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Twisted Hopf Algebras

by ReNeE RucHTI

Introduction

Let R be a commutative ring with unit and let A be a commutative R-algebra.
Let L be a twisted Lie algebra over A (see 3.1). As R-Lie algebra, L has a
universal enveloping algebra, UrL, as twisted Lie algebra over A it has a twisted
universal enveloping algebra, Ug_ L. It is well known that UiL is a Hopf algebra
with antipode, [3], while one easily realises that this is, in general, not true for
Ur_aL. However, there are certain parallels between UgxL and Ug_4,L pointing
to a Hopf algebra-like structure on Ug_,L. First of all, the diagonal A : UgL—
UrL®g UL induces a canonical L-module structure on the R-tensor product
M@z N, of two L-modules M, and N,. If M and N are modules of L considered
as twisted Lie algebra (see 3.10), then there is a similar canonical L-module
structure on M®,4 N, [4], so there should be some diagonal-like map for Ug_4L.
If a is the antipode of UgL, then the map V=(1®a) o A induces a canonical
L-module structure on Homg(M,, N,). There is a similar canonical L-module
structure on Hom,(M, N) for the twisted Lie algebra L, which points to the
existence of some sort of V-map for Ug_,L. As a main result of this paper we
show that mappings A and V exist for Uz _,L with the appropriate properties, see
3.7. We call the resulting structure on Ug_,L twisted Hopf algebra.

In [7], Sweedler uses twisted Hopf algebras, or x4 -bialgebras, as he named
them, to classify algebras over A for commutative A. Takeuchi obtained Swee-
dler’s theory for non-commutative A, [8]. In our paper, we don’t deal with
classifications of algebras. Our approach to twisted Hopf algebras is via twisted
Lie algebras. In particular we are interested in the question of when such a
twisted Hopf algebra is isomorphic to Ug_,L for some L, see 4.20.

In the paper we assume the reader to be familiar with ordinary Lie algebra
and Hopf algebra theory. Basic material for developing the theory of twisted
Hopf algebras is presented in chapter 1. It can be found in greater detail and with
proofs in [7] and [8]. In chapter 2 we define twisted Hopf algebras and prove that
the category of modules of a twisted Hopf algebra (co-commutative and admitting
a V-map) is a closed abelian category, see 2.11. In chapter 3 we show that the
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660 RENE RUCHTI

twisted universal enveloping algebra of a twisted Lie algebra is a twisted Hopf
algebra admitting a V-map. In chapter 4 we introduce some homological machin-
ery to obtain a Poincaré-Birkhoff-Witt theorem for twisted Lie algebras and,
above all, to investigate the relationships of twisted Hopf algebras with twisted
Lie algebras using primitive elements.

One word about the notations. All our rings and algebras have units and all
modules are unitary. Injective and surjective morphisms are denoted by the

. _ iy .
arrows > and —», respectively. We also use the notations —— and =% to

denote canonical inclusions and canonical projections.

1. Preliminaries

We list here some basic material needed in this paper. More details, in
particular proofs, can be found in [7] and [8]. We adopt the notations of [7] and
[8].

Let R be a fixed commutative ring with unit. We denote the category of
R-modules by R-mod. Unadorned Hom, End and @ mean R-morphisms, R-
endomorphisms and tensor product over R, respectively.

Let A be a fixed commutative algebra over R. We denote the category of left
A-modules by A-mod. An A-bimodule is an R-module M carrying a left and
right A-module structure which commute with each other, i.e. for a,a’'€ A,
meM, (a-m)-a’=a-(m-a’). The category of A-bimodules is denoted by
A-bimod. Via the ring map R— A defining the R-algebra structure on A we
consider A-mod and A-bimod as subcategories of R-mod. M° denotes the
opposite A-bimodule of M. M° is R-isomorphic with M via me M—>m®e M°
with A-bimodule structure defined by a - m°-a’'=(a’'-m-a)’, a, a’'e¢ A, me M.
For M e A-bimod, the left and right A-module structure is indicated by .M and
M,, respectively, [7].

Let M, Ne A-bimod. Let

M,®N= J MK N (M@AN= j- Mx®xN>
be the quotient R-module of M@N by the R-submodule generated by the
elements am@n—-—m@an (ma@n—-—m@an), me M, ne N, ae A. As R-module,
M®,N=M°,®N. Define

u

MXAN=J”‘J xMu®xNu=J- Mu A®Nu={z mi A® n’ie

M,®N

Z ma @ n; = Z m;, Qna,Vae A},
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the left (right) A-module structure being the xA-module structure (uA-module
structure). X, defines a bifunctor X, : A-bimod x A-bimod— A-bimod. For
f:M—>M' g: N—>N'in A-bimod, f®g induces a morphism fxg: MX,N—
MXx N’ in A-bimod, [7,(2.3)]. The twist map M,® N—>N,®M induces an
isomorphism “‘twist”: MX,N—>NX,M in A-bimod. The product X, is not
necessarily associative. However, for M, N, P € A-bimod, define

MXANXAP=J' MuA®NuA®Pu

with A-bimodule structure being given by ,(MX,NX,P), = M X, NX,P.
Then there are canonical maps in A-bimod, in general not injective,

a:(MX,N)X,P>MX,NX,P
a' :MX,(NX,P)>MX,NX,P.

Later on, we shall have to consider

u

(MOXAN)0=juJ qu®xNu=J' uM®ANw

the left (right) A-module structure being the uA-module structure (xA-module
structure). Let

Z(M N: P)=j ’ uMu®AN®AuPU

with left (right) A-module structure being given by .M (M,). There is a canonical
map in A-bimod (compare [8, §6]).

ﬁ : (MOXAN)O xAP—_)Z(My N: P)'

Let M,N, P, Qe A-bimod. The twist map NQP—PQ®N gives rise to
¢:,(MX,N),®.Q— [ MRS,PR® NQ® ,Q which induces

E:(MX,N)®,(PX,Q)—>(M®,P)Xx,(NQ,Q), [7,(2.10)].

Let M, Ne A-bimod. Hom, (M, N) denotes A-linear morphisms from M to
N, where both M and N are considered as left A-modules. For M e A-mod,
End M has A-bimodule structure defined by a-¢:mw—>a-:¢(m), ¢a: m—
e(a-m), ac A, pcEnd M, me M. In particular, End A is in A-bimod. For
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M e A-bimod, there are maps in A-bimod

6:MxX, EndA—>M

Lima®e—L (1) - m,

0 :EndAX, M—>M

L ¢a®m—Y, ¢i(1) - m,
[8,2.2].

2. Algebras, coalgebras and twisted Hopf algebras

2.1 DEFINITION. An algebra over A is a pair w: A— B in the category
R-alg of R-algebras. Algebras over A are denoted by (B, m, u) or simply B,
where m : B®, B— B denotes multiplication. There is a natural A-bimodule
structure on B defined by left and right multiplication. Algebras over A form a
category which will be denoted by (R— A)-alg. For (B, m, ) in (R— A)-alg,
(B®, m°, 1°) denotes the opposite algebra, where u°(a)=(u(a))’, m°(b°®,b"°) =
(m(b'®,b))°. The underlying A-bimodule of B° is the opposite of the underlying
A-bimodule of B.

Let M e A-mod. The A-module structure on M is given by an R-algebra map
pu : A—>End M. Hence End M is in (R— A)-alg.

Let B’ and B" be in (R— A)-alg. By [7,(4.1)], B'X,B" is in (R—A)-alg in a
canonical way. Siminarily, (B x, B")°e (R — A)-alg. The X ,-product preserves
morphisms in (R — A)-alg, [7, (4.2)].

For M, Ne A-mod, there is a canonical morphism in (R — A)-alg

End M X, End N—End (M,®N) 2.1)

which is induced by End M®End N—End (M@ N)->Hom (M®N, M,&® N).
The R-algebra map ((End N)°® End M)’—End(Hom(M, N)), (¢°®¢)°—
(f>yofep), ¢€EndM, ¢yeEndN, feHom(M,N), followed by
End (Hom(M, N))>Hom (Hom, (M, N), Hom (M, N)) induces an (R-—-A)-
algebra morphism

((End N)°x 4, End M)°— End(Hom 4 (M, N)). (2.2)

The proofs of (2.1) and (2.2) are straightforward.
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2.2 DEFINITION. An augmentation of an algebra B over A is a pair
€ :B—>End A in (R— A)-alg. This is the same as giving a left A-morphism
€,: B— A such that g, c w=id,, &,(b- b")=¢,(b " &,(b’)). Then &,(b) =€e(b)(1),
[7, p. 108]. The augmentation ideal I(B)=ker ¢, is only a left ideal in B.
Augmented algebras form a category, denoted by (R — A)-aalg. Clearly, End A €
(R—A)-aalg. '

2.3 DEFINITION. For Be(R—A)-alg, a left B-module is a pair ¢ :B—
End M in (R—A)-alg, where M e A-mod. We write (M, ¢), or simply M, for
this pair. This definition is equivalent to giving a map B&®&, M—M in A-mod
with the usual associativity properties. A morphism of B-modules is a inap
¢ :M— N in A-mod such that

End M D

B/ \Hom (M, N)

\EndN/“’:

commutes. The category of B-modules is denoted by B-mod. This is an abelian
category. If B is augmented; End A € B-mod.

2.4 DEFINITION [8,4.1]. A coalgebra is a triple (C, 4, €), where Ce A-
bimod, the diagonal A: C—CX,C and the counit £ : C—End A are in A-
bimod satisfying

Ax1
CXAC E— (CXAC)XAC a
C Cx,Cx,C
thACﬁCxA(CxAC) *

ex1 CXAC\‘TE
End Ax,C 4 CxX,End A.

o\AC./e

We write
A(c)=%c1)a®cq), ceC.

C is called co-commutative, if
a4 A

C
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commutes. A morphism of coalgebras from (C', A’, ¢’) to (C", A", €") is a map
¢ : C'—>(C"in A-bimod such that A” c o = (¢ X @) © A’, £" o ¢ = &'. We denote the
category of coalgebras by (R— A)-coalg. Clearly, Ae(R— A)-coalg.

Let (C', A", &), (C", A", e")e(R—A)-coalg. On C=C'®,C" we define the

diagonal A as the composite of C'®, C"-f'—el‘-‘-;(C'x AC)R®, (C"x,CNS

(C"®.C)XA,(C'®,C") and the counit as the composite of
&R, e” m .

CR® ,C"——>End A®, End A= End A. (C 4,¢) is in (R— A)-coalg, [8,

4.7].

2.5 DEFINITION. A co-augmentation of (C,A,¢) is a pair w: A—C in
(R — A)-coalg. The category of co-augmented coalgebras is denoted by (R— A)-
ccoalg. It is closed under the tensor product defined above.

2.6 DEFINITION. A twisted Hopf algebra is a 5-tuple (H, m, u, 4, ), where

1) (H, 4, &, u)e (R~ A)-ccoalg

2) (H, m, u, e) e (R— A)-aalg

3) The multiplication m : HX,H—H is in (R— A)-coalg.
Conditions 1), 2) and 3) are equivalent to 1), 2) and

3") The diagonal A:H—H X, H is in (R — A)-alg.
H is called co-commutative, if the underlying (R — A)-coalgebra is co-commutative.
A morphism of twisted Hopf algebras is a map which is both in (R — A)-aalg and
in (R—A) ccoalg. We denote the category of twisted Hopf algebras by (R — A)-
Hopf. A left H-module is a left module of the underlying (R — A)-algebra of H.

For R = A this definition yields the familiar Hopf algebras, [3]. The reason for
the notation “twisted Hopf algebra” instead of ‘X , -bialgebra” as in [7] and [8] is
that the twisted universal enveloping algebra of a twisted Lie algebra is a twisted
Hopf algebra, see section 3 below, while the universal enveloping algebra of an
ordinary Lie algebra is an ordinary Hopf algebra, [3].

2.7 Example. The smash product. Let K be a co-commutative Hopf algebra over
R. Let A be a commutative K-module algebra, [6, p. 153]. As left A-module, the
smash product A#K is AQK. Define A : A#K—(A#K) X, (A#K) by a#fk—
Y a#tkyy a®1#k,,. Then A#K is in (R— A)-Hopf, [7,p. 117].

The A-map implies the construction of a tensor product in H-mod as follows:
Let (M, ¢), (N, ¢) € H-mod. Define ¢ ®@¢ : H>End(M,® N) as the composite

of HS HXAH-ff-‘—’; End M x, End N—End(M ,® N), the last arrow being the
map (2.1). That iS, h(mA® n) = Z (Ph(l)(m)A®‘lfh(2)(n), he H, me M ne N.
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(MAQN, ¢® ) is called the tensor product of (M, ¢) with (N, ¢). Note that this
product is associative. Consequently, H-mod is a monoidal category, the left and
right unit being (A, ¢). If H is co-commutative, the twist map M,QN—>N,QM
induces an isomorphism in H-mod (M,®N, ¢ Q@¢)—> (N, M, y@¢).

We thus obtained a functor ,® N from H-mod into itself. A suitable
generalisation of “antipode” to the case of twisted Hopf algebras provides the
right adjoint to this functor.

2.8 DEFINITION. Let (H, m, u, 4, ) (R— A)-Hopf. A V-map is a morph-
ism V: H—>(H°x, H)® in (R— A)-alg such that the diagrams

H°x sH2= (Hx 4H)°X s H % Z(H°, H, H)
IVO ll()@m
H° —> H°x,A —% H'®,H
Hx, HZS (Hx ,Hx . H 5 Z(H, H, H)
IA 11®m
H —> H®,A —5 H®.H
commute. Similar to 2.4 we write
V(h) =Y h'"®,h®, he H.
Twisted Hopf algebras admitting a V-map form a category, denoted by (R— A)-
aHopf, the morphisms being maps ¢ : H'— H" in (R — A)-Hopf such that V' o ¢ =
(7% @)’ V.

The V-map generalises antipodes of ordinary Hopf algebras in the following
sense:

2.9 Example. Let R=A and let H be an ordinary Hopf algebra over R with

antipode a. Thus a : H— H is an algebra antimorphism, a(h - h') = a(h’) - a(h),

such that m e (1®a)cA=pce, m:-(a®1)- A=pu o & Define the V-map by
V=(1Qa) ° A.

It is easy to see that this V satisfies 2.8.

2.10 Example. Consider the smash product, 2.7. Denote by Ax the diagonal of K.
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Suppose a is an antipode of K. Let Vx = (1®a) o Ag. Define V: H->H®, H as
the composite of
1#Ve inc] TOj
A#K—> A#KQK—> A#KQA#K 5 (A#K)® 4 (A#K).
Then V: H— (H°x ,H)°, [7,p.142]. It is left to the reader to show that V

satisfies 2.8.
Sweedler, [7], and Takeuchi, [8], use a somewhat different V-map, called the

Ess. Our V-map is, in some sense, adjoint to the diagonal A. To be more precise,
we construct an H-module structure on Hom, (M, N), (M, ¢), (N, ¢) € H-mod, as
the composite of

v 0% p)0
H—— (H° % \H)* =", (End N)° X, End M)°——> End (Hom , (M, N),

the last arrow being the map (2.2). That is, h(F): mw— Y yhP(F(eh®(m))),
heH, meM, FeHom, (M, N). The adjointness of the A- and V-map is
expressed in the following

2.11 THEOREM. The functors .\ QN and Hom,(N, ) are adjoint, i.e. for
M, N, P e H-mod, there is a natural isomorphism in A-mod Homy(M,® N, P)=
Homy (M, Hom, (N, P)). Therefore, if H is co-commutative, H-mod is a closed
abelian category.

Proof: Let fe Homy(MAo®N, P), i.e. h(f(m,®n))=Y f(hqym @ h;yn). Define
meMw—F, € Hom,(N, P) by F,, (n)=f(m,®n). By 2.8,

(hF,)(n)=% h(F,,(h®n)) =Y hP(f(m ,&h®n))

=YX f(h ym \®hV )k Pn) = f(hm ,®n) = F,,.(n).

Conversely, given me M—F, e Hom,(N, P) such that F,,(n)=(hF,,)(n)=
Y h(F,,(h®n)). Define f : M,®N—P by f(m,®n)=F,,(n). Then, by 2.8,

Zf(h(nm A® h(z)n) = Z(Fh(“m)(h(z)n): ZZh<1>“’(Fm(h<1)‘2’ h(z)n))

=h(F.(n))=h(f(m,®n)). O

3. Twisted Lie algebras

Twisted Lie algebras are studied in [2], [4]. We are concerned here with the
twisted universal enveloping algebra of a twisted Lie algebra and show that this is
a twisted Hopf algebra with V-map.

Let

Der A={¢tcEnd A |£(ab)=£&(a) - b+a - £(b)}

be the A-module of R-derivations of A. This has an R-{ Lie algebra structure by
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defining the bracket as

[£ n)(a) = é(n(a)) —n(&(a)).

3.1 DEFINITION. Let L € A-mod. L is called twisted Lie algebra over A if the
following holds:

1) L is an R-Lie algebra.

2) There exists a morphism of R-Lie algebras and left A-modules ¢ : L—
Der A such that, for all ae€ A, x, ye L, [x, ay]= a[x, y]+ ¢(x)(a)y.
We simply write x(a) for ¢(x)(a). A morphism of twisted Lie algebras is a
morphism L'—L" of R-Lie algebras and A-modules such that

L,_—‘>L"

N

Der A

commutes. The category of twisted Lie algebras over A is denoted by (R—A)-
Lie; clearly, Der A € (R — A)-Lie.

For R=A, 3.1 reduces to the usual definition of the category of R-Lie
algebras. On the other hand, if L—>Der A is the zero map we obtain an A-Lie
algebra, whence A-Lie< (R — A)-Lie.

Consider the category (R— A)-alg. We construct a functor Der:(R—A)-
alg— (R — A)-Lie as follows:

3.2 DEFINITION. Let A—>Be(R—A)-alg. Let
Der(A—B)={({,, b)eDer A®B | ba=ab+¢(a), Vae A}

This is an A-module by setting a - (x, b) = (ax, ab). The bracket is defined by
[(& b), (¢, b)]=(¢ £&],[b, b']). The morphism Der(A— B)—Der A is the pro-
jection onto the first factor. Therefore, Der(A— B)e(R — A)-Lie. A morphism
¢ : B> B" in (R— A)-alg induces a morphism Der(A — B’)—Der(A — B") by
sending (£, b) to (&, ¢(b)). Consequently, Der is a functor.

The functor Der has a left adjoint which is given by the universal enveloping
algebra construction.

3.3 DEFINITION. Let L € (R—A)-Lie. Let TL be the tensor algebra of L
over R. An element x,® -+ + ®x, € TL of degree r is simply denoted by x;...,.
Let J. = TL be the twosided ideal J;, = (x®@y—y®x—[x, y]), x,yeL. UgL =
TL/J; is the ordinary enveloping algebra of the R-Lie algebra L. On TL® A
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define an (R-—A)-algebra  structure by (x,...®a)(y,...,®a’)=
Xi...,.Qay;®y,.. Ra', x,...,, y1...;,€TL, a, a’'e A. Let J,c TL®A be the
twosided ideal defined by J,=(x®a—ax—x(a)), ac A, xeL, and put J=
Jo+J. @ A. This is an ideal in TL® A. The twisted universal enveloping algebra
Ur_aL of L is defined to be

Ur_AL=TLQ®A/J.

Ug-_a is a functor from (R — A)-Lie into (R— A)-alg.

3.4 Remark. Ugx_,L can also be obtained by T*(ADL)/I, where T"(ADL)
denotes the elements of positive degree in the R-tensor algebra T(A® L) and I is
the ideal I=(a®a’'—aa’, a®@x—ax, x@a—-a®x—x(a), xQy - y®x—[x, y)), a,
a'eA, x,yeL, [4]

3.5 PROPOSITION. Ug_, is left adjoint to Der.

Proof: Similar to the untwisted case. [

3.6 Remark. We can restate 3.5 in terms of the universal property of Ug_,L. Let
¢ : L— B be a morphism of left A-modules and R-Lie algebras such that (¢(x),
é(x))eDer(A—B), ¢ being the map in 2), 3.1. Then there exists a unique
morphism Ugi_,L— B in (R — A)-alg such that

i
Ug-aL
commutes.

In case R= A, Ug_,L is just the ordinary universal enveloping algebra of L.
Der(R— B) reduces to the Lie algebra structure on B coming from the associa-
tive structure. 3.6 is just the familiar universal property of Ug_,L.

It is well known that, the ordinary universal enveloping algebra UgL of an
R-Lie algebra is a co-commutative Hopf algebra with antipode, [3]. Our main
result of this section is that the twisted universal enveloping algebra Ugz_,L of a
twisted Lie algebra is a twisted Hopf algebra admitting a V-map. In the special
case L = Der A, where L satisfies an additional condition (e.g. if L is projective as
A-module) Sweedler showed that Ug_,(Der A) is a twisted Hopf algebra with
Ess, [7, 18.5].
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3.7 THEOREM. Let Le(R—A)-Lie be arbitrary. Then Ugx_,L is a co-
commutative Hopf algebra with V-map.

Proof: On TL®A we define an augmentation £ : TLQA—>End A by
e(x,...,®a)a)=x,(- - (x,(aa")). We simply write x,...,(a) for e(x,...,®1)(a).
Since x € L acts as derivation, e(x®a — ax — x(a))(a’) = x(aa’)— ax(a")— x(a)a’' =
0. Furthermore, e(x®y—yRx—[x, y)®a)(a')=x(y(aa'))—y(x(aa))—
[x, y](aa)=0. By definition, € is an algebra map. Hence, ¢ vanishes on J.
Therefore, we obtain an algebra map £: Ug_,L—End A.

Let x,...,a denote the image of x,...,@a under the projection TLQ®A—
Ugr_AL. An easy induction argument shows that

X,...,a= Z Xipo-a{a@) xi . (3.1)
i< - - <ip
ip+1< LKL 4 &

Frequently, we omit the indices under the summation symbol.
The tensor algebra TL has a diagonal A, : TL—>TL®TL defined by

Ap(xy... )=TI_, (x®1+1®x)= Y  x,.,....®x;,. . ...

i< - <ip
1< - - <i

A, is co-associative and co-commutative, thus defining an R-Hopf algebra struc-
ture on TL. A, induces the diagonal, A;, of the R-Hopf algebra UgxL = TL/J;.

incl

Consider the composite, A;, of the maps TL®AA—@—1>TL®TL®A——>
TLRAQRTLRA £ Ug_aLA®Ugx_,L. A, is left and right A-linear. By (3.1),
Al(xl e ,®a) ‘ a, =

Al(xl...,®aa')=z xip+1...i'A®xi1_”ipaa,=

ZZ xip“ e irA®xqu. .. ip(a,) : xil...iqa =

ZZ xiqﬂ...ip(a')‘xi“l...i,A@xil...iqa:

Z Xii--i @ a®x;,....a, whence A, : TLQA—>Ug_,L X, Ug_4L.
A, is an R-algebra map. This is clear for the restriction of A, onto TLc<
TL®A. Since A, is left and right A-linear, A,((x,...,®a)(y;...,®a’))=
A;((x;...,91)(ay;®y,....Q01)-a'=4,(x,...,81)- A,(ay; R y,...,®1)-a’'=

A(x,...,Qa)  A(y,...,®a’). Therefore, A, is an R-algebra map. Since A4,
induces the diagonal on TL/J, it follows that J, ® A cker A,. By definition,
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A, (x®a—-ax®1—-x(a)=x,Ra+1,Q®xa—ax,®1-1,Qax—x(a)=0. There-
fore, Jo< ker A, and A, induces

A:Uzg_ AL—>Ug_oLX,Ug_AL.
The remaining conditions for Ug_,L to be in (R— A)-Hopf are now easily
verified and will be left to the reader.

In order to define the V-map, let a : TL— TL be the anti-algebra morphism
generated by a(x)=—x, xe L. Let Vy=(1®a) - A,. We have V(x)=x®@1-1Qx,
xe€L, Vo(x1...,)=x1 - Vo(x5...,)—Vo(x,...,) - x;. Let V, be the composite

1@twist

TLRA-S TLRTLR® A2, T ® A @ TL >
TLRARTLR®ALS Uy L, L®,Ug_4L.

It follows that
Vl(xl - ,®a) =X Vl(xz e ,®a)—V1(x2 . ,®a) * X3 (3.2)

Let u=x,...,®@a and x € L. By induction on r,

(Vi(xu))a'=xV,(u)a' -V (u)xa' =xa'V,(u)—a'V,(u)x =V (u)x(a’)

= a'(xV,(u) =V, (u)x) + x(a)V,(u) = Vy(u)x(a’) = a'V,(xu),

so that V, : TL@® A— ((Ug_oL)° X, Ug_oL)°. From this and (3.2) it follows that
V, is left and right A-linear and that it vanishes on J,. Since V, vanishes on J; it
follows that V, vanishes on J; ® A hence inducing

V: Ug-aL—=((Ug-aL)°X s Ur_,L)°.

The conditions in 2.8 hold sincs, essentially, they hold for A, and V,. [

3.8 Remark. We point out that, in general, V is not induced by a map
Ugr_AL— Ug_AL in the sense of 2.9.

3.9 Example Let L,—Der A be an R-Lie algebra morphism. On L=AQ®L,
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define a bracket by
[a®x, a'®@y]l=aa'®[x, y]+ax(a)®y—a'y(a)®x.

L is a twisted Lie algebra called the induced twisted Lie algebra, [2, §3]. Let
K = UgL, be the universal enveloping algebra of L,. It is easily seen that A is a
K-module algebra and that Ug_,L =A#K in (R— A)-aHopf. Conversely, let
A#K be a smash product and suppose K = UgL, for a certain R-Lie algebra L.
Then, with the above notations, A#K = Ug_,L in (R— A)-Hopf.

In particular, let R be a field of characteristic 0 and let A = R[[x,, ..., x,]] (or
A = R[x,,...,x,]) be the ring of formal power series (or the ring of polynomials)
in n indeterminants. Let L, Der A be the abelian subalgebra generated by the

partial derivatives 9, =£:, i=1,...,n If £eDer A, let &£=€(x;), i=1,...,n.
Then ¢=3¢0;,. This induces an isomorphism L=A®L,=Der A. Hence,
Ur-aL=A#UgL,=A#SgL,, SgkL, being the symmetric algebra of L,. For
R =R we thus obtain that the universal enveloping algebra of the Lie algebra of
formal vector fields is a smash product.

We turn now to the notion of left module of a twisted Lie algebra. Let
Me A-mod and let A—End M be the map defining the A-module structure on
M.

3.10 DEFINITION. M is called left L-module, if there is a morphism L—
Der(A—End M) in (R— A)-Lie. A morphism of L-modules is a map M'— M" in
A-mod such that

L ——s EndM

| |

End M"—Hom(M', M")
commutes.

3.11 THEOREM. There is a natural equivalence of categories
L-mod= Ug_,L-mod.

Proof: Similar to the untwisted case. []

3.12 COROLLARY. L-mod is a closed abelian category. []

3.13 Remark. A right L-module structure on an A-module M is a morphism
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L—Der(A—(End M)°) in (R— A)-Lie. The category of right L-modules is
equivalent to the category of right Ug_,L-modules. In contrast to the case of
ordinary R-Lie algebras, the categories of left and right L-modules are not

equivalent. This is due to the fact that the V-map is not induced by a map
Ur-aL—>Ug_,L.

4. PBW-theorem and primitively generated twisted Hopf algebras

For each A-module L we construct a certain homological invariant (‘“Baer
invariant”) Bgr_,(L) in A-mod. If Bg_,(L)=0 this implies that the Poincaré-
Birkhoff-Witt theorem (PBW-theorem) holds for every twisted Lie algebra struc-
ture on L. Our methods are similar to the ones used in [1] for ordinary Lie
algebras. Proofs can therefore often be omitted.

Let Le(R— A)-Lie. The algebra TL®A, as defined in 3.3, is a graded
algebra, the elements of degree r being TTL® A, T'L =gL. The corresponding
filtered algebra has filtration F,(TL®A)=Y;_, T'L®A. Via the projection
TL® A — Ugx_,L, this filtration induces a filtration F,Ug_,L such that Ug_,L
becomes a filtered algebra. Let Gr Ug_,L denote the associated graded algebra.
Now let S,L be the symmetric algebra of the A-module L. It can be considered
as the universal enveloping algebra of L with trivial bracket. One then has a
natural and surjective morphism in (R — A)-aHopf

SAL—>Gr Ug_,L. (4.1)
If this map is an isomorphism we say that L has the PBW-property.

Let T=TL®A, S=S,L and let Kx_,(L)=K(L)=K be the kernel

K>T->S.

Clearly, K=(x®a—ax, x®y—y®x) and K is a graded ideal. We will see that if
K has certain universal properties, L has the PBW-property for every twisted Lie
algebra structure on L.

4.1 DEFINITION. Let T*< T be the ideal of positive degree elements. An
associative structure over L is a morphism T"—M in T-bimod. An associative
structure is therefore given by a morphism ¢ : LM in A-mod such that

¢(x) * y=x * ¢(y), where * denotes the (left or right) T-module operation on
M.
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4.2 DEFINITION. Let Me T-bimod. A twisted Lie structure over L is an
R-module morphism u®ve(ADL)RXR(ADL)—>(u, v)e M with the following
properties:

1) (u, v)=—(v, u).

2) (a,b)=0,Va,be A; {(u, av)={(u,a) * v+a * (u, v).

3 (u,v)y*xt* (v —v'u)=wv—ou) *t*W,v), uo,u', v e ABL, teT.

4) (u, v) * w—w * (u, v)+{v, w) * u—u*v, w)+{(w,u) * v—v *(w,u)=0, u, v,
we ADL.

A twisted Lie structure is therefore an ordinary Lie structure in the sense of [1]
satisfying the additional property 2) above.
A morphism of Lie structures is a map M' — M” in T-bimod such that

MI 3 M"

N/

(AGL)®(ASDL)

commutes. A twisted Lie structure, say C(L), is called universal if for any Lie
structure M there exists a unique morphism of twisted Lie structures C(L)— M.
C(L) is clearly unique up to isomorphism, if it exists. Later we will construct it
using some homological machinery.

4.3 Example. K is a twisted Lie structure by defining (x, a)=x®a — ax,

(x,y)=xQy—-yQx.
The following proposition is easy.
4.4 PROPOSITION. Let ¢ : T"— M be an associative structure. Then
(x,a)=¢(x) ¥ a—a * ¢(x),(x, y)=@(x) * y—y * o(x)

defines a twisted Lie structure over L. []

4.5 DEFINITION. Let (AG@L)Q(ADL)—>M’ be a twisted Lie structure.
Suppose there is an associative structure ¢ : T*— M" and an injection M' > M"
in T-bimod such that (u, v) = @(u) * v —u * ¢(v). Then we call M" an enveloping
associative structure of M'.

4.6 THEOREM. If K is the universal Lie structure (cf. 4.3) then (4.1) is an
isomorphism for all twisted Lie algebra structures on L.
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Proof. Although the proof of this theorem is essentially the same as the proof
of the corresponding statement for ordinary Lie algebras (theorem 2 in [1]), we
give an abstract version of it, the reason being that some of the arguments are
used later.

Let U=Ugx_LL, so that U=T/J. Let T,=F,(T) and define K,.=KNT,,
S,=(T,+K)/K, J,=JNT, U =(T,+J)/J. Then U/U,_,=T/T,_1+1,), S/S,_,=
T./(T,_,+ K,). From the definition of J it follows that T,_,+ K, < T,_, +J,. Hence
we have a natural surjection

Sr/Sr-l_—) Ur/ Ur—l

with kernel (T,_,+J,)/(T,_, + K,). This map is, of course, just (4.1). If we can
show that J < T,_, + K,, we are done.

Let (x,a)=x®@a—ax—x(a), {(x,y)=xQy—y®x—[x,y], x,yeL, ac A, so
that J=((x, a), (x, ¥)). Put J,, =Y 1qur1 T (x, )T, +Ypsq=r2 T(x, YT, < J. In
particular, J, =0, J;,= A-bimodule generated by all (x,a), xeL, a€ A, and
J2y= A-bimodule generated by all x(y, a), (y, a)x, (x,y), x,ye L, a€ A. Clearly,
Joe-y<Jey and UJ,,=J. Put M, =J,/J,_yy. M=} M, is a T-bimodule and (,)
induces a map (,): (ADL)Q(ADL)— M. Exactly as in [1, Lemma § 3] one
proves that (M, (,)) is a twisted Lie structure over L. Since, by assumption, K is
universal, it exists a morphism K— M of twisted Lie structures which, in fact, is
an isomorphism (same argument as in [1]), i.e. K/K,_;=J)/J,_;. Therefore
every element of J,, not in J,_,, has leading term of degree exactly r. Conse-
quently, since UJ,,=J, J,,=JNT,=J.But J, < T,_,+K,. O

We give now a homological construction of the universal twisted Lie structure
over L. Let

Q>»P-> L

be an exact sequence of A-modules with P projective. We have the following
commutative diagram

Kr-A(P)N(Q) > (Q)

I I

Kg-a(P) > T(P)® A —>» S,(P)

l oo

Kr_a(L) ™ T(L)Y® A —> S,(L)
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where (Q) is the two sided ideal in T(P)® A generated by Q. Let Z,_, =
(T(P)® A, (Q)]) be the two sided ideal in T(P)® A generated by [u, q], ue
T(P)® A, q€(Q). Since Zgz_, < Kg_A(P), we can define

Bgr_a(L)= Kg_a (PN (Q)/ZR-Aa Cr-a(L)=Kg_4 (P)/ZR—A-_

A similar argument as in [1] shows that Bg_,(L) and Cg_,(L) are well defined
functors from A-mod to A-mod. We have an exact sequence in A-mod

Br_a(L) > Cr_a(L)~>» Kg_a(L).

Note that Bg_,(L)=Y BR_A(L), Cr_a(L)=Y Cx_a(L) are graded A-modules.
Frequently, we simply write B(L) for Bg_,(L) and C(L) for Cg_A(L).

By 4.3, Kz_A(P)=K(P) is a twisted Lie structure on P. It induces a twisted
Lie structure on C(L)= K(P)/Z which will be denoted by (C(L),[, ).

4.7 THEOREM. (C(L),[, ] is the universal twisted Lie structure over L.

Proof. We first consider the case where L is a free A-module. Let (x;};.; be a
set of generators for L and let I be given an ordering such that ord x;, >0, all ie I.
Let ¥ be the free R-module on {x;};c;. Then S,L = A® Sx ¥ as A-algebras. We
assign the elements of A the ordering 0. An A-base for S,L thus consists of
tuples 1®x;, ..., i1< "' <i.

4.8 LEMMA. 1) Let (M,{,)) be a Lie structure over L. Then M has an
enveloping associative structure.
2) K is the universal twisted Lie structure.

Proof of Lemma: Let N=M@®S,L. The T-bimodule structure on N is given
as follows: On M it is just the given one. Let u=a®x,. ., AQSg¥. Write
Xxo=a and let x, ye ¥ or € A. Define x o u, u e ye M by

xXou= Z X i1(X X)Xi41- . p
x>x

uoy= Z Xo...i=1{X Y)Xis1. .. pe

y<x
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The T-bimodule action on N on elements ue€ S,L is then defined by
X*u=x out+xu
u*xy=ucoy+uy

where xu=a@®xx,...,, uy=a®x,...,y, if x,ye ¥, or xu=xa®x,...,, uy=
ay®x,...,y, if x,ye A.

By definition bx and cy act as
(bx) * u=>b * (x * u), u *(cy)=(u *c) * y.

In order to show that this defines a left and right T-module structure on N we
need to check that ¢ * (b * u)=(cb) * u, (u * b) * c =u * (bc). The first equality
is obvious. Using 2) and 3), 4.2, and induction on r we obtain

(u*xb)*xc= Z axl...,-_l(x,-,b)xi+1...,c+Z abxy. .. 1{x; C)Xis1...,
i=1 i=1

L= i=

r—1
+abc®x,...,= Z axy...;—1{x;, b)X; 1. .1 CX,
i=1

r—1
+ Z axy...i—1 (xb—bx;)x;4q...,—1{x, C)
i=1

+ax;...,_x, b)c+ Z abx,...,_{x, C)X;1...,+abc®x; ...,
i=1

1=

1

r—1 r— \
= Z axy...;—1{%, b)xi 1. g+ Z abx; .. .;_{x;, C>xa+1---r~1)xr
= )

i=1

+ax,...,_; (x, b)c+b{x, c))+abc®x,...,

r—1
= Z ax,...i.1{x, bC)x;4q1...,¥ax,...,_1{x,, bc)+abc@x,...,
i=1

=u * (bc).

The proof of the corresponding statement in [1] now shows that (x * u) * y=
x*(ux*xy) and (x*u)*b=x*(u*b). The equalities (a*u)*y=a*(ux*y)
and (a * u) * b= a * (u * b) are easily established. It follows from this that N is in
T-bimod. The map ¢ : xe L—>x e SLL < N satisfies ¢(x) * y=x * ¢(y), x, ye L.
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Therefore it defines an associative structure T*— N. Now, x * a =(x, a)+a®x,
a*x=a®x, hence (x,a)=x*a—-a=*xx. Let x>y. Then ax *by=
(ax * b) * y={(ax, b)y + ab(x, y)+ab®xy, by * ax=(by, a)x+ab®xy, whence
ax * by — by * ax =(ax, by). This proves that N is an enveloping associative
structure for M.

The map T"— N induces a map K— N, also in T-bimod, sending x® a — ax
into (x, a) and x®y— y®x into (x, y). This map is clearly unique, hence K is the
universal twisted Lie structure on L. O

We return now to the general case where L is an arbitrary A-module. Let
(M, (,)) be a twisted Lie structure over L. Let P be a free A-module. By 4.8, K(P)
is the universal Lie structure over P. Therefore we have a unique map K(P)—>M
in T(P)®@ A-bimod. The kernel of this map contains Z, so that we have an
induced map K(P)/Z = C(L)— M which is unique and has the desired properties
(cf. [1]). OO

4.9 COROLLARY. The following statements are equivalent:
1) Br-a(L)=0
2) Kx_A(L) is the universal twisted Lie structure over L.
3) Every twisted Lie structure over L has an enveloping associative structure.

Therefore, a twisted Lie algebra L over A has the PBW-property, if, in particu-
lar, Bg_o(L)=0.

Proof. 1)&2) is obvious. For 3)&2) use the proof of the corresponding
statement for ordinary Lie algebras in [1]. O

From the definition of Br_4 (L) it is clear that every twisted Lie algebra whose
underlying A-module js projective has the PBW-property. (This result has been
obtained by Rinehart, [4], using different methods.) A similar argument as in the

proof of theorem 8 in [1] shows that Bg_, commutes with direct limits. Hence we
have

4.10 THEOREM. Bg_,(L)=0, if L is a flat A-module. [

4.11 Remark. There is a relation between the Baer-invariants B, (L) of [1]
and Bg_,(L). There is an exact sequence in A-mod

By-a(L) »>Bgr_a(L) » B4(L).

Bk_a(L) is the Baer-invariant of L obtained by dropping the bracket in all the
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definitiones and constructions for Bg_, (L). That is, given an A-module X and a
map X—Der A in A-mod, the twisted Hopf algebra U(X)=TX® A/J, is the
twisted universal enveloping algebra of the “free” twisted Lie algebra L(X),
where L(X)< U(X) is the Lie algebra generated by X as in the untwisted case,
[3, 6.18]. If B%_A(X)=0 this implies that the canonical surjection T,X-»
Gr U(X) is an isomorphism for all maps X— Der A. The vanishing of B%_(X)
is harder to enforce than the vanishing of B, (X). For instance, if A contains a
copy of the rationals Q, then B,(X)=0 for every A-module X, [1], while, in
general, By_,(X)#0 for Q< A.

In section 3 we constructed the functor Ui _, : (R — A)-Lie— (R — A)-Hopf. We
now construct a functor Pr_,: (R—A)-Hopf—(R— A)-Lie in the reversed
direction and study the composites Pg_, © Ug_4o and Ug_, © Pr_a.

4.12 DEFINITION. Let He(R— A)-Hopf. Let J(H) be the co-kernel of
i : A— H. The diagonal A then induces a map J(H)— J(H) ,®J(H) in A-mod.

Pr_a(H)=ker(J(H)— J(H) & J(H))

is called the A-module of primitive elements of H. As left A-module, H=

A®I(H), where I(H) =ker ¢, is the augmentation ideal. The primitive elements
can be described by

Pos(H)={xeIH)|A(x)=x,®1+1,®x}.

Our first result is

4.13 PROPOSITION. Pg_, is a functor from (R — A)-Hopf into (R — A)-Lie.

Proof. Let x,y€Pg_,(H). By 3), 2.6, A(xy)=xy,®@1+x,@y+y ,Qx+
1 ,®xy. Consequently, A[x, yl=[x, y]a®1+1 ,®[x, y]. Hence, Px_,(H) is an
R-Lie algebra. Let xe Px_,(H) and a€ A. By 2.4, xa=(g,,®1) o A(xa)=
€14aR®1(xa ,®1+1 ,®ax)=e,(xa)+ ax, where &,(x)=¢€e(x)(1) as in 2.2. Then,

e(x)(ab) = e,(xab) = g,(axb+ e,(xa) - b)=a * &,(xb)+ €,(xa) - b
= ag,(x)(b) + bey(x)(a)

Consequently, € restricts to an admissible map Pg_, (H)—>Der A. Now, [x, ay]=
xay — ayx = g,(xa)y + axy — ayx = a[x, y]+ x(a)y whence Px_,(H)e(R— A)-Lie.
Let ¢ : H— H, be a morphism in (R— A)-Hopf. Since ¢ commutes with the
diagonals, it takes primitive elements into primitive elements. Since ¢ commutes
with augmentations, the induced map Pgr_,(H;)— Pr_4(H,) is compatible with
Pr_.(H)—Der A. O
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4.14 COROLLARY. There is a natural inclusion Pg_,(H)— Der (A— H).
Hence we obtain a map in (R— A)-Hopf

UP(H) = Ug_,(Pr_a(H))—H. (4.2)

Proof. The first map is given by sending xe€Pg_,(H) into (¢(x),x)e
Der(A— H), where ¢ : Pyx_,(H)—Der A. By 3.6, (4.2) is an algebra morphism.
It follows from 3), 2.6, that it commutes with diagonals. By construction of
Pg_A(H), it commutes also with augmentations. []

In general, (4.2) is neither surjective nor injective. If (4.2) is surjective, H is
called primitively generated. A necessary condition for this is that H is co-
commutative. Later we will give sufficient conditions for (4.2) to be injective.

Let Le(R—A)-Lie. There is a canonical map L— PU(L)= Pg_,(Ugr_4sL),
induced by L — Ug_,L, which, in general, is not surjective. If Bg_,(L)=0, it is
injective, since, in this case, L— Ug_,L is injective.

In order to obtain more informations about the primitive elements we need
the following.

415 LEMMA. Assume Bgr_,L=0. Then Gr(Uz_o,L,®Ug_,L)=

Proof. Let T*=T,®T, S?=S,®S, U*=U,QU, I’=T,®J+J,QT, K*=
T.®K+ K, ®T (actually, J*> has to be thought of as the image of T,®J+
JAQ®T in T? similar for K* and others below). Then U?= T?/J?, §?=T?*/K>.
Using the notations of the proof of 4.6, let T?=},,,., T,o®T, be the
filtration on T? and define K?=K?*NT? S?=(T?>+K?»/K? J*?=J*NT? U?=
(T?+J?)/J?.Since K*is gradeditfollowsthat K? =3 ..., T.A®K, + K, ,® T,. Asin
4.6, U/U?_,=T*(T>_,+J?, S?/S?2,=T*/(T?.,+K?) and there is a
natural morphism

S2/S?_,—> uz/ Uz, 4.3)

with kernel (T, +J3)/(T?_, +K?). (4.3) is just the natural map S>— Gr (U?). We
must show that J2c T?_ , + K?Z. For this let J3,=Y 0=, T,a ®J )+ J o) a® T,. Now
we repeat the argument used in the proof of 4.6. Since Bgz_,L =0, we have
K /K, i=J/J,—y It follows that if u € J;,, u#J?_,), u has leading term of degree
exactly r. Since UJ7, = J? this implies that Ji,)= T>?NJ =JZ. But J3,= T>_, + K? so
we are done. [J

Note that in case A =R this theorem is easy, since UgL ® UgL = Ug(LDL)
and Bx(L®L)=0, if Bg(L)=0.
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Let u € F,(U) be primitive, ug F,_;(U). Since A is a filtered morphism A(u)e
F(UA,QU), A(u)¢F,_,(U,®U). Let i be the class in F,(U)/F,_,(U) rep-
resented by u. It follows that & is primitive in Gr(U). Suppose Bg_,L =0. Then
Gr (U)=S,Gr(U,®U)=S,®S and primitive elements in U give rise to primi-
tives in S. In particular, we have

4.16 PROPOSITION. Let Bg_,L=0. Then PU(L)=L if Pg_o(SsL)=
L 0O

In order to take advantage of this proposition we need some facts about the
De Rham complex of the A-module L. Let A = A 4L be the exterior algebra of
the A-module L. In the graded A-module S®, A =Y,.0 S®4 A? define a
differential d of degree +1 by

d(xy...,@ay)=Yl 1 %1 i1 XX ,aXiAY,

X;...,€S?, ye A% We thus obtain the De Rham complex of L. The cohomology
modules are denoted by HI(S®4 A). Let H?? < H? be the submodule generated
by cocycles in SP®, A% Thus HY=},_, H™.

4.17 PROPOSITION. HP?1 is a torsion group bounded by p +q.

Proof. Define a map h: S®, A—>S®, A of degree —1 by

h(xy...,QyiA - AY,)= i (1)V7'%1 . g RayiA - AFiA - AY,
=1

)

Then (hd+dh)(x;... ,@ay1A " AY)=(P+@)X1...,QayiA - - Ay, Let z=
YX1...,®ay1A - Ay, represent a class [z]e H®9. Then (hd+dh)(z)=
d(h(z))=(p+q)z. Therefore (p+q)[z]=0 in H?9. [J

We can now state our main results of this section.

4.18 THEOREM. Iﬁ H(S®, A)=A (ie. if L is “connected”), then
Pr_A(S,L)=L.

Proof. The diagonal A : S—S,®S is a morphism of graded modules, i.e.
A(S)S Y, 1q=r SP®AS9. Therefore, Pg_A(SaL)=),., P'(S) is a graded A-
module. Consider A|S", r=2. Let A2 be the component of A | $" in $"? ,®S® s0
that A|S"=3"_, AL It follows that xe P"(S) iff Al(x)=0, p=1,...,r—1. In
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particular, A{(x)=0. Let S"=) ., S". We then have a commutative diagram

S+__Al—" S®ASI

| L

SR, NO-HS@4 A

where A°=A, S'=A'=L and A,=),.,A4]. Suppose xeP'(S), r=2. Then
A,(x)=0 or, equivalently, d(x)=0. By assumption, H*(S®, A)= A, so x =dy.
But y=0, hence x=0. [

4.19 COROLLARY. Let Le(R—A)-Lie be such that Bg_A(L)=0 and
H°(S®4 A)=A. Then PU(L)=L.

Proof. Combine 4.18 with 4.16. [J

4.20. THEOREM. Let He(R-A)-Hopf with primitive elements L=
Pr_A(H). Assume Bg_,(L)=0 and H*(S®,4 A)= A. Then UP(H)— H is injec-
tive. In particular if H is primitively generated, UP(H) ——> H is an isomorphism
in (R— A)-Hopf.

Proof. Let V=ker UP(H)— H and let x€ V, x € F,(UP(H)), x F,_,(UP(H)).
Assume r is minimal with this property. Bg_,(L)=0 implies that L— U(L) is
injective; consequently r=2. Since UP(H)— H commutes with diagonals, A(x) =
xa®1+1,@x+Y(u®v+0,,@u) where v, v’ € V, having filtration degree smal-
ler than r. The minimality condition on r thus implies Y (u,@v+0v,®u)=0,
hence xe€ Pgr_,(UP(H)). But Pg_o(UP(H))=L, by 4.19. Consequently x=
0. O

The following propositions give conditions under which the assumptions in
4.19 and 4.20 are satisfied.

4.21 PROPOSITION. If A is torsionfree as abelian group and L is flat as
A-module, then Bg_,(L)=0 and H(S®, A) = A.

Proof. The statement about Bg_,(L) is just 4.10. If A is torsion free as
abelian group and L is a flat A-module, then S,L is torsion free as abelian group.
Therefore, H(S®4, A)=A by 4.17. O

In the particular case R=A we are dealing with ordinary Lie and Hopf
algebras. Ug_,L =U,LL is the ordinary universal enveloping algebra of L,
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Pg_A(H)=P,(H) is the Lie algebra of primitive elements in the usual sense [3]
and Bg_,(L)=B4(L). 4.21, and therefore 4.19 and 4.20, can then be extended
as follows:

4.22. THEOREM. B,(L)=0 and H°(S®, A)=A in the following cases:
1) A is torsion free as abelian group and L is a flat A-module.
2) A contains a copy of Q, L arbitrary.

Proof. 1) is 4.21 in case R= A. By [1], B,(L)=0, if A contains a copy of Q,
and H(S®, A)=A by 4.17. O
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