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Comment. Math. Helvetici 54 (1979) 642-658 Birkhâuser Verlag, Basel

Dirichlet régions in manifolds without conjugate points

Paul E. Ehrlich1 and Hans-Christoph Im Hof2

1. Introduction

The aim of this paper is to study Dirichlet tessellations of simply connectée

complète riemannian manifolds without conjugate points. In particular, we will
describe the geometrical and topological structure of the boundary of a single
Dirichlet région. Throughout this paper M will always dénote an n-dimensional,
simply connected complète riemannian manifold without conjugate points.
Let dénote the riemannian metric of M and d the distance function induced

by < Recall that M has no conjugate points if and only if every pair of distinct
points of M can be joined by a unique géodésie segment (up to parametrization).

For a given discrète subset D {pl;ie 1} of M, the Dirichlet régions Fv are
defined by

Ft={pe M; d(p, Pl) < d(p, pk) for ail kf i},

and the collection T {F, ; i e 1} is called the Dirichlet tessellation induced by D.
For simplicity we state our main results for Fo.

THEOREM 3.6. bdF0 is an (n-l)-dimensional topological submanifold of
M. Moreover, bd Fo admits a differential structure and is thus triangulable.

For a more detailed study of bd Fo we set

St={pe M; d(p, p0) d(p, pt) < d(p, pk) for ail k± 0, i}
and

Bt={pe M; d(p, p0) d(p, p.) ^ d(p, pk) for ail k ï 0, i}.

1 Supported partly by the Sonderforschungsbereich "Theoretische Mathematik" at the University
of Bonn and partly by a grant from the Research Council of the Graduate School, University of
Missouri-Columbia.

2 Supported by the Swiss National Science Foundation and the Sonderforschungsbereich
"Theoretische Mathematik" at the University of Bonn.
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We call St a side of Fo if St is nonempty. Except for the case that dim M 2 (cf.
Eberlein [3]), the sides may fail to be connected and also cl S, may be différent
from Br However we find

THEOREM 3.14. bdF0= UclS,.

Often the discrète set D is given as an orbit of a discrète group of isometries
of M. Then the Dirichlet régions are ail congruent and provide constructable
fundamental régions for the group action. As an application of our study of the
sides of a Dirichlet région we obtain

THEOREM 4.7. Let F {ifo; iel} be a discrète group of isometries of M and
let Fo be the Dirichlet région based at p0 with respect to {px ^,(p0); i e 1} where p0

is not a fixed point of F.

Then the set

2 {ifc g F; S, is a side of Fo}

générâtes F. Tn particular, if Fo has only finitely many sides, then F is finitely
generated.

The paper is organized as follows. Section 2 contains a summary of the
properties of bisectors and half spaces needed in the sequel. In Section 3 we study
the Dirichlet tessellation induced by an arbitrary discrète set D<=^M. First we
develop along classical Unes the elementary properties of Dirichlet tessellations

(Prop. 3.3 and 3.4) which are well known in many particular cases. The main part
of Section 3 deals with the boundary and the sides of a single Dirichlet région and
contains the first two theorems stated above. Finally in Section 4 we investigate
additional properties of the Dirichlet tessellation arising from the congruence of
the Dirichlet régions when D is given as the orbit of a nonfixed point of a discrète

group of isometries.
We would like to thank P. Eberlein for his help in connection with Theorem

3.14.

2. Bisectors and half spaces

We begin with some gênerai properties of the bisectors and the half spaces
determined by them. Throughout this section we fix three distinct points p, q, r of
M.
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DEFINITION 2.1.

(1) We define a function h:M-*R by h(m) d(m,p)-d(m, q).
(2) M(p, q) fi~x(0) is called the bisector of p and q.

(3) H(p,q) {meM;h(m)<0} dénotes the open half space determined by
M{p> q) containing p. Similarly H(q, p) dénotes the half space containing q.

(4) We set M(p, q, r) M(p, q) H M(p, r).

First we note

PROPOSITION 2.2.

(1) (Witt [12], Ozols [10], Prop. 2.4) M(p, q) is an (n-l)-dimensional différente
able submanifold of M.

(2) (Ozols [10], Prop. 2.6) M(p, q) and M(p, r) intersect transversely whenever they
intersect at ail.

(3) M(p, q, r) is either empty or is an (n-2)-dimensional differentiable submanifold
ofM.

Proof. (1) We hâve to show that grad h never vanishes on M(p, q). Let dp and

dq dénote the distance functions given by dp(m) d(m, p) and dq(m) d(m, q).
Now suppose gradm h 0 for some m e M(p, q). This implies gradm dp gradm dq

and thus p q.

(2) Let dp, dq, dr be defined as in (1). We hâve to show that gradm dp -
gradm dq and gradm dp - gradm dr are linearly independent in TmM, where m is

any point of M(p, q)HM(p, r). Suppose this is not the case. Then gradmdp,
gradm dq, and gradm dr must lie on an affine line in TmM This is impossible for
three distinct unit vectors. Clearly (2) implies (3).

A more detailed investigation (Im Hof [7], Prop. 2.6) shows that M(p, q) is

diffeomorphic to R""1. Also, for dim M 2, the sets M(p, q, r) are either empty or
consist of a single point (Eberlein [3], Prop. 2.8, Ehrlich-Im Hof [4], Cor. 2).

In manifolds of constant sectional curvature, bisectors are totally géodésie and
the half spaces determined by them are convex. Thèse facts are widely used in the
theory of fuchsian groups. However, in more gênerai cases, the bisectors are no
longer totally géodésie, nor are the half spaces they détermine convex. Indeed, ail
bisectors M(p, q) of M are totally géodésie if and only if M has constant sectional
curvature (Busemann [2], Thm. 47.4, p. 331).

A property which is weaker than the convexity of the half spaces, but which is

still very useful, is the starlikeness of the half spaces H(p, q) with respect to p. To
show that this starlikeness holds in our context (Prop. 2.6(2) below), we consider
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the behavior of géodésie rays through p with respect to M(p, q). Let c^ dénote

the unique géodésie with c^CO) p and c^id) q, where d (p, q).

PROPOSITION 2.3.

(1) Let c : [0, <») —» M be a géodésie ray with c(0) p. If the ray c is not contained in

Cpq, then h(c(t)) is strictly increasing for ail t**O.Ifc c^llO, o°), then h(c(t)) is

strictly increasing for O^t^d and h(c(t)) d for t^d. If c(0) -0^(0), then

h{c(t)) -d for ail t^O.
(2) Let c : [0, °°) —> M be a géodésie ray with c(0) p. Then c intersects M(p, q) at

most once and transversely.
(3) Let c:R—» M be a géodésie with c(0) p. Then c intersects M(p,q) at most

once.

Proof (1) We may assume ||c||=l. Consider first a géodésie ray c with
CpqCO). Suppose h(c(s))^h(c(t)) tôt O^s<t. This implies

hence

by the triangle inequality. But equality occurs only when the three points q, c(s),
c(t) lie on a géodésie. This contradicts our assumption on c.

The behavior of h along the géodésie c^ is obvious.
(2) Uniqueness of the intersections of c with M(p, q) immediately follows

from the monotonicity of h ° c proved in (1). Now we assume that a géodésie ray c
intersects M(p,q) at a point m c(t) e M(p, q) and we show transversality.
Suppose the intersection is not transverse, Le., (c(t), gradm h) 0. Using the same
notation as in the proof of Proposition 2.2 we may write grad h

grad dp -grad dp. Moreover, gradm dp c(t). Then our assumption implies
<gradm dp, gradm dq) <gradm dp, gradm dp) =1, hence gradm dp gradm dq. This is

impossible, since meM(p,q) and p^q.
(3) Suppose c:R—>M is a géodésie with c(0) p intersecting M(p,q) in two

points c(s) and c(t). By (2) we may assume s<0<t Then we have

d(c(s), c(0) d(c(s), p) + d(p, c(r)) d(c(s), q) + d(q, c(t)).

This equality is only possible if q lies on the géodésie segment between c(s) and
c(t). This would imply p q.
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Remark. Uniqueness of the intersections of géodésie rays through p with
M(p> <Ù (or with bd Fo, see Prop. 3.3(3) below) is well known (Busemann [1],
2.12; Ozols [10], Prop. 3.2; for n 2, Eberlein [3], Prop. 2.6). Transversality has

first been proved in Im Hof [7], Lemma 2.5.

Now we define the concept of a strictly starlike subset of M For this purpose
we set

where c:[0,1]—>M is the géodésie segment joining m and m'.

DEFINITION 2.4. A subset F of M is strictly starlike with respect to a point
me F if for every point m'g cl F the segment (m, m') is contained in intF.

Knowing that a set F is strictly starlike rather than just starlike with respect to
a point has implications about the topology of F. Explicitly

LEMMA 2.5. Let F and G be two subsets of M with F ci G and let mbea point
of F. Suppose that for each m'eG the segment {m, m') is contained in F. Then

and int GcF.

Proof. Let m' be a point of G and let U be a neighborhood of m'. The

segment (m, m') lies in F and contains points of U. Hence m'eclF.
Now let m' be a point of int G and let U be a neighborhood of m' contained

in G. The segment (m, m') can be extended to a segment (m, m") such that m"e U
and m'e(m, m"). Since m"eG, the whole segment (m, m") lies in F. In particular,
m'eF.

We are now able to show

PROPOSITION 2.6.

(1)
int cl H(p,q) H(p,q),
bd H(p,q) M(p,q).

(2) H(p9 q) is strictly starlike with respect to p.
(3) The half spaces H(p,q) and H(q,p) are the connected components of M-

M(p,q).

Proof. Obviously cl H(p,q)cH(p,q)UM(p,q) and H(p9 q) c int (H(p, q) U
M(p,q)). By Proposition 2.3(1), the hypothesis of Lemma 2.5 is satisfied
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for H(p, q), H(p, q) U M(p, q), and p. Thus we may condude the proof of (1). Since

cl H(p, q) H(p, q) U M{p> q), Proposition 2.3(1) also implies (2) which then

implies (3).
We now consider the set of géodésie rays through p intersecting M(p,q).

Dénote the unit tangent sphère at p by S. For each dêS we dénote by
cv : [0, oo) —? M the géodésie ray with cv(O) p and cv(0) v. Since each ray cv

intersects M(p, q) at most once, we may define A={veS;cv intersects M(p, q)}
and two functions <j> : A —> M(p, q) and <p:A-»R by <f>(v) cv(0, oo)HM(p, q)
and cp(v) d(p, <l>(v)). The transversality of the intersection of cv with M(p, q)
implies

PROPOSITION 2.7.

(1) A is open in S.

(2) 4> : A —» M(p, q) is a diffeomorphism.
(3) <p : A -* R is differentiable.

Proof. Let tt dénote the projection of M-{p} onto S defined by 7r(m) t;,

where m cv(0 for suitable t Since M(p, q) is an (n - l)-dimensional submanifold
transverse to the géodésie rays cv, i.e., transverse to the fibers of ir, the map
7T | M(p, q) : M(p, q) —> S is a local diffeomorphism. As A 7r(M(p, q)), property
(1) holds. Now <f> (tt |M(p, q))"1 and ir|M(p, q):M(p, q)-^A is bijective. This
implies (2) and (3).

3. The Dirichlet tessdlation induced by a discrète set

In this section we consider an arbitrary discrète set D<^M. By définition, D
has no points of accumulation in M, or equivalently, D is locally finite, i.e., every
compact set of M contains only finitely many points of D. In particular, D is at
most countable and we may thus once and for ail fix the notation

D {p0, pl9 p2>.. •} {ft; i gI}cM,

where I is a suitable set of indices.
The discrète set D may be finite or infinité, but we will always assume that it

contains at least two points.

DEFINITION 3.1. Let D {pt; iet} be a discrète set of M.

(1) The Dirichlet région with basepoint pt is the set

; d(py Pi) < d(p, pk) for ail k* i}.
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(2) The collection T {Fl;i€ 1} is called the Dirichlet tessellation induced by D.

The purpose of this section is to investigate the properties of a single Dirichlet
région as well as those of the whole tessellation with respect to a given discrète set

D. Whenever we deal with a single région, we may restrict our attention to Fo.

The following notation will be used throughout this section.

DEFINITION 3.2. For iel, i^O we set

(1) Mt M(p0, p,), the bisector of p0 and pv
(2) H, H(p0, p,), the half space determined by Mt containing p0.

Using this notation we hâve Fo fl H,.

The basic properties of a single Dirichlet région are summarized in

PROPOSITION 3.3. Let Fo be the Dirichlet région with basepoint p0 e D. Then

(1) Fo is nonempty and open in M.
(2) cl Fo {p € M; d(p, p0) ^ d(p, p,) for ail i + 0}, and int cl Fo Fo.

(3) Fo is strictly starlike with respect to p0.

Proof. Obviously Fo^ 0. Now let p be any point of Fo and dénote by dk the
distance d(p,pk). Since peF0 we hâve do<dk for ail k^O. The discreteness of D
implies that there exists an index iel with do<dl^dk for ail k^O, i. Now we
choose e (dx - do)/2. By the triangle inequality the open bail [/(p, e)

{q e M; d(q,p)<e} is contained in Fo. This proves (1).
For the proof of (2) let us write

Go {p e M; d(p, p0) ^ d(p, pt) for ail i^ 0}.

Clearly Foc Go. Since Go= fiel Ht, Go is closed in M and we hâve cl Foc: Go as

well as Fo c: int Go. Since ail the half spaces H, are strictly starlike with respect to
p0, the segment (p0, p) is contained in Fo for ail p g Go. Using Lemma 2.5 we may
then conclude the proof of (2).

Since cl Fo Go, we also obtain (3).
We now state the fundamental property of the Dirichlet tessellation.

PROPOSITION 3.4. Let T {Ff; iel} be the Dirichlet tessellation induced by
the discrète set D. Then
(1) F, Ocl F, 0/or iV/.
(2) M UclF,, and the covering is locally finite.
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Proof. (1) is obvious. For the proof of (2) let p be a point of M and dénote by
dk the distance d(p,pk). Since D is discrète, there exists an index iel such that
dt^dk for ail fe/ i. This implies peclF,.

Now let K be a compact set in M, e.g., the closed bail K B(p0, R)
{qeM;d(q,po)^R}. Assume p g cl FtnK. Then d(p,pl)^d(p,p0)^R and thus

d(p0,P,)^d(Po>p) + d(p,p,)^2JR. This is possible only for finitely many iel.

Now we begin a more detailed study of the boundary of a single Dirichlet
région. Again we restrict our attention to Fo. By Proposition 3.3(2) we hâve
bd Fo cl Fo-Fo UB,, where

Our investigation of bd Fo is based on a study of the géodésie rays emanating
from p0. Let S dénote the unit tangent sphère at p0. For u g S let cv :[0, »)—> M
be the géodésie ray with cv(0) p0 and 4(0) v. According to Proposition 3.3(3),
each ray cv intersects bdF0 at most once. Thus we may define A={veS;cv
intersects bdF0} and two functions (\>:A—>bdF0 and (p:A—»R by <f>(v)

c,,(0,oo)nbdFo and <p(t?) d(p0,

PROPOSITION 3.5.

(1) A is open in S.

(2) ç : A -* R is continuous.

(3) <j> : A —* bd Fo is a homeomorphism with respect to the induced topology on

bdFoc=M

fVoof. First we recall the analogous construction for a single bisector. Let A,
be the set {veS;cv intersects Mt} and define 4>l:Ax-^Ml and (pl:Al^>R by
<t>i(v) cv(0,<x>)nMl and çl(v) d(po, <t>t(v)). According to Proposition 2.7, AX is

open in S, <pt is difïerentiable, and fa is a diflfeomorphism.
Now consider veA. Since </>(t;)GbdF0= UB,, there is some îgI such that

<f>(v) g M,. Hence v e A,, <^)(t;) ^(v), and <p(u) <pt(v). Conversely, if i? g A,, then

^(i))eM,. Thus <t>t(v)éF0 and so the géodésie segment from p0 to <k(t)) must

intersect bdF0. Therefore veA and (p(v)^(pt(^)' Thèse arguments show that

A U At and <p min <pv This implies at once that A is open in S and that <p is

upper-semicontinuous.
In order to show that <p is continuous, we choose an élément i?gA and a

séquence {dJcA converging to v. Since <p is upper-semicontinuous, the séquence

{(p(va)} is bounded. Thus we may assume that {(p(va)} converges to a number
d gR. It remains to show that <p(v) d.
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Since <f>(va) cVa(<p(va))ebdF0 and bdF0 is closed, the séquence {<f>(va)}

converges to cv(d)ebdF0. This implies that <t>(v)*= cv(d), hence <p(t;) <£

Using géodésie polar coordinates at p0, we may regard </> : A —? bd Fo as the

graph of the continuous function <p. Therefore <\> is a homeomorphism.
As an immédiate conséquence of Proposition 3.5 we hâve

THEOREM 3.6. bdF0 is an (n-ï)-dimensional topological submanifold of
M Moreover, the homeomorphism <f> : A -» bd Fo induces a differential structure on

bd Fo. Hence bd Fo is triangulable.

Recall the présentation bd Fo U Bt. Our aim is to simplify this présentation
by omitting those members of the collection {Bt} which are redundant. Whenever
Bt contains a point p which is not contained in any Bk for k ^ i, then certainly Bt

may not be omitted. This motivâtes the following

DEFINITION 3.7.

(1) $ {p € M; d(p, p0) d(p, Pi) < d(p, pk) for ail k + 0, i}.
(2) If ^ # 0, we call S* a side of Fo.

JRemark. This définition of sides is identical with Ozols' définition of faces (cf.
Ozols [10], p. 225) and essentially équivalent to Eberlein's définition of bounding
sides (cf. Eberlein [3], Def. 2.2). If dimM 2, arguments of Eberlein (loc. cit.,
Lemma 2.11, p. 38) show that the sides are connected. An essential ingrédient in
his proof is the fact noted above that for dim M 2, the sets M(p, q, r) are either

empty or consist of a single point. However, examples show that the sides may fail
to be connected for dim

The next lemma is crucial for the fitting together of neighboring Dirichlet
régions.

LEMMA 3.8.
(1) If Si is a side of Fo, then it is also a side of Ft.

(2) F0U Si U Ft is open in M.

Proof. (1) is an obvious conséquence of the définition of sides. For the proof of
(2) it suffices to show that each point of St has a neighborhood contained in
FoUSiUFf. Let Et be the Dirichlet région based at p0 with respect to D-{pt}.
Then Et is open, and it is easily verified that $ c Et <= Fo U St U F,.

The following resuit is a topological characterization of the sides of bd Fo.



Dinchlet régions m manifolds 651

PROPOSITION 3.9. S, intbd Fo B, int^ Bv

Proof. Recall SX<=BX =bd FO(1MV We first show that intbdFû Bt intMiBv It
suffices to prove that a set l/c: JB, which is open in bd Fo is also open in M,, and
vice-versa. Let <f> : A -> bd Fo and <j>t : Ax —» M, be the maps studied in Proposition
3.5. Given UcB, we set V= ^(ITjczA and V, <^-1(L0<= Av Since l/cfî,=
bd Fo H Mx, the sets V and V, coincide, and so do the maps <f> \ V and <f>x \ Vx. Now
it is clear that U is open in bd Fo if and only if it is open in Mr From now on we
will write intB, instead of intbdFoB, (or int^B,).

Next we show that S, int Br Let p be a point of Sv According to Lemma
3.8(2), there is a neighborhood U of p in M which is contained in FoUSjUF,.
Then U H Mx U H S, and V= UHM, is an M,-neighborhood of p contained in
S,. Hence p is an interior point of Bv

Conversely, let p be a point of Bt - S,. We claim that p cannot be an interior
point of B, (with respect to M,). Let U be any M,-neighborhood of p. We will
construct a point qeU which does not belong to Bv Since p^Bx-Sv there is an
index k f i such that p e Bx fi Bk c Mx H Mk. Let hk dénote the function defined by
hk(p) d(p,p0)-d(p,pk). Since M, and Mk intersect transversely, grad(fik|MI)
does not vanish on MxDMk. Let /x be an intégral curve of grad(hk\Mx) through p.
Then for sufficiently small e>0 the point q /m(e) lies in U, but hk(q)>0, so q
lies outside cl Fo.

As a conséquence of Propositions 3.9 and 2.7(2) we hâve

COROLLARY 3.10. Sx is an open submanifold of bdF0 and of Mr The

differential structures of bdF0 (as given by Theorem 3.6) and of M, (as a
submanifold of M) coincide on Sx.

DEFINITION 3.11.
(1) A point p € bd Fo is called a regular boundary point of Fo if it belongs to a side

of Fo. The set of regular boundary points of Fo is denoted by reg bd Fo.

(2) The complément bd Fo - reg bd Fo is called the set of singular boundary points
of Fo and denoted by sing bd Fo.

PROPOSITION 3.12.
(1) singbdFo is closed in bdF0.
(2) The topological dimension of sing bd Fo does not exceed n-2.

Proof. We hâve the présentation singbdF0= U (bd Fo nMt H M,), where the
union is taken over ail indices i, j with O^i^j^O. Each of the sets bd FoilNt^
M, is closed in bd Fo, and their union is locally finite. Thus sing bd Fo is closed in
bdF0.
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By Proposition 2.2(3), M, H M, is either empty or is an (n - 2)-dimensional
submanifold of M Hence bd Fo fl M, fl M; has topological dimension at most n - 2

(cf. Hurewicz-Wallman [6], Thm. III. 1, p. 26). As a countable union of such

spaces, bdF0 itself has topological dimension at most n — 2 (cf. Hurewicz-
Wallman [6], Thm. III.2, p. 30).

COROLLARY 3.13. regbdF0 is open and dense in bdF0.

Proof. It suffices to observe that sing bd Fo cannot contain an open subset of
bdFo, since dim(bdF0) n-1, whereas dim(singbdF0)^n-2.

Remark. For Dirichlet régions induced by a discrète group acting freely and

isometrically on M, Corollary 3.13 is a conséquence of Sugahara [11], Theorem
A. A proof for gênerai discrète groups using the Baire Category Theorem was
communicated to us by Eberlein (personal communication).

The closures of S, with respect to bdF0, Mt, or M, ail coincide. In the

following theorem we may therefore use the notation cl S, without ambiguity.

THEOREM 3.14. bd Fo U cl S,.

Proof. Let p be a point of bd Fo. If p is a regular boundary point, then peSx
for some i. In gênerai, choose a basis {Ua} of bd F0-neighborhoods with pe
l/a+1<=l/a. According to Corollary 3.13, each Ua contains a regular boundary
point qa belonging to some side S^. The séquence {qa} converges to p.

We may assume that ail Ua lie in some compact bail B(p0, R). Then qa e
B(p0, JR) implies p^ e B(p0, 2R). Therefore only finitely many différent indices can
occur in the séquence {ia}. Hence there exists an index i that occurs infinitely
many times. This détermines a subsequence of {qa} contained in S, and converg-
ing to p. Thus p € cl S,.

Remark. Obviously cl S, c: Bv but examples show that S, ^ 0 and cl S, ^ Bt is

possible. Thus the présentation bd Fo= Ucl S, may be finer than the présentation
bd Fo U {Bt ; S, is a side of Fo}. The latter was obtained by Eberlein (personal
communication) for Dirichlet régions induced by a discrète group (see Section 4)

using the density of regbdF0 in bdF0. For dim M =2, see also Eberlein [3],
Proposition 2.9.

So far we hâve only considered the boundary of a single Dirichlet région, but
it is clear that the classification into regular and singular boundary points applies
to ail régions of the Dirichlet tessellation. More precisely, we hâve

LEMMA 3.15. Let N(p) dénote the cardinality of the set {i e I; p € cl F,}. Then
and the following hold:
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(1) N(p) 1 if and only if p belongs to Ft for some i e I.
(2) N(p) 2 if and only if p belongs to a side of some Fr
(3) N(p) 2* 3 if and only if p is a singular boundary point of some Ft.

Now we define

DEFINITION 3.16.
(1) regT
(2) sing T {p€ M; N(p)^ 3}.

PROPOSITION 3.17.
(1) sing T is closed in M
(2) The topological dimension of sing T does not exceed n — 2.

Proof. We hâve the présentation sing T= U (cl F, fiel F, flclFk), where the
union is taken over ail triples of pairwise distinct indices. Since this union is

locally finite and countable, the rest of the proof is similar to that of Proposition
3.12.

COROLLARY 3.18.
(1) reg T is open in M.
(2) reg T is connected.

Proof. It suffices to observe that a subspace of topological dimension at most
n-2 cannot disconnect M (cf. Hurewicz-Wallman [6], Thm. IV.4, p. 48).

Remark. The properties of the sets {p e M; N(p) 1} and {p e M; N(p) 2},
which by Lemma 3.15 follow from our study of Fo and its sides, might suggest
that a stratification of M could be obtained using {p e M; N(p) fc} as strata.
However, thèse sets are not necessarily manifolds if k ^ 3, because intersections
of the form M(p9 q, r)HM(p, s) need not be transverse.

4. The Dirichlet tessellation induced by a discrète group

In this section we corne to the most important application of the Dirichlet
tessellation. Hère we no longer begin with an arbitrary discrète set D<=M, but
with a particular discrète set obtained from the action of a discrète group of
isometries of M.

Let I(M) be the full group of isometries of M. A subgroup F of I(M) is called
discrète if it is a discrète subset of I(M) with respect to the compact-open
topology of I(M).
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Throughout this section we consider a fixed discrète subgroup F of I(M). The
fact that we are dealing with isometries of a riemannian manifold has some

important conséquences.

LEMMA 4.1. Let F be a discrète subgroup of I(M).
(1) For ail peM the isotropy group Fp {tff e F; if/(p) p} is finite. Dénote its order

by i(p).
(2) For ail peM the orbit F(p) {^(p)eM; *peF} is a discrète subset of M
(3) The canonical map from F to F(p) given by ^t-> ^(p) is i(p)-to-one.
(4) F is countable.

Proof. (1) The full isotropy group IP(M) {\pe I(M); ^(p) p} is compact
(Kobayashi-Nomizu [9], vol. I, p. 239), and hence Fp Fnip(M) is finite.

(2) Suppose that F(p) is not discrète. Then there exists a séquence {fa (p)}^
F(p) of pairwise distinct points converging to some point of M. This implies the
existence of a subsequence of {fa}<^F which converges to an élément of I(M)
(Kobayashi-Nomizu [9], vol. I, p. 47-48). Since the éléments of {ifcj are pairwise
distinct, this contradicts the discreteness of F.

(3) By définition the canonical map F-+F(p) is i(p)-to-one at the point
peF(p). For any other point ^(p)er(p) it suffices to observe that F^(p)

^ o Fp « i/r\ hence i(^(p)) i(p).
(4) Since F(p) is discrète in M, it is countable. Together with (3) this implies

that F is countable.

Remark. By the same type of arguments as above one shows that the

following properties are équivalent.
(1) F is a discrète subgroup of I(M).
(2) F acts discontinuously at a point of M.
(3) F acts discontinuously on M
(4) F acts properly discontinuously on M.
Hence we will not use the concepts of discontinuity.

Since F is countable we may once and for ail fix the notation

where I is a suitable set of nonnegative indices. We will also use the notation
^0 id € F and ^ i/rf1 for if 0.

LEMMA 4.2. Let Fix (F) dénote the set {p e M; ift(p) p for some if 0}. Then

M-Fix (F) is dense in M.
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Proof. Recall that Fix (^) {p g M; ^,(p) p} is a submanifold of dimension
at most n-1 (Kobayashi [8], p. 59). As Fix (F) U Fix (ifc), the topological
dimension of Fix (F) is at most n — 1. Therefore M—Fix (F) is dense in M.

Now we choose a point poèFix(F). According to Lemma 4.1, the orbit F(p0)
is a discrète set of M, and since poè Fix (F), the canonical map from F to F(p0) is

one-to-one. In particular, the points pt ifo(p0) are pairwise distinct and F(p0) is

given as {p, ; i e I}. We will fix this notation for the rest of this section.
In the preceeding section the Dirichlet tessellation has been defined with

respect to an arbitrary discrète set. Now we apply this construction to the orbit
F(p0). Let us dénote by F, the Dirichlet région based at p, ^,(p0) with respect to
F(p0) and by T {F,;iel} the Dirichlet tessellation so obtained. Clearly ail the
results of Section 3 apply to the présent situation. Hère we consider the additional
properties of T which resuit from taking the discrète set to be the orbit of a

nonfixed point of a discrète group of isometries. The most important new
property is the congruence of ail of the régions F,. More precisely,

LEMMA 4.3. Consider the Dirichlet tessellation T {Ft; iel} with respect to

F(p0). Then F^faiFo), and a similar statement holds for clFg, bdF,, regbdF,,
singbd F,, respectively. In particular, if Sis a side ofF0, then ^(S) is a side ofFv

Proof. We only prove F, tfo(F0). Assume p e Fo. Then d(^(p), p,) d(p, p0) <
p, Pk)= difoip), «k(Pk)) f°r aN k^ 0. Now observe that if fc runs over ail indices

différent from 0, then ifo ° \ffk runs over ail éléments of F différent from ifo. Thus
*l*i(Pk) — *l*i ° ^k(Po) r^ns over ail points of F(p0) différent from pv Therefore the

inequalities for ifo(p) imply that ^(p)6Fr
Conversely, if qeFl9 then the same argument shows that ^l(q)eFOi hence

Together with Lemma 4.3, the basic property of the Dirichlet tessellation

(Proposition 3.4) translates into the well known fact that any single Dirichlet
région provides a fundamental région for the action of F on M.

In Lemma 3.15 we hâve classified the points of M with respect to a discrète
set by the number

#{i€l;p€dFl}.

Hère we may equivalently define

N(p) #{i g I;^(p)€ cl Fo}.
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Let us define in addition n(p) #(F(p) H cl Fo). Then Lemma 4.1(3) implies
N(p) *(p) • n(p), where i(p) is the order of the isotropy group Fp.

PROPOSITION 4.4. Let p be a point of M.
(1) If N(p) 1, then peFt for some i, p is not a point of Fix (F), and p has no point

équivalent under F in cl Fr
(2) If N(p) 2, then p e reg bd Ft for some i, and one of the following holds.

(a) p^Fix (F), and p has exactly one point équivalent under F in cl F, (actually
in reg bd F,).

(b) p is a fixed point of an isometry i/r e F with \\t2 id, and p has no point
équivalent under F in cl Fv

(3) N(p) > 3, then p e sing bd F, for some i.

Proof. Recall Lemma 3.15. For the additional assertions, if suffices to observe
that N(p) 1 implies i(p) — n(p) 1, whereas N(p) 2 implies either i(p) 1 and

n(p) 2, or i(p) 2 and n(p) 1.

Now we turn our attention to the sides of a given Dirichlet région.

DEFINITION 4.5. Two sides S, and S, of Fo are called conjugate sides if
there is an élément i/>gF, if/j^ id, with the property t//(St) Sr Such an isometry is

called a conjugating isometry.

PROPOSITION 4.6. Let S, be a side of Fo. Then there exists a unique
conjugate side, namely S_t ^(S,), and the conjugating isometry ^_, is uniquely
determined. Moreover, if S, is self-conjugate, then i^f id.

Proof. Let S, be a side of Fo. Then S, is also a side of F, by Lemma 3.8 (1).
Thus S.^iMS) is a side of i^_l(Fl) F0 (cf. Lemma 4.3). Therefore S_, is a

conjugate side of S, with conjugating isometry i//_r
Set Xt ={i^6F; ^(St)czclF0}. Since

for any peSt and N(p) 2 for ail p e S,, we hâve 2, {t|>0, «A-,}. This proves both

uniqueness assertions.

If i|r_l(Sl) SI, then ty\ (Sl) St. Hence ifj2ileSv Since t/^^id, this implies
i/^, id. Hence tf id.

We now corne to the main resuit of Section 4.



Dirichlet régions in manifolds 657

THEOREM 4.7. Let F be a discrète subgroup of I{M) and let Fo be the

Dirichlet région based at po£Fix(F) with respect to r(p0). Dénote by X the set of
isometries

2 {ifjle F; S, is a side of Fo}.

Then X générâtes F. In particular, if Fo has only finitely many sides, then F is

finitely generated.

Proof. Let \\f} be an arbitrary élément of F. By Corollary 3.18 (2), we may join
p0 and Pj by a path c :[0,1]—»reg T. The compact set c([0,1]) meets only finitely
many members of the tessellation T {Ft; iel}.

Set fo sup{fe[0,1]; c(t)e cl Fo}. Since clF0 is closed, we actually have

c(to)e cl Fo. If to=l, then ^=id and there is nothing to prove. On the other
hand, to>0, because c(0) p0 lies in the open set Fo. By our choice of the path c

and the définition of t0, the point c(t0) is a regular boundary point of Fo. Hence
there is a well defined index ixel such that c(to)eSH<^clFonil/H(clFo). By
définition of X the isometry i/ftl is contained in X.

Now we set *1 sup {te[0,1]; c(t)eclFlx}. If tt l the process stops and

if/, i/^. Otherwise tx < 1. We claim that tx > t0. It is clear that tx ^ to. According to
Lemma 3.8(2), there is a neighborhood of c(t0) which is contained in F0U Sh U Flx,

and since c must leave cl Fo for f > t0, it has to stay in FH for some t > t0. This

implies that t1>t0.
Again c(fx) is a regular boundary point and there is a well defined i2el such

that cOx) g cl Ftl H cl Fl2. Moreover, i2 ^ 0, i^. Since Flx and Fl2 have a common side,
the isometry \\/l2°\lt_lx belongs to X. Therefore t/fl2 can be written as a product of
éléments of X,

After finitely many steps this process ends with ^ tyr Thus i^ can be written
as

Remarks, (1) The proof of Theorem 4.7 follows the classical scheme (c/.
Busemann [1], Thm. 2.10 for gênerai spaces). The new ingrédient is Corollary
3.18, which enables us to choose a path in reg T. Thus we get X {
S, is a side of Fo} as a set of generators, rather than the larger set {

(2) As has been noted by L. Danzer, the group generated by the translations

z»-*z + l and zt->z + elîr/3, zeC, shows that the set of generators given by
Theorem 4.7 is not necessarily minimal.

(3) For n 2 and F acting freely, Eberlein has proved that F is finitely
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generated if and only if one (and hence ail) Dirichlet régions hâve finitely many
sides (Eberlein [3], Thm. A). For n ^ 3 this is no longer true (cf. Greenberg [5],
Thm. 2).
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