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Dirichlet regions in manifolds without conjugate points

PauL E. EnrrLicH! and Hans-CHristorH IMm HoF?

1. Introduction

The aim of this paper is to study Dirichlet tessellations of simply connected
complete riemannian manifolds without conjugate points. In particular, we will
describe the geometrical and topological structure of the boundary of a single
Dirichlet region. Throughout this paper M will always denote an n-dimensional,
simply connected complete riemannian manifold without conjugate points.
Let ( , ) denote the riemannian metric of M and d the distance function induced
by ( , ). Recall that M has no conjugate points if and only if every pair of distinct
points of M can be joined by a unique geodesic segment (up to parametrization).

For a given discrete subset D ={p;; i€ I} of M, the Dirichlet regions F, are
defined by

F,={peM; d(p, p;))<d(p, p.) for all k# i},

and the collection T ={F;;ie I} is called the Dirichlet tessellation induced by D.
For simplicity we state our main results for F.

THEOREM 3.6. bd F, is an (n—1)-dimensional topological submanifold of
M. Moreover, bd F, admits a differential structure and is thus triangulable.

For a more detailed study of bd F, we set

Si ={pe M; d(p, p,) = d(p, p;) <d(p, p,) for all k#0, i}
and

Bi = {pe Ms d(p’ pO) = d(p’ pt)s d(p’ pk) fOI' all k# Oa l}

! Supported partly by the Sonderforschungsbereich “Theoretische Mathematik™ at the University
of Bonn and partly by a grant from the Research Council of the Graduate School, University of
Missouri-Columbia.

2Supported by the Swiss National Science Foundation and the Sonderforschungsbereich
“Theoretische Mathematik™ at the University of Bonn.
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We call S; a side of F, if S, is nonempty. Except for the case that dim M =2 (cf.
Eberlein [3]), the sides may fail to be connected and also cl S; may be different
from B,. However we find

THEOREM 3.14. bd F,= Ucl S,

Often the discrete set D is given as an orbit of a discrete group of isometries
of M. Then the Dirichlet regions are all congruent and provide constructable
fundamental regions for the group action. As an application of our study of the
sides of a Dirichlet region we obtain

THEOREM 4.7. Let I' ={y;; i€ I} be a discrete group of isometries of M and
let F, be the Dirichlet region based at p, with respect to {p; = ¥,(p,); i € I} where p,
is not a fixed point of I.

Then the set

3={y,el;S, is a side of Fy}

generates I. In particular, if F, has only finitely many sides, then I is finitely
generated.

The paper is organized as follows. Section 2 contains a summary of the
properties of bisectors and half spaces needed in the sequel. In Section 3 we study
the Dirichlet tessellation induced by an arbitrary discrete set D < M. First we
develop along classical lines the elementary properties of Dirichlet tessellations
(Prop. 3.3 and 3.4) which are well known in many particular cases. The main part
of Section 3 deals with the boundary and the sides of a single Dirichlet region and
contains the first two theorems stated above. Finally in Section 4 we investigate
additional properties of the Dirichlet tessellation arising from the congruence of
the Dirichlet regions when D is given as the orbit of a nonfixed point of a discrete
group of isometries.

We would like to thank P. Eberlein for his help in connection with Theorem
3.14.

2. Bisectors and half spaces

We begin with some general properties of the bisectors and the half spaces
determined by them. Throughout this section we fix three distinct points p, g, r of
M.
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DEFINITION 2.1.

(1) We define a function h: M — R by h(m)=d(m, p)—d(m, q).

(2) M(p, q)=h~'(0) is called the bisector of p and q.

(3) H(p, q) ={m e M; h(m)<0} denotes the open half space determined by
M(p, q) containing p. Similarly H(q, p) denotes the half space containing q.

(4) We set M(p, g, )= M(p, q) N M(p, r).

First we note

PROPOSITION 2.2.

(1) (Witt [12], Ozols [10], Prop. 2.4) M(p, q) is an (n— 1)-dimensional differenti-
able submanifold of M.

(2) (Ozols [10], Prop. 2.6) M(p, q) and M(p, r) intersect transversely whenever they
intersect at all.

(3) M(p, q, r) is either empty or is an (n—2)-dimensional differentiable submanifold
of M.

Proof. (1) We have to show that grad h never vanishes on M(p, q). Let d, and
d, denote the distance functions given by d,(m)=d(m, p) and d,(m)=d(m, q).
Now suppose grad,, h =0 for some m € M(p, q). This implies grad,, d, =grad,, d,
and thus p=gq.

(2) Let d,, d,, d, be defined as in (1). We have to show that grad, d,—
grad,, d, and grad,, d, —grad,, d, are linearly independent in T, M, where m is
any point of M(p, q)NM(p, r). Suppose this is not the case. Then grad,, d,
grad,, d,, and grad,, d, must lic on an affine line in T, M. This is impossible for

three distinct unit vectors. Clearly (2) implies (3).

A more detailed investigation (Im Hof [7], Prop. 2.6) shows that M(p, q) is
diffeomorphic to R"~'. Also, for dim M = 2, the sets M(p, g, r) are either empty or
consist of a single point (Eberlein [3], Prop. 2.8, Ehrlich-Im Hof [4], Cor. 2).

In manifolds of constant sectional curvature, bisectors are totally geodesic and
the half spaces determined by them are convex. These facts are widely used in the
theory of fuchsian groups. However, in more general cases, the bisectors are no
longer totally geodesic, nor are the half spaces they determine convex. Indeed, all
bisectors M(p, q) of M are totally geodesic if and only if M has constant sectional
curvature (Busemann [2], Thm. 47.4, p. 331).

A property which is weaker than the convexity of the half spaces, but which is
still very useful, is the starlikeness of the half spaces H(p, q) with respect to p. To
show that this starlikeness holds in our context (Prop. 2.6(2) below), we consider
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the behavior of geodesic rays through p with respect to M(p, q). Let c,, denote
the unique geodesic with c,,(0)=p and c,,(d)=q, where d =(p, q).

PROPOSITION 2.3.

(1) Let c:[0, %) — M be a geodesic ray with c(0) = p. If the ray c is not contained in
Cpq then h(c(t)) is strictly increasing for all t=0. If ¢ = ¢,4|[0, ), then h(c(?)) is
strictly increasing for 0<t=<d and h(c(t))=d for t=d. If ¢(0)=—¢,,(0), then
h(c(t))=—d for all t=0.

(2) Let c:[0,%) — M be a geodesic ray with c(0) = p. Then c intersects M(p, q) at
most once and transversely.

(3) Let c:R— M be a geodesic with c(0)=p. Then c intersects M(p, q) at most
once.

Proof. (1) We may assume ||¢||=1. Consider first a geodesic ray ¢ with
¢(0) # £¢,,(0). Suppose h(c(s))= h(c(t)) for 0<s <t This implies

d(g, c(1)) = d(q, c(s)) +d(c(s), c(1)),

hence

d(q, c(1)) = d(q, c(s)) +d(c(s), c(1))

by the triangle inequality. But equality occurs only when the three points g, c(s),
c(t) lie on a geodesic. This contradicts our assumption on c.

The behavior of h along the geodesic c,, is obvious.

(2) Uniqueness of the intersections of ¢ with M(p, q) immediately follows
from the monotonicity of h o ¢ proved in (1). Now we assume that a geodesic ray ¢
intersects M(p,q) at a point m=c(t)e M(p,q) and we show transversality.
Suppose the intersection is not transverse, i.e., (¢(t), grad,, h) = 0. Using the same
notation as in the proof of Proposition 2.2 we may write grad h=
grad d, —grad d,. Moreover, grad,, d,=¢(t). Then our assumption implies
(grad,, d,, grad,, d,) = (grad,, d,, grad,, d,) =1, hence grad,, d, =grad,, d,. This is
impossible, since m € M(p, q) and p# q.

(3) Suppose c:R—M is a geodesic with c¢(0) = p intersecting M(p, q) in two
points c(s) and c(t). By (2) we may assume s <0<t Then we have

d(c(s), c(1)) = d(c(s), p) +d(p, c(1)) = d(c(s), q) +d(g, c(1)).

This equality is only possible if g lies on the geodesic segment between c(s) and
c(t). This would imply p =gq.
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Remark. Uniqueness of the intersections of geodesic rays through p with
M(p, q) (or with bd F,, see Prop. 3.3(3) below) is well known (Busemann [1],
2.12; Ozols [10], Prop. 3.2; for n =2, Eberlein [3], Prop. 2.6). Transversality has
first been proved in Im Hof [7], Lemma 2.5.

Now we define the concept of a strictly starlike subset of M. For this purpose
we set

(m, m')={c(1); te (0, 1)},
where c:[0, 1]— M is the geodesic segment joining m and m'.

DEFINITION 2.4. A subset F of M is strictly starlike with respect to a point
m e F if for every point m’ecl F the segment (m, m’) is contained in int F.

Knowing that a set F is strictly starlike rather than just starlike with respect to
a point has implications about the topology of F. Explicitly

LEMMA 2.5. Let F and G be two subsets of M with F < G and let m be a point
of F. Suppose that for each m'e G the segment (m, m') is contained in F. Then
GcclF and int GE F.

Proof. Let m’ be a point of G and let U be a neighborhood of m’. The
segment (m, m’) lies in F and contains points of U. Hence m'ecl F.

Now let m’ be a point of int G and let U be a neighborhood of m’ contained
in G. The segment (m, m’) can be extended to a segment (m, m”) such that m"e U
and m' e (m, m"). Since m” € G, the whole segment (m, m") lies in F. In particular,
m'eF.

We are now able to show

PROPOSITION 2.6.

(1) ¢l H(p, q) = H(p, q) U M(p, 9),
intcl H(p, q9) = H(p, q),
bd H(p’ Q) = M(p’ Q)

(2) H(p, q) is strictly starlike with respect to p.

(3) The half spaces H(p, q) and H(q, p) are the connected components of M—
M(p, q).

Proof. Obviously cl H(p,q)< H(p,q)UM(p,q) and H(p,q)<int(H(p, q)U
M(p, q)). By Proposition 2.3(1), the hypothesis of Lemma 2.5 is satisfied
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for H(p, q), H(p, q) U M(p, q), and p. Thus we may conclude the proof of (1). Since
clH(p,q)=H(p, q)UM(p, q), Proposition 2.3(1) also implies (2) which then
implies (3).

We now consider the set of geodesic rays through p intersecting M(p, q).
Denote the unit tangent sphere at p by S. For each veS we denote by
¢, :[0,0) — M the geodesic ray with ¢,(0)=p and ¢,(0)=v. Since each ray c,
intersects M(p, q) at most once, we may define A ={v e SS; ¢, intersects M(p, q)}
and two functions ¢: A —> M(p,q) and ¢: A —R by ¢(v)=c,(0,°)NM(p, q)
and ¢(v)=d(p, ¢(v)). The transversality of the intersection of c, with M(p, q)
implies

PROPOSITION 2.7.

(1) A is open in S.
(2) ¢:A— M(p, q) is a diffeomorphism.
(3) ¢: A —R is differentiable.

Proof. Let w denote the projection of M—{p} onto S defined by w(m) =1,
where m = ¢, () for suitable ¢. Since M(p, q) is an (n — 1)-dimensional submanifold
transverse to the geodesic rays c,, i.e., transverse to the fibers of 7, the map
w|M(p, q): M(p, q) — S is a local diffeomorphism. As A = w(M(p, q)), property
(1) holds. Now ¢ = (7 |M(p, q))"* and = |M(p, q): M(p, q)— A is bijective. This
implies (2) and (3).

3. The Dirichlet tessellation induced by a discrete set

In this section we consider an arbitrary discrete set D < M. By definition, D
has no points of accumulation in M, or equivalently, D is locally finite, i.e., every
compact set of M contains only finitely many points of D. In particular, D is at
most countable and we may thus once and for all fix the notation

D ={po, p1, P>, - - }={p; ie}= M,

where I is a suitable set of indices.
The discrete set D may be finite or infinite, but we will always assume that it
contains at least two points.

DEFINITION 3.1. Let D={p,;; ie I} be a discrete set of M.
(1) The Dirichlet region with basepoint p, is the set

F,={peM; d(p, p) <d(p, p) for all k# i}.
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(2) The collection T ={F;; i € I} is called the Dirichlet tessellation induced by D.

The purpose of this section is to investigate the properties of a single Dirichlet
region as well as those of the whole tessellation with respect to a given discrete set
D. Whenever we deal with a single region, we may restrict our attention to Fj,.
The following notation will be used throughout this section.

DEFINITION 3.2. For iel, i#0 we set

(1) M, = M(p,, p:), the bisector of p, and p..
(2) H,= H(po, p:), the half space determined by M, containing p,.
Using this notation we have F,= N H,

The basic properties of a single Dirichlet region are summarized in

PROPOSITION 3.3. Let F, be the Dirichlet region with basepoint p,€ D. Then

(1) F, is nonempty and open in M.
(2) cd Fy={pe M; d(p, po)<d(p, p;) for all i#0}, and intcl F,= F,,.
(3) F, is strictly starlike with respect to p,.

Proof. Obviously F,# (J. Now let p be any point of F, and denote by d, the
distance d(p, p.). Since p € F, we have d,<d, for all k# 0. The discreteness of D
implies that there exists an index i€ I with d,<d;<d, for all k#0, i. Now we
choose & =(d;,—d,)/2. By the triangle inequality the open ball U(p,¢)=
{ge M; d(q, p) <e} is contained in F,. This proves (1).

For the proof of (2) let us write

Go=1{p e M; d(p, py) <d(p, p,) for all i# 0}.

Clearly F,< G,. Since G,= Ncl H, G, is closed in M and we have cl F,< G, as
well as F, <int G,. Since all the half spaces H; are strictly starlike with respect to
Po, the segment (p,, p) is contained in F, for all p € G,. Using Lemma 2.5 we may
then conclude the proof of (2).

Since cl F, = G,, we also obtain (3).

We now state the fundamental property of the Dirichlet tessellation.

PROPOSITION 3.4. Let T={F,; i I} be the Dirichlet tessellation induced by
the discrete set D. Then
(1) FENc F,=O fori#]j.
(2) M= Ucl F, and the covering is locally finite.
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Proof. (1) is obvious. For the proof of (2) let p be a point of M and denote by
d, the distance d(p, p,). Since D is discrete, there exists an index i€ I such that
d; <d, for all k# i. This implies pecl F,.

Now let K be a compact set in M, e.g., the closed ball K= B(p,, R)=
{ge M; d(q, po)<R}. Assume pecl FNK. Then d(p, p;,)<d(p, po)<R and thus
d(po, p;) <d(po, p) + d(p, p;) <2R. This is possible only for finitely many i€ L

Now we begin a more detailed study of the boundary of a single Dirichlet
region. Again we restrict our attention to F,. By Proposition 3.3(2) we have
bd F,=cl F,— F,= U B,, where

B; =cl F,N M, ={p e M; d(p, po) = d(p, p;) <d(p, p:) for all k#0, i}.

Our investigation of bd F, is based on a study of the geodesic rays emanating
from p,. Let S denote the unit tangent sphere at p,. For ve S let c,:[0,©) > M
be the geodesic ray with c,(0) = p, and ¢, (0) = v. According to Proposition 3.3(3),
each ray c, intersects bd F, at most once. Thus we may define A={veS;c,
intersects bd F,} and two functions ¢: A —>bdF, and ¢:A—R by ¢(v)=
¢,(0,2)Nbd F, and ¢(v) = d(po, ¢(v)).

PROPOSITION 3.5.
(1) A is open in S.
(2) ¢: A —R is continuous.

(3) ¢:A—>bd F, is a homeomorphism with respect to the induced topology on
bd Foc M.

Proof. First we recall the analogous construction for a single bisector. Let A;
be the set {veS;c, intersects M} and define ¢;: A;,— M, and ¢;: A;—>R by
¢,(v)=c¢,(0,°)N M, and ¢;(v) = d(po, :(v)). According to Proposition 2.7, A, is
open in S, ¢, is differentiable, and ¢, is a diffcomorphism.

Now consider v € A. Since ¢(v)ebd Fy= U B,, there is some i€l such that
¢(v) e M,. Hence v € A, ¢(v) = ¢;(v), and ¢(v) = ¢;(v). Conversely, if v € A, then
¢.(v)e M,. Thus ¢;(v)2F, and so the geodesic segment from p, to ¢;(v) must
intersect bd F,. Therefore ve A and ¢(v)=<¢;(v). These arguments show that
A=UA, and ¢ =min ¢, This implies at once that A is open in S and that ¢ is
upper-semicontinuous.

In order to show that ¢ is continuous, we choose an element ve A and a
sequence {v,}< A converging to v. Since ¢ is upper-semicontinuous, the sequ-
ence {¢(v,)} is bounded. Thus we may assume that {¢(v,)} converges to a number
d eR. It remains to show that ¢(v) =d.
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Since ¢(v,)=c, (¢(v,))ebd F, and bd F, is closed, the sequence {¢(v,)}
converges to c,(d)ebd F,. This implies that ¢(v)= c,(d), hence ¢(v)=d.

Using geodesic polar coordinates at p,, we may regard ¢: A —bd F, as the
graph of the continuous function ¢. Therefore ¢ is a homeomorphism.

As an immediate consequence of Proposition 3.5 we have

THEOREM 3.6. bd F, is an (n—1)-dimensional topological submanifold of
M. Moreover, the homeomorphism ¢ : A — bd F, induces a differential structure on
bd F,. Hence bd F, is triangulable.

Recall the presentation bd F,= U B;. Our aim is to simplify this presentation
by omitting those members of the collection {B;} which are redundant. Whenever
B, contains a point p which is not contained in any B, for k # i, then certainly B;
may not be omitted. This motivates the following

DEFINITION 3.7.

(1) S;={peM; d(p, po) = d(p, p) <d(p, p.) for all k#0, i}.
(2) If S;# I, we call S; a side of F,.

Remark. This definition of sides is identical with Ozols’ definition of faces (cf.
Ozols [10], p. 225) and essentially equivalent to Eberlein’s definition of bounding
sides (cf. Eberlein [3], Def. 2.2). If dim M =2, arguments of Eberlein (loc. cit.,
Lemma 2.11, p. 38) show that the sides are connected. An essential ingredient in
his proof is the fact noted above that for dim M = 2, the sets M(p, g, r) are either
empty or consist of a single point. However, examples show that the sides may fail
to be connected for dim M=3.

The next lemma is crucial for the fitting together of neighboring Dirichlet
regions.

LEMMA 3.8.
(1) If S, is a side of F,, then it is also a side of F.
(2) F,US,UF, is open in M.

Proof. (1) is an obvious consequence of the definition of sides. For the proof of
(2) it suffices to show that each point of S; has a neighborhood contained in
FoUS,UF,. Let E; be the Dirichlet region based at p, with respect to D—{p,}.
Then E; is open, and it is easily verified that S, E, < F,U S, UF,

The following result is a topological characterization of the sides of bd F,,.
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PROPOSITION 3.9. S, =int,, 5, B, = inty, B.

Proof. Recall S, < B; =bd F,N M, We first show that int,q 5, B; =inty, B;. It
suffices to prove that a set U < B; which is open in bd F, is also open in M,, and
vice-versa. Let ¢ : A —bd F;, and ¢, : A, = M, be the maps studied in Proposition
3.5. Given Uc B, we set V=¢ (U)c A and V,= ¢, (U)< A,. Since Uc B, =
bd F,N M, the sets V and V, coincide, and so do the maps ¢ |V and ¢;| V;. Now
it is clear that U is open in bd F,, if and only if it is open in M,. From now on we
will write int B; instead of intyy g, B; (or inty, B;).

Next we show that S, =int B,. Let p be a point of S,. According to Lemma
3.8(2), there is a neighborhood U of p in M which is contained in F,U S; UF,
Then UNM,;=UNS, and V=UNM, is an M,-neighborhood of p contained in
S;- Hence p is an interior point of B,.

Conversely, let p be a point of B, —S,. We claim that p cannot be an interior
point of B; (with respect to M,). Let U be any M;-neighborhood of p. We will
construct a point g € U which does not belong to B,. Since p € B; — S,, there is an
index k# i such that pe B, N B, =« M; N M,. Let h, denote the function defined by
h.(p) = d(p, po)— d(p, p.)- Since M; and M, intersect transversely, grad (h, |M;)
does not vanish on M; N M,. Let u be an integral curve of grad (h, | M,) through p.
Then for sufficiently small £ >0 the point q = u(e) lies in U, but h,(q)>0, so g
lies outside cl F,,.

As a consequence of Propositions 3.9 and 2.7(2) we have

COROLLARY 3.10. S; is an open submanifold of bd F, and of M, The
differential structures of bd F, (as given by Theorem 3.6) and of M; (as a
submanifold of M) coincide on S,.

DEFINITION 3.11.

(1) A point pebd F, is called a regular boundary point of F, if it belongs to a side
of F,. The set of regular boundary points of F, is denoted by reg bd F,.

(2) The complement bd F,—reg bd F, is called the set of singular boundary points
of F, and denoted by sing bd F,,.

PROPOSITION 3.12.
(1) sing bd F, is closed in bd F,.
(2) The topological dimension of sing bd F, does not exceed n—?2.

Proof. We have the presentation sing bd F,= U (bd F,N\ M, N M,), where the
union is taken over all indices i, j with 0# i# j# 0. Each of the sets bd F,\ M, N

M; is closed in bd F,, and their union is locally finite. Thus sing bd F, is closed in
bd F,.
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By Proposition 2.2(3), M;N M, is either empty or is an (n—2)-dimensional
submanifold of M. Hence bd F, N M; N M, has topological dimension at most n —2
(cf. Hurewicz-Wallman [6], Thm. IIL.1, p. 26). As a countable union of such
spaces, bd F, itself has topological dimension at most n—2 (cf. Hurewicz-
Wallman [6], Thm. IIL.2, p. 30).

COROLLARY 3.13. regbd F, is open and dense in bd F,,.

Proof. It suffices to observe that sing bd F,, cannot contain an open subset of
bd F,, since dim (bd F) = n— 1, whereas dim (sing bd Fy) <n—2.

Remark. For Dirichlet regions induced by a discrete group acting freely and
isometrically on M, Corollary 3.13 is a consequence of Sugahara [11], Theorem
A. A proof for general discrete groups using the Baire Category Theorem was
communicated to us by Eberlein (personal communication).

The closures of S; with respect to bd F,, M,, or M, all coincide. In the
following theorem we may therefore use the notation cl S; without ambiguity.

THEOREM 3.14. bd F,= Ucl S..

Proof. Let p be a point of bd F,. If p is a regular boundary point, then p € S,
for some i. In general, choose a basis {U,} of bd Fy-neighborhoods with pe
U,.+1< U,. According to Corollary 3.13, each U, contains a regular boundary
point g, belonging to some side S,_. The sequence {q,} converges to p.

We may assume that all U, lie in some compact ball B(p,, R). Then g, €
B(py, R) implies p,_ € B(py, 2R). Therefore only finitely many different indices can
occur in the sequence {i,}. Hence there exists an index i that occurs infinitely
many times. This determines a subsequence of {g,} contained in S; and converg-
ing to p. Thus pecl S,

Remark. Obviously cl S, < B,, but examples show that S;# & and cl S,;# B; is
possible. Thus the presentation bd F,= Ucl S; may be finer than the presentation
bd F,= U{B;; S, is a side of F,}. The latter was obtained by Eberlein (personal
communication) for Dirichlet regions induced by a discrete group (see Section 4)
using the density of regbd F, in bd F,. For dim M =2, see also Eberlein [3],
Proposition 2.9.

So far we have only considered the boundary of a single Dirichlet region, but
it is clear that the classification into regular and singular boundary points applies
to all regions of the Dirichlet tessellation. More precisely, we have

LEMMA 3.15. Let N(p) denote the cardinality of the set {ie I, pecl F;}. Then
1=<N(p) < and the following hold:
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(1) N(p)=1 if and only if p belongs to F; for some i€ I
(2) N(p)=2 if and only if p belongs to a side of some F,
(3) N(p)=3 if and only if p is a singular boundary point of some F.,.

Now we define

DEFINITION 3.16.
(1) regT={pe M; N(p)<2},
(2) sing T={pe M; N(p)=3}.

PROPOSITION 3.17.
(1) sing T is closed in M.
(2) The topological dimension of sing T does not exceed n—2.

Proof. We have the presentation sing T= U(cl F;Ncl F,Ncl F,), where the
union is taken over all triples of pairwise distinct indices. Since this union is

locally finite and countable, the rest of the proof is similar to that of Proposition
3.12.

COROLLARY 3.18.
(1) reg T is open in M.
(2) reg T is connected.

Proof. It suffices to observe that a subspace of topological dimension at most
n—2 cannot disconnect M (cf. Hurewicz-Wallman [6], Thm. IV.4, p. 48).

Remark. The properties of the sets {pe M; N(p) =1} and {pe M; N(p)=2},
which by Lemma 3.15 follow from our study of F, and its sides, might suggest
that a stratification of M could be obtained using {pe M; N(p) =k} as strata.
However, these sets are not necessarily manifolds if k =3, because intersections
of the form M(p, q, r) N M(p, s) need not be transverse.

4. The Dirichlet tessellation induced by a discrete group

.In this section we come to the most important application of the Dirichlet
tessellation. Here we no longer begin with an arbitrary discrete set D < M, but
with a particular discrete set obtained from the action of a discrete group of
isometries of M.

Let I(M) be the full group of isometries of M. A subgroup I" of I(M) is called
discrete if it is a discrete subset of I(M) with respect to the compact-open

topology of I(M).
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Throughout this section we consider a fixed discrete subgroup I" of I(M). The
fact that we are dealing with isometries of a riemannian manifold has some
important consequences.

LEMMA 4.1. Let I" be a discrete subgroup of I(M).

(1) For all pe M the isotropy group I', ={¢ € I'; y(p) = p} is finite. Denote its order
by i(p).

(2) For all pe M the orbit I'(p) ={y(p)e M; YT} is a discrete subset of M.

(3) The canonical map from I'" to I'(p) given by ¢+ Y(p) is i(p)-to-one.

(4) T is countable.

Proof. (1) The full isotropy group I,(M)={ycI(M); ¥(p)=p} is compact
(Kobayashi-Nomizu [9], vol. I, p. 239), and hence I, =I'NI,(M) is finite.

(2) Suppose that I'(p) is not discrete. Then there exists a sequence {¢,(p)}<
I'(p) of pairwise distinct points converging to some point of M. This implies the
existence of a subsequence of {y,}<=I" which converges to an element of I(M)
(Kobayashi-Nomizu [9], vol. I, p. 47-48). Since the elements of {y,} are pairwise
distinct, this contradicts the discreteness of I.

(3) By definition the canonical map I' — I'(p) is i(p)-to-one at the point
pel'(p). For any other point (p)eI'(p) it suffices to observe that I, =
Yo, oy, hence i(Y(p))=i(p).

(4) Since I'(p) is discrete in M, it is countable. Together with (3) this implies
that I' is countable.

Remark. By the same type of arguments as above one shows that the
following properties are equivalent.
(1) T is a discrete subgroup of I(M).
(2) I acts discontinuously at a point of M.
(3) I' acts discontinuously on M. -
(4) I' acts properly discontinuously on M.
Hence we will not use the concepts of discontinuity.

Since I' is countable we may once and for all fix the notation

F=‘{¢O’ ‘l’l’ 4’2’ & '}={¢i; i€ I}C I(M)s

where I is a suitable set of nonnegative indices. We will also use the notation
Yo=id €I and ¢_, =y, " for i#0.

LEMMA 4.2. Let Fix (I') denote the set {p € M; ;(p) = p for some i# 0}. Then
M -Fix (I') is dense in M.
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Proof. Recall that Fix (y;) ={p € M; {s(p) = p} is a submanifold of dimension
at most n—1 (Kobayashi [8], p. 59). As Fix (I')= UFix (¢), the topological
dimension of Fix (I') is at most n— 1. Therefore M —Fix (I') is dense in M.

Now we choose a point p, ¢ Fix (I'). According to Lemma 4.1, the orbit I'(p,)
is a discrete set of M, and since p, ¢ Fix (I'), the canonical map from I' to I'(p,) is
one-to-one. In particular, the points p, = y;(p,) are pairwise distinct and I'(p,) is
given as {p;; i € Il. We will fix this notation for the rest of this section.

In the preceeding section the Dirichlet tessellation has been defined with
respect to an arbitrary discrete set. Now we apply this construction to the orbit
I'(p,). Let us denote by F, the Dirichlet region based at p, = ¢;(p,) with respect to
I'(po) and by T={F;; i€ I} the Dirichlet tessellation so obtained. Clearly all the
results of Section 3 apply to the present situation. Here we consider the additional
properties of T which result from taking the discrete set to be the orbit of a
nonfixed point of a discrete group of isometries. The most important new
property is the congruence of all of the regions F,. More precisely,

LEMMA 4.3. Consider the Dirichlet tessellation T ={F;; i€ I} with respect to
I'(py). Then F, = {;(F,), and a similar statement holds for cl F,, bd F,, regbd F,,
sing bd F,, respectively. In particular, if S is a side of F,, then {(S) is a side of F..

Proof. We only prove F, = §;(F,). Assume p € F,. Then d(y;(p), p;) = d(p, po) <
d(p, p.) = d(¥(p), ¥:(p.)) for all k# 0. Now observe that if k runs over all indices
different from 0, then ¢, o Y5 runs over all elements of I" different from . Thus
Ui (pe) = ¢ © Y (po) runs over all points of I'(p,) different from p,. Therefore the
inequalities for ¢;(p) imply that ¢,(p) € F.

Conversely, if qe F,, then the same argument shows that ¢_,(q) € F,, hence
q € §(Fy).

Together with Lemma 4.3, the basic property of the Dirichlet tessellation
(Proposition 3.4) translates into the well known fact that any single Dirichlet
region provides a fundamental region for the action of I' on M.

In Lemma 3.15 we have classified the points of M with respect to a discrete
set by the number

N(p)=#{iel,pecl F}.
Here we may equivalently define

N(p)=#iel; y(p)ecl Fy}.
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Let us define in addition n(p)=#(I'(p)Ncl Fy). Then Lemma 4.1(3) implies
N(p) = i(p) - n(p), where i(p) is the order of the isotropy group I.

PROPOSITION 4.4. Let p be a point of M.
(1) If N(p) =1, then p e F;, for some i, p is not a point of Fix (I'), and p has no point
equivalent under I' in cl F,.
(2) If N(p) =2, then peregbd F; for some i, and one of the following holds.
(a) p¢Fix (I'), and p has exactly one point equivalent under I in cl F; (actually
in regbd F)).
(b) p is a fixed point of an isometry Yy I' with ¢*=id, and p has no point
equivalent under I in cl F,
(3) N(p)=3, then pesingbd F, for some i.

Proof. Recall Lemma 3.15. For the additional assertions, if suffices to observe

that N(p) = 1 implies i(p) = n(p) = 1, whereas N(p) =2 implies either i(p) =1 and
n(p)=2, or i(p)=2 and n(p)=1.

Now we turn our attention to the sides of a given Dirichlet region.

DEFINITION 4.5. Two sides S; and S; of F, are called conjugate sides if
there is an element Y eI, Y #id, with the property ¥(S;) = S;. Such an isometry is
called a conjugating isometry.

PROPOSITION 4.6. Let S, be a side of F,. Then there exists a unique
conjugate side, namely S_; = _,(S;), and the conjugating isometry _; is uniquely
determined. Moreover, if S, is self-conjugate, then y?=id.

Proof. Let S; be a side of F,. Then S, is also a side of F;, by Lemma 3.8 (1).
Thus S_; =¢_;(S,) is a side of ¢_,(F,)=F, (cf. Lemma 4.3). Therefore S_; is a
conjugate side of S; with conjugating isometry ¢_,.

Set 3, ={yel; ¥(S;)=cl F,}. Since

{to, ¥_;} =3, ={yel’; Y(p) ecl Fp}
for any pe S; and N(p) =2 for all pe S, we have 3, ={¢, ¥_;}. This proves both
uniqueness assertions.

If ¢_,(S,)=S, then ¢>; (S;)=S, Hence ¢>;€3,. Since ¢_,#id, this implies
Y?,=id. Hence ¢?=id.

We now come to the main result of Section 4.
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THEOREM 4.7. Let I' be a discrete subgroup of I(M) and let F, be the
Dirichlet region based at p, ¢ Fix (I') with respect to I'(p,). Denote by 3, the set of
isometries

3 ={y,erl; S, is a side of Fy}.

Then 3 generates I'. In particular, if F, has only finitely many sides, then I is
finitely generated.

Proof. Let ¢s; be an arbitrary element of I'. By Corollary 3.18 (2), we may join
Po and p; by a path c:[0, 1]—reg T. The compact set c([0, 1]) meets only finitely
many members of the tessellation T={F;; i€ I}.

Set t,=sup{te[0,1]; c(t)ecl Fy}. Since clF, is closed, we actually have
c(tp)ecl F,. If t,=1, then ¢;=id and there is nothing to prove. On the other
hand, #,>0, because c(0) = p, lies in the open set F,. By our choice of the path c
and the definition of t,, the point c(t,) is a regular boundary point of F,. Hence
there is a well defined index i,el such that c(t)e S, <cl F,Ny,(cl Fy). By
definition of ¥ the isometry y, is contained in 3.

Now we set t;=sup {t€[0,1]; c(t)eclF }. If t;=1 the process stops and
; = ¢, Otherwise t; <1. We claim that t, > t,. It is clear that ¢, =,. According to
Lemma 3.8(2), there is a neighborhood of c(t,) which is contained in F,U S, UF,,
and since ¢ must leave cl F, for t>t,, it has to stay in F, for some t>t,. This
implies that ¢, > .

Again c(t,) is a regular boundary point and there is a well defined i, € I such
that c(t,) ecl F, Ncl F,.. Moreover, i, #0, i;. Since F, and F, have a common side,
the isometry ¢, oy_; belongs to 3. Therefore s, can be written as a product of
elements of 3.

After finitely many steps this process ends with ¢, = y5. Thus ¢); can be written
as

Y = (Y o, _Jo - °(¢i2°¢—il)°¢‘il-

Remarks. (1) The proof of Theorem 4.7 follows the classical scheme (cf.
Busemann [1], Thm. 2.10 for general spaces). The new ingredient is Corollary
3.18, which enables us to choose a path in reg T. Thus we get 3 ={y,erl;
S; is a side of F,} as a set of generators, rather than the larger set {y; €I;
cl FoNy,(cl Fy) # T}

(2) As has been noted by L. Danzer, the group generated by the translations
z—>z+1 and z—> z+e"™>, zeC, shows that the set of generators given by
Theorem 4.7 is not necessarily minimal.

(3) For n=2 and I' acting freely, Eberlein has proved that I' is finitely



658 PAUL E. EHRLICH AND HANS CHRISTOPH IM HOF

generated if and only if one (and hence all) Dirichlet regions have finitely many
sides (Eberlein [3], Thm. A). For n=3 this is no longer true (cf. Greenberg [5],
Thm. 2).
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