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Comment. Math. Helvetici 54 (1979) 6-16 Birkhâuser Verlag, Basel

Courbure et singularités complexes

Rémi Langevin

Soit C une hypersurface complexe algébrique d'équation /(£0, eu • • • > ù)= 0

de dimension complexe d et admettant l'origine comme point singulier isolé. Soit
Cx l'hypersurface d'équation / A.

N. A'Campo m'a suggéré d'interpréter les propriétés de courbure de Cx au

voisinage du point singulier.
Le plongement Cx cCd+1-R2d+2 munit Cx d'une métrique; soit dv la forme

volume de Cx, K est la fonction qui vérifie la formule de Gauss-Bonnet
généralisée:

Kdv c2dx(M)

pour toute variété M de dimension 2d, où c2d — (2ttYI\ 35 <2d-n est la moitié du
volume de la sphère S2d. Dans la suite de l'article nous appellerons K simplement
"courbure gaussienne".

Quand il n'y a pas d'ambiguité, nous omettrons la forme volume dans une
intégrale.

A chaque point singulier isolé, B. Teissier associe les nombres ii(d+1\ fx(0).

Le premier, /Lt(d+1) est le nombre de Milnor de la singularité (cf. [6]); Teissier
démontre que le nombre de Milnor jll(i) de la singularité obtenue en coupant C

par un i-plan Vt passant par l'origine est constant lorsque W évite un fermé
analytique.

Teissier donne aussi dans l'appendice de [11] une interprétation géométrique
de la somme it(d+1) + jjiid) qui est le point de départ de notre travail.

Dans [7], Milnor relie une intégrale de courbure au nombre de points critiques
de projections orthogonales sur des droites réelles. A l'aide de méthodes

analogues, nous démontrons le résultat suivant:

THEOREME 1.

lim lim
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où B€ est la boule de centre 0 et de rayon e.

(Cette intégrale est égale à l'intégrale J |K| car la fonction (~l)dK est positive sur
une hypersurface complexe).

La démonstration du théorème 1 se fait en deux étapes.

I. Courbe polaire associée a une direction d'hyperplan

(cf. [9], [11], [12] et figure 2).

Soit H un hyperplan complexe contenant l'origine. T(QflBe, H) est le
nombre de points, fini pour presque tout H, où l'hyperplan tangent à CxDBe est

parallèle à H. On note Gd (ou Gd(C)) la grassmannienne complexe ensemble des

hyperplans de Ca+1 contenant l'origine.
Soit (£0,..., &) un système de coordonnées locales de (Cd+1, 0) tel que H ait

pour équation Ço 0. Pour que l'hyperplan tangent à Cx en un point régulier x
soit parallèle à H, il faut et il suffit que grad (/- À)(x) soit un vecteur orthogonal à

H, c'est-à-dire que:

(1)

Soit FH la courbe complexe définie par (1). Soit (Cx, FH)X l'indice d'intersection

de Cx et FH au point x. Posons

r(CxnB€,H)= Y (Q,TH)X.
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Pour presque tout H, on a : t(Q H B€, H) card (FH nCkD Be).
La courbe TH coupe la courbe singulière C en 0. Dans [8], Teissier démontre

le résultat suivant:

THEOREME 2. Il existe un fermé analytique strict de dimension d — l:
Gd, tel que, pour tout hyperplan H appartenant à Gd-X, le nombre d'intersection
en 0eCd+1 de la courbe FH et de Vhypersurface singulière C est jLi(d+1)

où jLt(d+1) est le nombre de Milnor de la singularité (C, 0) et fi(d) le nombre de

Milnor de Vintersection (C H H), 0) <= (H, 0) qui est aussi une hypersurface admettant

Vorigine de H comme point singulier isolé.

Remarque. La notation |n(d) a un sens car ce dernier nombre ne dépend pas du
choix de HeGd-X [11]. Rappelons que le nombre de Milnor de la singularité
isolée 0 de l'hypersurface d'équation /(£0, ...,&) 0 est la dimension

/d+1)Le théorème de Teissier implique que, lorsque À tend vers l'origine, (jll
ju,(d)) points d'intersection de FH et Cx tendent vers l'origine (cf. [11]; donc, pour
un hyperplan H appartenant à Gd-X:

lim lim t(Cx H B€, H) j
c—>O À—»-0

(d) (2)

Figure 2
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Avant de poursuivre la démonstration du théorème, donnons quelques exemples:

a) L'originie n'est pas singulière, on a jx(d+1) jx(d) O; pour toute direction

d'hyperplan qui n'est pas celle de l'hyperplan tangent en 0, on a, pour e assez

petit t(C H B€, H) 0 et donc pour e et A assez petits t(Cx H Be, H) 0.

b) Considérons la courbe de C2 d'équation x2-y2 0; on a:

et donc

La trace réelle de la situation est, pour À réel,

c) pour trouver /x(2) + /Lt(1) p, on peut considérer la singularité xp-y2 0.

Considérons sur Gd(C) la densité kaelhérienne usuelle qui est la mesure
proportionnelle à la mesure image de la mesure de Lebesgue de S2d+1, sphère
unité de R2d+2^cn+1 par la projection

zn->(espace complexe orthogonal à l'espace complexe engendré par z).

Pour cette mesure, le volume total de Gd est: vol(S2d+1)/vol(fibre) TTd/d\.

Les hypersurfaces Cx sont de degré 8 degré (/), elles sont donc toutes de
classe majorée par 8(8-l)d (cf. [9]). En effet, les points où le plan tangent à C
est, par exemple, horizontal sont solution des équations:

x

Figure 3
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et, par le théorème de Bezout, sont au nombre de 8(8 - l)d au plus. On a donc:

r(CxnB€,H)<ô(Ô-l)a.

Nous pouvons donc appliquer le théorème de convergence dominée de

Lebesgue appliqué à la fonction dépendant de À :

et donc:

lim f t(Cx D Be, H) f limt(Cx n Be, H).

Appliquons une deuxième fois ce théorème à la fonction dépendant de e:

lim f lim t(Q H Be, H) f lim lim r(Q H Be, H)
e—*0 Jq A—»-0 Lj e—>0 X—»>O

et donc l'égalité (2) implique que

limlimf T(CxnB€,H) (7rd/d!)[/x(d+1) + |Lt(d)] (2f)
6^o x-*o JGd

II. Application de Gauss complexe

On sait que pour une hypersurface réelle M2p cR2p+1 l'application de Gauss

qui, à un point, fait correspondre la direction normale à M au point a pour
jacobien la courbure gaussienne de M en ce point.

Plus généralement, Fenchel [2] calcule la courbure gaussienne d'une sous-
variété de dimension paire immergée dans l'espace euclidien RN. Ce calcul a un
résultat simple si la sous-variété est une hypersurface complexe.

Soit yc'C^> Gd l'application qui, à un point régulier x de C* C — {points
singuliers}, fait correspondre l'hyperplan complexe tangent en x à C.

On a alors, si dp est la forme volume de Gd et dv celle de C:
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THEOREME [Milnor(1)].

(-l)dKdv l3254

La démonstration de ce théorème se fait en trois étapes.

LEMME 1. Si A et B sont des matrices dxd à coefficients réels, on a:

det [fiA BA ] (-1)" |det (A + iB)\2. (5)

Démonstration. Il suffit de considérer le cas où les coefficients de A sont des

indéterminées, A est alors une matrice non singulière. Multiplions les deux
membres par det^"1 A-l]==det A"1]2. L'équation (5) est remplacée par
l'équation équivalente:

det P ^ 1 (-l)a |det J+ iC|2 où C A1B. (6)

En remplaçant la "ligne" [C,-1] par [C,-I] — C [/, C] le terme de gauche
devient:

det (-/ -C2) (-l)d det (I + C2) (-l)d det (1+ iC) det (I- iC)

(-l)d|detI+iC|2

LEMME 2. Si une hypersurface C de Cd+1 admet après un changement
unitaire de coordonnées Véquation suivante au voisinage de 0:

1 d

Zd+i - ~ X UjkZjZk + termes de plus haut degré,
2hk l

la courbure gaussienne à l'origine est donnée par:

(-1)" |det ^l2 1fj^^pK «aK (7)

(1)La démonstration de la relation (4) m'a été fournie par Milnor après une discussion à

l'Université de Warwick. Elle permet d'éviter de démontrer le théorème 1 par un long calcul de
géométrie riemannienne réelle.
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Démonstration. Posons u]k=A + iB. La forme quadratique Re(zd+1) a pour
matrice: [^B IA]. Le déterminant de cette matrice est (-l)d |det ujk|2.

Remplacer zd+1 par el0zd+l ne change pas la valeur de ce déterminant. Fenchel
démontre que la moyenne de det Re (el6zd+1), lorsque el6zd+1 décrit une fibre du
fibre normal unitaire est

2.4... 2d '

ce qui démontre la formule (7), cf. [2].
La dernière étape démontre le

THEOREME. C* et K gardant la même signification, l'application de Gauss

complexe :

yc:C*-+Gd

vérifie:

2.4... 2d
oùad 1.3.5... (2d-l)

Démonstration. Choisissons comme précédemment des coordonnées locales.

7C envoie le point de C de coordonnées z1?..., zd sur le point de Gd de
coordonnées

La matrice jacobienne complexe de cette application est [uhk] tandis que la
matrice jacobienne de l'application réelle correspondante est [^B a] et a donc

pour déterminant

|det u,J2 (-l)d 1324 ' 031} K (-l)daâ'K

II suffit maintenant d'un dernier lemme pour démontrer le théorème 1.

LEMME
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Démonstration. L'ensemble des points critiques de l'application yc est

précisément l'ensemble des points où la courbure gaussienne est nulle. Soit
Y yc{x | K(x) 0} l'ensemble des valeurs critiques de yc. Le théorème de Sard

implique que Y est de mesure 0. L'ensemble 7c1(^)~{^ I K(x) 0} est aussi de

mesure nulle puisque c'est un ensemble de points réguliers de yc dont l'image est

contenue dans l'ensemble de mesure nulle Y. On a donc, puisque

f
cxnBe-{x |K(x)=o}

Soit

AE {Hg Gd - Y | t(Cx n JBe, H) i; ï >0; î

On a:

f a-d^K\=\y*dp=Z f 7*dp

îf T(Cxns€,H)=f T(cxnB.,H)=f x(cxnB£,H) n
i l •'A, JGd-Y JGd

En reportant ce résultat dans la formule (2'), on obtient l'énoncé du théorème 1.

n

III. Courbes Algébriques

L. Ness démontre dans sa thèse le résultat suivant:

THEOREME [9]. Soit C une courbe de degré de 8 de P2(C) admettant (0, 0,1)
comme point singulier isolé, C, une suite de courbes de degré 8 non singulières qui
convergent vers Co.

P2(C) est muni de la métrique kaehlérienne usuelle et Q de la métrique induite

par V inclusion C,c:P2C. La courbure gaussienne de Q munie de cette dernière

métrique est notée K.
Alors

lim Inf K —oo.
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Nous pouvons à partir du théorème 1 retrouver ce résultat pour les courbes CK

de P2(C) d'équation /(x, y) À dans la carte affine z^O.

Proposition. limx—o Mq K ~°°-
En effet (cf. [9]), le théorème de Wirtinger permet décrire, si dv est la forme

volume induite par le plongement CX*=+¥2(C) muni de sa forme volume
canonique:

-f dv=-[ dv ô.
* Jc0 ÎT JCx

Comme lim€_»0 5conBm dv 0 et que Cx converge uniformément vers Co à

l'extérieur de la boule B€, on a:

lim sup dv \ 0
€-° L x JCinB€ J

et donc, pour la forme dv induite par le plongement Ck ^» C2 muni de sa forme
volume canonique, on a aussi:

#

lim sup dv 0.
«-o L a JCxnBc J

Donc, si Kx est la courbure gaussienne provenant du plongement Ck ^> C2:

r 1
lim sup XJ +oo

puisque

Enfin, Linda Ness démontre l'inégalité [6; p. 8]

2 (2)

(2)Linda Ness appelle courbure gaussienne le nombre (—l)d |det ujk|2 de notre Lemme 2.
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En effet, la courbure gaussienne de la courbe C d'équation dans la carte affine

y y(x), pour la métrique induite par l'inclusion de C dans P2(C) s'écrit:

K(x,y(x)) 2- -M2)3

dy
dx ?0

d2y

dr ([9], p. 6)

La courbure gaussienne au point x, y(x) de C pour la métrique induite sur C par
le p l'inclusion dans C2 muni de la métrique plate est:

K1(x,y(x))= —
dx

1 +
dy
dx

([9], p. 8)

L'inégalité

dy
dx \ dy

dx

2
1 +

dy
dx

implique l'inégalité cherchée: K-2<KX'.
On a donc li

0.

Remarque. Toujours en s'appuyant sur les travaux de Le Dung Trang et
Teissier, on peut redémontrer géométriquement par des méthodes analogues des

formules de Plùcker [3].
(2) cf la note au bas de le page précédeute
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