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Courbure et singularités complexes

REMI LANGEVIN

Soit C une hypersurface complexe algébrique d’équation f(&, &;,...,&)=0
de dimension complexe d et admettant I’origine comme point singulier isolé. Soit
C, T'hypersurface d’équation f = A.

N. A’Campo m’a suggéré d’interpréter les propriétés de courbure de C, au
voisinage du point singulier.

Le plongement C, < C**'=R??*? munit C, d’une métrique; soit dv la forme
volume de C,, K est la fonction qui vérifie la formule de Gauss-Bonnet
généralisée:

J K dv = c,yx(M)
M

pour toute variété M de dimension 2d, ol ¢,y = (2m)%/ 135 (24-1) €St 1a moitié du
volume de la sphére S*¢. Dans la suite de I’article nous appellerons K simplement
‘““courbure gaussienne”’.

Quand il n’y a pas d’ambiguité, nous omettrons la forme volume dans une
intégrale.

A chaque point singulier isolé, B. Teissier associe les nombres p“*, ..., u©.
Le premier, u'“*" est le nombre de Milnor de la singularité (cf. [6]); Teissier
démontre que le nombre de Milnor u® de la singularité obtenue en coupant C
par un i-plan ¥ passant par l'origine est constant lorsque # évite un fermé
analytique.

Teissier donne aussi dans I’appendice de [11] une interprétation géométrique
de la somme p“*P+ @ qui est le point de départ de notre travail.

Dans [7], Milnor relie une intégrale de courbure au nombre de points critiques
de projections orthogonales sur des droites réelles. A l'aide de méthodes
analogues, nous démontrons le résultat suivant:

THEOREME 1.

lim lim (1)K = (4* Y+ p )¢,y
€e—0 A—0 B.NC,
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Figure 1
ou B, est la boule de centre 0 et de rayon e.

(Cette intégrale est égale a 'intégrale {|K]| car la fonction (—1)“K est positive sur
une hypersurface complexe).

La démonstration du théoréme 1 se fait en deux étapes.

I. Courbe polaire associee a une direction d’hyperplan

(cf. [9], [11], [12] et figure 2).

Soit H un hyperplan complexe contenant l'origine. 7(C, N B, H) est le
nombre de points, fini pour presque tout H, ou ’hyperplan tangent a C, N B, est
paralléle a H. On note G, (ou G,(C)) la grassmannienne complexe ensemble des
hyperplans de C**! contenant I’origine.

Soit (&, . .., &) un systeme de coordonnées locales de (C?*!, 0) tel que H ait
pour équation £,=0. Pour que ’hyperplan tangent a C, en un point régulier x
soit parallele a H, il faut et il suffit que grad (f—A)(x) soit un vecteur orthogonal a
H, c’est-a-dire que:

of of
—x)=—"(x)="=—(x)=0. (1)
afl a§2 aéd

Soit I'y la courbe complexe définie par (1). Soit (C,, I'y;), l'indice d’intersec-
tion de C, et I'y au point x. Posons

"(G.NB, H)= } (G, Ty).
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Pour presque tout H, on a:7(C, NB,, H)=card (I'yNC, NB,).
La courbe I'y; coupe la courbe singuliere C en 0. Dans [8], Teissier démontre
le résultat suivant:

THEOREME 2. Il existe un fermé analytique strict de dimension d—1: X c
G, tel que, pour tout hyperplan H appartenant a G, — X, le nombre d’intersection
en 0 C**! de la courbe I'y; et de I’hypersurface singuliére C est u“*+ u@:

(I'g - C)o= M(dﬂ)‘*’#«(d)

ot w9V est le nombre de Milnor de la singularité (C,0) et ¥ le nombre de

Milnor de Uintersection (C N H), 0)< (H, 0) qui est aussi une hypersurface admet-
tant ’origine de H comme point singulier isolé.

Remarque. La notation u> a un sens car ce dernier nombre ne dépend pas du
choix de He G, — X [11]. Rappelons que le nombre de Milnor de la singularité
isolée 0 de ’hypersurface d’équation f(&,, ..., &) =0 est la dimension

dimc[C[éo,-~ fd]/( "9ty a@)]

Le théoreme de Teissier implique que, lorsque A tend vers origine, (u“*"+
p@) points d’intersection de I'y; et C, tendent vers P'origine (cf. [11]; donc, pour
un hyperplan H appartenant a G, — X:

lim hm 7(C,NB_, H)=p“*V+ @ (2)

€0 A—>

Figure 2
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Avant de poursuivre la démonstration du théoréme, donnons quelques exem-
ples:

a) L’originie n’est pas singuliere, on a u@*V = =0; pour toute direction
d’hyperplan qui n’est pas celle de I’hyperplan tangent en 0, on a, pour € assez
petit 7(CNB,, H)=0 et donc pour € et A assez petits 7(C, N B, H) =0.

b) Considérons la courbe de C? d’équation x*—y?>=0; on a:

M(l)__. 1
p®=1

et donc
w®+ =2

La trace réelle de la situation est, pour A réel,

c¢) pour trouver @+ u® =p, on peut considérer la singularité x? —y>=0.

Considérons sur G,(C) la densité kaelhérienne usuelle qui est la mesure
proportionnelle a4 la mesure image de la mesure de Lebesgue de S?¢*!, sphere
unité de R***>=C""! par la projection

m:8%*1 - G,(0)

z+—>(espace complexe orthogonal a I’espace complexe engendré par z).

Pour cette mesure, le volume total de G, est: vol(S*4*1)/vol(fibre) = 7%/ d!.

Les hypersurfaces C, sont de degré & =degré (f), elles sont donc toutes de
classe majorée par 8(8 — 1) (cf. [9]). En effet, les points ou le plan tangent a C,
est, par exemple, horizontal sont solution des équations:

_of . _Of
0z, 0z,

f—A

Figure 3
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et, par le théoréme de Bezout, sont au nombre de 8(8 —1)¢ au plus. On a donc:
7(C,NB_, H)=8(6—-1)~.

Nous pouvons donc appliquer le théoréme de convergence dominée de
Lebesgue appliqué a la fonction dépendant de A:

H—-71(B.NC,, H)

et donc:
lim I (C,NB_, H)= j lim+(C, NB,_, H).
A—0 G, G4 A—0

Appliquons une deuxieme fois ce théoreme a la fonction dépendant de e:
lim, _,, 7(C, N B,, H):

€e—0

lim j lim 7(C, N B,, H) = j lim lim 7(C, N B., H)
G A—0 G e—0 A—0
et donc I’égalité (2) implique que

lim lim I 7(C, NB,, H) = (m4/d)[n @V + pn @] 2)
Gq

€e—0 A—0

I1. Application de Gauss complexe

On sait que pour une hypersurface réelle M?* < R***! P’application de Gauss
Yy M—>P,,

x—>N,

qui, 2 un point, fait correspondre la direction normale a M au point a pour
jacobien la courbure gaussienne de M en ce point.

Plus généralement, Fenchel [2] calcule la courbure gaussienne d’une sous-
variété de dimension paire immergée dans I’espace euclidien R™. Ce calcul a un
résultat simple si la sous-variété est une hypersurface complexe.

Soit y¢: C — G, Plapplication qui, 2 un point régulier x de C* = C —{points
singuliers}, fait correspondre I’hyperplan complexe tangent en x a C.

On a alors, si dp est la forme volume de G, et dv celle de C:
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THEOREME [Milnor"].

2.4...2d
(-1)*Kdv =13~ 2D vé dp = a,v¢ dp. (4)

La démonstration de ce théoréme se fait en trois étapes.

LEMME 1. Si A et B sont des matrices d X d a coefficients réels, on a:

det [ BA _i] =(—1)* |det (A +iB)|*. (5)

Démonstration. 11 suffit de considérer le cas ou les coefficients de A sont des
indéterminées, A est alors une matrice non singuliere. Multiplions les deux
membres par det[d %-]=det A7'P. L’équation (5) est remplacée par
I’équation équivalente:

det[ CI _(_jI]z(—l)d |detI+iC]>? ot C=A"'B. (6)

En remplagant la “ligne” [C, —1] par [C,—I]-C [I,C] le terme de gauche
devient:

det (=1 —C?) = (=1)* det (I + C?) = (—1)* det (I+iC) det (I iC)
= (—1)* |det I +iCP? O

LEMME 2. Si une hypersurface C de C%*' admet aprés un changement
unitaire de coordonnées I’équation suivante au voisinage de 0:

N | =

Za+1~=

d
Y upz;zy +termes de plus haut degré,
bhk=

1

la courbure gaussienne a l’origine est donnée par:

13...(2d-1)

_1\d . [Fe=
(=1 et w|* ===

K = adK (7)

MLa démonstration de la relation (4) m’a été fournie par Milnor aprés une discussion a
PUniversité de Warwick. Elle permet d’éviter de démontrer le théoréme 1 par un long calcul de
géométrie riemannienne réelle.
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Démonstration. Posons u,; = A +iB. La forme quadratique Re (z;,,) a pour
matrice: [%5 ZR]. Le déterminant de cette matrice est (—1)¢ |det u;|*.
Remplacer z,., par ez, ne change pas la valeur de ce déterminant. Fenchel

démontre que la moyenne de det Re (e°z,.,), lorsque e'°z,., décrit une fibre du
fibré normal unitaire est

1.3...(2d-1)
24...2d

K,

ce qui démontre la formule (7), cf. [2].
La derniere étape démontre le

THEOREME. C* et K gardant la méme signification, I’application de Gauss
complexe:

Yc:C*— Gy
vérifie:
24...2d
* d . .
a dp) =(—1)*K dv, oua, =
v (dp)=(-1) 47135...(2d-1)

Démonstration. Choisissons comme précedemment des coordonnées locales.
vc envoie le point de C de coordonnées z,,...,z; sur le point de G, de
coordonnées

0Z4+1 0Z441

oz, oz,

La matrice jacobienne complexe de cette application est [u;, ] tandis que la

matrice jacobienne de I’application réelle correspondante est [*; 2] et a donc
pour déterminant

13...(2d-1)
24...2d

|det uy |* = (—1)¢ K=(-14a;'K.

Il suffit maintenant d’un dernier lemme pour démontrer le théoréme 1.

LEMME

[ ariki=| scnBm
C, NB,

Gy
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Démonstration. L’ensemble des points critiques de D’application vy¢ est
précisément I’ensemble des points ou la courbure gaussienne est nulle. Soit
Y = yo{x | K(x) =0} I’ensemble des valeurs critiques de yc. Le théoréme de Sard
implique que Y est de mesure 0. L’ensemble yc'(Y)—{x | K(x) =0} est aussi de
mesure nulle puisque c’est un ensemble de points réguliers de y¢ dont I'image est
contenue dans I’ensemble de mesure nulle Y. On a donc, puisque

v (V) ={x | K(x)=0}U{yc'Y —{x | K(x)=0}},

[ k=] K= Kl
C, NB, C, NB.—{x | K(x)=0} C,NB.—vc'(Y)

Soit
A,={HeG,-Y|r(C,NB_,H)=i;i>0;ieN}.

On a:

oo

J’ a;“KI=Jv§dp=ZJ v*dp=zij dp
C\NB i v l(A) A

A € =1

7(C\NB, H)= I 7(C\NB,, H) U

Gy

= i§1 L 7(G.NB, H)= L

a—Y

En reportant ce résultat dans la formule (2'), on obtient I’énoncé du théoréme 1.

O
III. Courbes Algebriques
L. Ness démontre dans sa theése le résultat suivant:

THEOREME [9]. Soit C une courbe de degré de & de P,(C) admettant (0,0, 1)
comme point singulier isolé, C, une suite de courbes de degré & non singuliéeres qui
convergent vers C,.

P,(C) est muni de la métrique kaehlérienne usuelle et C; de la métrique induite
par Uinclusion C;<P,C. La courbure gaussienne de C; munie de cette derniére

métrique est notée K.
Alors

lim Inf K = —o,

i—se G
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Nous pouvons a partir du théoréme 1 retrouver ce résultat pour les courbes C,
de P,(C) d’équation f(x, y)=A dans la carte affine z#0.

Proposition. lim, _,o Infq K = —.

En effet (cf. [9]), le théoréeme de Wirtinger permet décrire, si dv est la forme
volume induite par le plongement C, = P,(C) muni de sa forme volume
canonique:

—l-j du=lj' dv =4.
™ Jc ™ Jc

o A

Comme lim,_,fc,~p,dv=0 et que C, converge uniformément vers C, a
I’extérieur de la boule B, on a:

lim [sup J dv] =0
€e—0 A C,NB,

et donc, pour la forme dv induite par le plongement C, <> C?> muni de sa forme
volume canonique, on a aussi:

lim [sup J dv] =0.
e—0 A C, NB,

Donc, si K; est la courbure gaussienne provenant du plongement C, => C?:
1 = 400
i [sup K

puisque

[ Kl=tu®+a®le,0
G,

AnBc

Enfin, Linda Ness démontre I’inégalité [6; p. 8]

K=K,+2 ()
K,=0.

@Linda Ness appelle courbure gaussienne le nombre (—1)¢ |det u, |? de notre Lemme 2.
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En effet, 1a courbure gaussienne de la courbe C d’équation dans la carte affine
z#0, y=y(x), pour la métrique induite par I'inclusion de C dans P,(C) s’écrit:

o QPP |y
K(xa Y(X))'—2 ( dy 2 dy 2 \) dxz ([9], P. 6)
x—~3 =+ =1 +1
dx dx

La courbure gaussienne au point x, y(x) de C pour la métrique induite sur C par
le p linclusion dans C*> muni de la métrique plate est:

d?yl?
dx? X
Ki(x, y(x))=— FME ) (91, p.8)
1+ |2 )
dx
L’inégalité

LHyP+E 1
dy|? dy |> dy
ax| a1

2
1+

implique I'inégalité cherchée: K—-2=<K, <0.
On a donc lim, _,, Infq K = —.

Remarque. Toujours en s’appuyant sur les travaux de L& Dung Trang et
Teissier, on peut redémontrer géométriquement par des méthodes analogues des
formules de Plucker [3].

@ cf 1a note au bas de le page précédeute.
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