an v, u
bildet jede Extremalfunktion f, von x in Q(v, w) das Gebiet G, auf ein Schlitzgebiet
ab, dessen Randschlitze mit Ausnahme endlich vieler Punkte auf den Trajektorien
des auf 3fy(G,) analytischen quadratischen Differentials N(w, fo)dw>>0 liegen.

Durch %A(w, f) dw?>0 wird im ganzen Definitionsgebiet von A(w, f) (also z.B.
in der gesamten w-Ebene mit Ausnahme endlich vieler Punkte, wenn 2(w, f) aus
einem rationalen A(w, f) hervorgeht, siche 4.11, 4.14, 4.15.1 unten) ein Rich-
tungsfeld definiert. Diesem Richtungsfeld entsprechen nach Satz 4.6 auch die
Randschlitze des Bildgebiets von G, bei einer Extremalfunktion f. Ein anderes
Richtungsfeld, das jedoch unter den hier iiber v, u gemachten Voraussetzungen
in einer Randzone von f(G,) mit dem durch A(w,f) dw®>>0 definierten
tibereinstimmt, wird durch

d®B - dw=[Aw, f) dw+B,(w, f) dw] dw >0

gegeben. Welches von beiden Richtungsfeldern nun das ‘“‘richtige” ist bzw. ob
iiberhaupt eines von beiden (und dann in welchem Sinne) das richtige ist, muf3
hier offen bleiben. Im Hinblick auf 4.5.3, 4.6 und 4.15.1 unten scheint unter den
hier getroffenen Voraussetzungen iiber v, u folgende Definition angebracht:
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4.7 DEFINITION. Der Ausdruck A(w,f) dw®> mit dem in 4.5.3 genannten
A(w, f) heiBe verallgemeinertes quadratisches Differential des Funktionals x in

(v, w).

Es sollen nun einige Beispiele fiir Funktionale vom GROTZSCH-TEICH-
MULLERschen Typ beziiglich Q(v, ) betrachtet werden. Sei als erstes Beispiel

48 x[fl=Rea,.

a, der Koeffizient von 1/z in der Entwicklung 1.3 von f(z) fiir |z| > R. Wegen 3.10
ist

4.9 x[f(-;A)]=Rea,+ReA+Re % JJZiK(T) Re[AW (T, wo)]dS, +0(A)

= x[f1+Re )\{1 +—71; J'J"P(T, wo) Re [2ik(7) - 1] d8,}+0(/\).

Setzt man also (siehe 2.15)
4.10 B(w, f)=8B(w)=8>d)(w),

d.h. B(w)=w, so erfullt dieses B(w, f) fur jedes fe Q(v, u) wegen 2.14, dem
Darstellungstheorem, 2.17.1 und der daraus sofort ablesbaren Tatsache, daf3
B(w, f) in o« einen einfachen Pol besitzt, also nicht konstant sein kann, die
Bedingungen 4.5.1, 4.5.2, und wegen 2.17.2 und 4.9 kann man mit diesem
B(w, f) schreiben

x[f(, V)] = x[f1+Re AA(wy, f) +0(A) mit
411 A(w, /=B, (w, /) =L(1)(w).
Aus 4.9, 1.6.2 und Satz 4.6 ergibt sich gleich noch das folgende Resultat.

4.12 Seien v, u meBbare Funktionen mit |v|+|u|=q<1 fiir fast alle ze G, >
{lz|>R}, v=u=0 fiir |z|>R, w reell fiir alle ze G, und w(z)=0 in einer
Umgebung des Randes von G,. Dann bildet jede Losung f, des Extremalproblems
Re a, — max in Q(v, u) das Gebiet G, auf ein Parallelschlitzgebiet mit horizon-
talen Randschlitzen ab. Wenn G, dariiberhinaus endlich vielfach
zusammenhdngend ist, so gibt es genau eine Extremalfunktion in Q(v, w), namlich
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die (dann eindeutig bestimmte) hydrodynamisch normierte Abbildung von G, auf
ein Parallelschlitzgebiet mit horizontalen Randschlitzen, die das Differential-
gleichungssystem 1.1 erfiillt.

(Glattheitsvoraussetzungen an v, w sind hier deswegen nicht notig, weil man in
diesem Spezialfall keine distributionentheoretischen Betrachtungen anstellen
muf3, um die notwendigen Eigenschaften von B(w, f) und A(w, f) zu ergriinden.
Aus 4.9 folgt namlich hier sofort A(w, f)=1.)

Mit Hilfe von zumindest fiir endlich vielfach zusammenhangende Gebiete G,
auf der Hand liegenden Approximationsbetrachtungen kann man sich auch noch
von der Voraussetzung w =0 in einer Umgebung von 4G, befreien und erhilt:

4.12" Wenn G, endlich vielfach zusammenhdingend ist und sonst alle Vorausset-
zungen des Satzes 4.12 erfiullt sind auBler der Voraussetzung w =0 in einer
Umgebung des Randes von G,, so gibt es unter den Extremalfunktionen zum
Extremalproblem Re a,—max in RQ(v,w) mindestens eine, die G, hyd-
rodynamisch normiert auf ein Parallelschlitzgebiet mit horizontalen Randschlitzen
abbildet.

Mit anderen Worten, dann ist die (eindeutig bestimmte) hydrodynamisch nor-
mierte Abbildung von G, auf ein Parallelschlitzgebiet mit horizontalen
Randschlitzen Losung des Extremalproblems Re a;—max in Q(v, w). (Fur
endlich vielfach zusammenhangende Gebiete ergibt sich 4.12, 4.12" auch aus
einem allgemeineren Resultat in [10], Satz 2, worauf mich Herr R. KUHNAU
hinwies. Dort ist allerdings, die Existenz der Parallelschlitzabbildung gesondert zu
zeigen, wihrend sie hier gleich mitgeliefert wird.)
Das nachste Beispiel sei das GOLUSINsche Funktional
N
413 xifl=Re Y v, log /=115,

iLj=1 i

wobei die z,,..., zy fest vorgegebene Punkte aus G, sind und der jeweilige
Zweig des Logarithmus wie in [4] gewidhlt werden soll. Bei vy;#0 ist mit
(f(z.)— f(z))/(z; — z,) stets f'(z;) gemeint. Die vy, sind beliebige komplexe Zahlen.
Es muB lediglich vorausgesetzt werden, da3 die Matrix I" = ((y;)) nicht schiefsym-
metrisch ist, I'# —I'". Die Koeffizienten v, u des Differentialgleichungssystems
1.1 moOgen auBer den in (I) genannten Bedingungen noch v(z)=pu(z)=0 fur
|z —z;|<r erfiillen mit einem festen positiven r, i=1,..., N.

Aus 3.12 erhalt man (vgl. [12], Extremalproblem 2) wieder eine asymptotische
Entwicklung 4.5.3 mit

4.14 Aw, )=RA(, Hw), Aw, )= ; (w _f(z.;)z’:i) —1(z))
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Wegen 2.18, 2.19 hat A(w, f) nur endlich viele Nullstellen in der w-Ebene. Das
GOLUSINsche Funktional ist also auch vom GROTZSCH-TEICHMULLER-
schen Typ beziglich Q(», u) mit obigen v, w.

4.15 Bemerkung. Die Bezichungen 4.11, 4.14 (und auch 4.19 unten) sind
Ausdruck eines “Ahnlichkeitsprinzipes™ firr die verallgemeinerten quadratischen
Differentiale A(w, f) dw? in Q(v, u): Wenn A(w,f)dw? das quadratische
Differential von x in der Klasse der konformen hydrodynamisch normierten
Abbildungen (oder einer entsprechenden konform variierbaren Klasse von Abbil-
dungen) eines Gebietes G, ist, so ist A(w, f) dw? mit

4151 Alw, f)=LA(, f)(w)

das verallgemeinerte quadratische Differential von x in Q(v, w). (¥ hingt
naturlich iiber «k von v, w und f ab.) Auf Grund von 2.18 bedeutet dies auch eine
Ubertragung des TEICHMULLERschen Prinzipes (ilber die Lage der
Singularititen der quadratischen Differentiale A(w, f) dw?) auf die verall-
gemeinerten quadratischen Differentiale A(w, f) dw>.

Dieses Ahnlichkeitsprinzip kann fiir groBe Klassen von Funktionalen bewiesen
werden, z.B. ohne nennenswerte Schwierigkeiten fir alle Funktionale x der Form

416 x[f1=F(f(z0), ..., f(zn), F(z0)s .- f(2n)s oo, f(20), oo, [ (200)),

wobei F eine stetig partiell nach uy, v; differenzierbare Funktion F(w,, ..., Wons
Wity ooos Winseoo> Wais---» Wan) In den w;=uy;+iv; ist, i=0,...,n, j=
I,...,N, mit

‘———— >0 fir alle w; mit w; = fP(z;), fe (v, p),

l!

und wo v, u neben den in (I) genannten Bedingungen noch die Bedingung
v=w=0 in einer Umgebung der fest vorgegebenen z,,...,zye G, erfullen
sollen.

Ein weiteres Beispiel sei

417 Mf=Re|[p(2)f(2) ds.

wobei p(z) eine beschrinkte meBbare Funktion mit beschranktem Trager
supp p < G, sein soll, die auBerdem (der Einfachheit halber) die Bedingung
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supp p Nsupp n = J erfiillen soll. Dann gilt

X A= Re [ [p(a)] o) 47— [ [ 2T g
+0()\)} dé,
e[ 222 ([ ma R ) )

+o(A).

Nun ist fur we E\supp « (d.h. also insbesondere fiir die w aus einér Umgebung
von of(G,)

4.18 J'J(jj‘lf(*r, w) Re 2ir(7)p(2) d67> dé,

f(z)—r
- Htp(f, w) Re [2ix(7)”f(’;()z_)7 daz] d..

Man erkennt dies leicht, indem man unter Beachtung von v, u € C” die Integ-
rationsvariable z rechts in 4.18 durch w={f(z) in die w-Ebene transformiert,
wobei dann die Anwendung des Satzes von FUBINI moglich wird. Also gilt fur
das Funktional 4.17 wieder eine Entwicklung 4.5.3 mit

419 A(w, H=LAC, Hw), Alw,f)= “——"(—Zl— ds,,

f(z)—w
und dieses A(w,f) gehort zu x im konformen Falle. Um zu sichern, daB
A(w, f) #0 ist in einer Umgebung einer jeden Randkomponente, miissen hier tiber
p(z) noch zwei weitere Voraussetzungen gemacht werden, namlich daB3 ein Gebiet
G, in der z-Ebene existiert mit

420 «€G,,0G,<G, und supp pn< G, < E\supp p,

und
4.21 ij(z) ds, =—a,(p) #0.

Unter diesen Voraussetzungen ist A(w, f) dw? das verallgemeinerte qu.e_ldratische
Differential zu einem  Funkional vom  verkirzten = GROTZSCH-

TEICHMULLERschen Typ. Denn A(w, f) ist auBerhalb von f(supp p) eine
analytische Funktion in w mit

IO
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fir w aus einer Umgebung von . Da f{ ¥(r, w) Re [2ik(7)A(T, /)] dé, in w=0
mindestens eine zweifache Nullstelle hat, wie man sofort aus 2.5 auf Grund von
2.1 abliest (man wihle dort ein beschranktes G*), hat A(w, f) in einer Umgebung
von o eine Entwicklung

A(w )= 1(P)+__~+
w?

und ist folglich==0. Nun ist wieder 2.19 anwendbar, und Satz 4.6 tritt in Kraft.
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