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On Mackey’s Imprimitivity Theorem*

U. CATTANEO

1. Introduction

Mackey’s Imprimitivity Theorem ([1], Theorem 2; [2], Theorem 6.6) has
played a fundamental role in the genesis and development of the representation
theory of locally compact groups, and has found applications in other fields of
mathematics as well as in quantum mechanics. In the course of the years, it has
been extended to mathematical structures different from groups (cf., for instance,
[3]) and new versions have appeared, some of which avoid Mackey’s separability
assumptions.

In the present paper, we look for a generalization of the Imprimitivity
Theorem in another direction, namely, by admitting subrepresentations of in-
duced representations. It turns out (Section 3) that the Imprimitivity Theorem is
essentially still valid provided transitive systems of imprimitivity are replaced by
“transitive systems of covariance’ (Section 2), i.e., provided positive-operator-
valued measures take the place of projection-valued measures. In particular, we
show that a strongly continuous unitary representation of a second countable
locally compact group G on a separable (complex) Hilbert space is unitarily
equivalent to a representation induced from a closed subgroup of G if and only if
there exists an associated transitive system of covariance. The same problem has
been tackled by Scutaru ([4], Theorem 1) who has shown that the Imprimitivity
Theorem can be generalized to subrepresentations if the positive-operator-valued
measures involved satisfy a given continuity condition. Indirectly, we show here
that Scutaru’s condition is always satisfied (cf. Remark 5). In Section 4, we extend
the result of Section 3 to projective representations.

Every group appearing in what follows will be written multiplicatively, with
neutral element 1. For each topological space X, we shall denote by 35 the Borel
structure (i.e., the o-field) generated by the closed sets of X; whenever X is seen
as a Borel space, it will always be with respect to this structure that we shall call
the Borel structure of X. Every Hilbert space $ considered will be tacitly
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630 U. CATTANEO

understood to be a complex one, and £(9) will stand for the (complex) vector
space of all continuous linear operators in . The symbol ¢, will denote the
characteristic function of a set A.

2. Preliminaries

In preparation for formulating our generalization of Mackey’s Imprimitivity
Theorem, we begin by introducing some terminology which will be used exten-
sively in the sequel.

DEFINITION 1. Let X be a topological space and let § be a Hilbert space. A
(weak) Borel positive-operator-valued measure (concisely: a Borel POV-measure)
on X acting in 9 is a mapping M :Bx — £(9) such that

(i) M is positive, i.e., M(J)=0 and M(B)=0 for all B € Bx;
(i) M is (weakly) countably additive, i.e., if (B;);cn is a sequence of mutually
disjoint elements of 3By, then

MU Bi)=w— Y. M(B), (2.1)
i=0 i=0
where “w—)"" means that the series (M(B;)) converges in the weak operator
topology on £(9).

If M(X)=1dg, then M is said to be normalized.

Note that , if in addition to (i) and (ii) M satisfies

(1iii) M(B)M(B')=M(BNB')
for all B, B' in &8y, then M is a Borel projection-valued measure (concisely: a Borel
PV-measure).

Remark 1. The increasing sequence of positive operators (31—, M(B;)) in (2.1)
is norm-bounded by ||[M(X)|| and therefore converges in the strong operator
topology. It follows that the right-hand side of (2.1) always exists and that the
weak measure M is a strong one too. The norm-boundedness of the sequence
also implies that M is an ultraweak (resp. ultrastrong) measure, i.e., that
o M(B,)) converges in the ultraweak (resp. ultrastrong) topology on £(9).

Remark 2. In order that the mapping M:Bx — £(9) be a Borel POV-
measure on X acting in § it is necessary and sufficient that the mapping
M, :Byx — C defined by M,(B)=(M(B)y | ) be a (bounded) positive Borel
measure for all ¢ € §. Sufficiency follows easily by using the polarization identity.
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Let G be a topological group. A topological space X# J is said to be a
topological (left) G-space if G operates continuously on (the left of) X, i.e., if
there exists a continuous mapping (g, x)—> g.x of the topological product space
G X X into X such that, for each x € X, we have 1.x =x and (gg’).x = g.(g'.x) for
all g.g’ in G. If H is a subgroup of G, we denote by G/H the topological
homogeneous space of left cosets of H in G, which is a topological G-space in a
canonical way.

DEFINITION 2. Let G be a topological group, let X be a topological
G -space, let U be a strongly continuous unitary representation of G on a Hilbert
space 9, and let M be a normalized Borel POV-measure on X acting in . We
say that M is G-covariant and that the ordered pair (U, M) is a system of
G-covariance in 9 based on X if U, M satisfy

U(g)M(B)U(g)™* = M(g.B) ' 2.2)

for all ge G and all B € 3By. The system (U, M) is said to be transitive if so is the
G-space X.

We note that if M is a Borel PV-measure, then (U, M) is a Mackey’s system of
imprimitivity for G based on X and acting in 9.

Two systems of G-covariance, (U, M) in  and (U’, M’) in §’, both based on
X, are said to be unitarily equivalent if there exists a unitary mapping V of § onto
O’ such that

VU(@)=U'(g)V for all geG (2.3)
and

VM(B)=M'(B)V for all Be%y. 2.4)

3. Transitive systems of covariance

Given a family (Y,),.; of Borel spaces and, for each « € I, a mapping f, of a set
X into Y,, we shall denote by o4(f,) the weakest Borel structure on X making
Borel all the mappings f,. The symbol £, () will stand for the vector space £(9)
equipped with the strong operator topology (i.e., the topology of pointwise
convergence) and £;'(9) will stand for the same vector space endowed with the
weak operator topology, which is the topology of pointwise convergence when 9
is considered with the weak topology. We shall denote by h,, (¥, ¢ in D) the
mapping A~ (A | ') of £(9) into C. To end this notational introduction, we
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remember that a topological space X is said to be fully Lindeldf if every subspace
of X is Lindelof.

LEMMA 1. Let (Y,),.; be a family of topological spaces and, for each v € I, let
f. be a mapping of a set X into Y,. If X, equipped with the weakest topology making
continuous all the mappings f,, is fully Lindelof, then Bxand og(f.) are identical.

Proof. The identity mapping of the Borel space (X, Bx) onto (X, og(f.)) is
Borel. On the other hand, let U be an arbitrary open set of the topological space
X. Since U is Lindel6f and since a base of the topology of X is given by the finite
intersections of sets of the form f;'(O,)(v e I; O, open set of Y,), there exist, for
each NeN, a finite subfamily (f_ )i<i<n, Of (f).r and a finite sequence
(O,.)1<i<n, Of open sets with O, <Y, such that

3

N

fou(O.

0i=1

U=

fCS

Therefore U is a Borel set of (X, o4(f,)) and the identity mapping of (X, o4(f.))
onto (X, By ) is Borel. W

LEMMA 2. Let © be a separable Hilbert space. The Borel structure of £,(9)
(resp. £'(9)) is identical with og(h,,).

Proof. Our first remark is that £(9) equipped with the compact-open topology
is a Lusin space ([5], Part I, Ch. II, Theorem 7); hence the Borel structure
generated by its closed sets is identical with the Borel structure of the Lusin space
Z.(9) (resp. £ (D)) by virtue of a well-known Souslin’s theorem ([6], TG.IX, §6,
Prop. 14). It follows that the lemma is also proven for £,(9) once it is proven for
ZY(©D). On the other hand, the desired result for £7(9) follows from Lemma 1
because a Lusin space is fully Lindeldf. In fact, every subspace of a Lusin space is
image by a continuous mapping of a subspace of a Polish space, thus it is Lindelof
([6], TG.IX, Appendice I, Prop. 1). B

LEMMA 3. Let G be a second countable locally compact group and let X be a
transitive Hausdorff G-space. If © is a separable Hilbert space and M is a Borel
POV-measure on X acting in 9, then the mapping g—> M(g.B) of G into £ (D)
(resp. £,(9)) is Borel for all Be®,.

Proof. We first show that, for each ¢ €9 and each B € ®By, the real-valued
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function

g—>M,(g.B)=(M(g.B)¥ | ¢)

defined in G is Borel. To prove this, we remark that the function

fs:(g x)> ds(g™'.x)

of the Borel product space G XX into R is Borel. In fact, X is a Souslin space
since, for a fixed x € X, the mapping g+ g.x of the Polish group G onto X is
continuous; therefore we have Bg.x =Bs XBx (7], Ch. III, §2, Theorem 2),
namely, the Borel structure of the topological product space G X X is identical
with the product of the Borel structures of G and X. This implies that the
mapping (g, x)—g~'. x of the product Borel space G XX onto X, and hence fg,
are Borel. Following Mackey ([8], Lemma 7.1), we can now apply a part of
Fubini’s theorem (cf. [9], §36, Theorem B) and conclude that the function

2> M, (. B)= [ b,n () dM, () = [ ol ) dM, (2)

is Borel.
By using the polarization identity, we see that the complex-valued function

g—>(M(g.B)¢ | ¢') = h,,,(M(g.B))

defined in G is Borel for all ¢, ¢’ in . The desired result follows from Lemma 2,

since a mapping ! of a Borel space into £(9) equipped with o (h,, ) is Borel if and
only if h, , Ol is Borel for all ¢, ¢' in . W

Remark 3. Lemma 3 is also valid if X is a Borel G-space (not necessarily
transitive), i.e., if X is a G-space, is endowed with a Borel structure, and the
mapping (g, x)—>g.x of the product Borel space G XX onto X is Borel. The
definitions of a Borel POV-measure (Definition 1) and of a system of G-
covariance (Definition 2) are obviously also meaningful if X is a Borel G-space
and By the Borel structure of X. The same is true for the notions of a system of
imprimitivity and of unitary equivalence of two systems of G-covariance.

PROPOSITION 1. Let G be a second countable locally compact group, let X be
a countably generated Borel G-space, and let O, 0’ be separable Hilbert spaces. If
(U, M) is a system of G-covariance in  based on X, there exist a separable Hilbert
space 9., an isometric mapping W of O into 9., and a system of imprimitivity
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(U,, P) for G based on X and acting in 9, satisfying

WU(g)=U,(g)W for all geG, 3.1)
WM(B)=P(B)W for all Be®y, (3.2)

and such that the set
M={P(B)Wy |Be By, and e}

is total in 9..
The mapping W is surjective if and only if (U, M) is a system of imprimitivity.
Let (U, M') be a system of G-covariance in ' based on X and unitarily
equivalent to (U, M). If there exist ., W', P', U, W' mutually satisfying the same
relations as, respectively, ., W, P, U,, M when ©', U', M', replace 9, U, M, then
the systems of imprimitivity (U,, P) and (U’, P') are unitarily equivalent.

Proof. By a theorem of Neumark [10], there exist a Hilbert space 9., an
isometric mapping W of 9 into ., and a normalized Borel PV-measure P on X
acting in ©, such that

WM(B)=P(B)W
for all B € Bx. We realize 9., W, and P as follows. Let €4(%x) be the complex

vector space of all step functions based on By taking values in . Define a
positive Hermitian sesquilinear form (:|-) on €4(®x) by

(Z i,

L wida)=Z(M(B.NB)u 4, 43

iJ

where the sums are finite and (-|:) is the inner multiplication on ©. The
right-hand side of (3.3) is independent of the particular form the elements of
€5(Bx) can have as finite sums of terms Ydg (¥ € D; B € By ). This follows from
the additivity of M and from the fact that, given a finite family of elements of .,
it is always possible to choose a finite family of mutually disjoint elements of %y
such that every element of the first family is the union of elements of the second.
The positivity of (-|-) is a consequence of the positivity of M. Let § be the
subspace of all fe &,(®Bx) such that {f|f)=0; then §, is the completion of the
quotient space &, (Bx)/F equipped with the extended quotient form which we
shall denote by (:|-),. The mapping W is defined by Wy =[f,], where f, € €¢(Bx)
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is the constant mapping with the value ¢ and [f,] denotes the equivalence class of
f, modulo ¥; the PV-measure P is given by

P(B)[§ o, | = [Z Uibar, | (4 €93 B B

and extension by continuity. We remark that, for each B € 8, we have M(B) =
W*P(B)W and W*W =1d,, where W* is the adjoint of W. The set

M={P(B)Wy | Be By and e}

is total in 9, ; it follows that P is weakly countably additive because the subset
{P(B)| B e Bx} of £(9.) is norm-bounded and, for each sequence (B;) of mutu-

ally disjoint elements of 85 and each pair P(B)Wy, P(B' )Wy of elements of I,
we have

(P(U B)e@wa [P@ywy) = (M(0 BB'ABY s [¥)

i=0

(M(BNB'NB)Y | ¢)

f
it

3

(P(B,)P(B)W¢ | P(B)WY')..

t

Il
it

Since %y is countably generated and 9 is separable, . is separable. For let
{B;};cx be a clan (or ring) of elements of By generating By and let {{\.};cn be a
dense subset of elements of ; the set

Mo ={P(B.)¢, | B, €{B;} and ¢, e{dn}}

is dense in IN. In fact, for each P(B)W¢ eI and an arbitrary positive real
number &, we can choose B, €{B;} such that (P(BAB,)W¢ | Wy)Y2<¢/2 ([9],
§13, Theorem D) and ¢, € {¢.} such that ||y — ¢, || < e/2; then we have

IP(B)Wy — P(B,) Wi, || <[|(P(B) — P(By)) Wy

HIP(BOW (W — )|l
<(P(BAB, )Wy | W)

Hiw =l <e.
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Now, for each g € G, let U,(g) be the unitary operator in 9, defined in I by
U.(g)P(B)Wy = P(g.B)WU(g)¢ (3.4)
and extended to §, by linearity and continuity. This definition makes sense since

(U.(g)P(B)Wy | U, (8) P(BYWy'). = (M(g.(BN B)NU(R)¢ | U(g)y')
=(M(BNBW|¢)
=(P(B)Wy | P(BYWy'),

for all P(B)Wy, P(BYW¢/' in IN. Let £, (9.),; be the closed unit ball of £(D.)
equipped with the strong operator topology. The mapping g+ (P(g.B), WU (g)¥)
of G into the topological product space £, (9.); X9, is Borel for all B € 8y and
all ¢ € by Lemma 3 (Remark 3) and because the Borel structure of £,(9,); X 9.
coincides with the product Borel structure. In addition, the mapping (A, ¢)— Ay
of £,(9.): X9, into O, is continuous. From this, from Lemma 1, and from the
uniform equicontinuity of the unitary group U(9.), we can conclude ([11], Chap.
III, §3, Prop. 5) that the homomorphism g~ U,(g) of G into U(9,.) equipped
with the strong operator topology is Borel, hence continuous. (Note that the
strong operator topology is identical on U(H,) with the weak operator one and
makes U(9,) into a Polish group ([12], Lemme 4)). Finally, we get that (U,, P) is
a system of imprimitivity for G based on X and acting in 9., as can be easily
checked in .

Given the system of G-covariance (U’, M’), suppose that we have a Hilbert
space 9. an isometric mapping W’ of ' into ., a system of imprimitivity (U?, P)
for G based on X and acting in 9. satisfying W*P'(B)W’' = M'(B) for all B € By,
W'*Uy(g)W' = U'(g) for all ge G, and suppose that the set

WM ={P'(B)YW'{ | BeBx and ¢ €D’}

is total in .. If Z is a unitary mapping of $ onto 9’ establishing the equivalence
of (U, M) to (U’, M’), then the mapping P(B)Wy¢—> P'(BYW'Z{ of I onto I
extends by linearity and continuity to a unitary mapping of . onto $. making
(U.,, P) and (U?, P') unitarily equivalent. The assertion about the surjectivity of W
follows at once. W

Let G be a locally compact group and let H be a closed subgroup of G. We
denote by Ind§U the (strongly continuous unitary) representation of G induced
from H by a strongly continuous unitary representation U of H on a Hilbert
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space, say . In what follows, whenever G is second countable and $ separable,
we shall always assume that IndSU is realized on I*(G/H, n), the Hilbert space
of all equivalence classes of p-square-integrable mappings of G/H into §, where
p is a G-quasi-invariant measure on G/H. Moreover, we shall denote by Py the
standard Borel PV-measure on G/H acting in L;(G/H, n) defined by

Pg(B)f = dsf (f€ Lg(G/H, )

(with the familiar abuse of notation of using the same symbol for a mapping and
for its equivalence class).

PROPOSITION 2. Let G be a second countable locally compact group, let H be
a closed subgroup of G, let uw be a G-quasi-invariant measure on G/H, and let
9, O’ be separable Hilbert spaces. If (U, M) is a system of G-covariance in O based
on G/H, there exist a strongly continuous unitary representation y(U) of H on a
separable Hilbert space ® and an isometric mapping V of © into Li(G/H, u)
satisfying

VU(g)=(Indgy(U))(g)V for all geG, (3.5)
VM(B)=Pg(B)V for all BeRBgy, (3.6)

and such that the set
{Pa(B) VY | B e®RBgy and ¢ €D}

is total in L4(G/H, w.).

The mapping V is surjective if and only if (U, M) is a system of imprimitivity.

If (U, M) is a system of G-covariance,in ©' based on G/H and unitarily
equivalent to (U, M), and if &' is the carrier space of y(U’), then the systems of
imprimitivity (Ind§y(U), Pg) and (Ind§y(U’), Pg) are unitarily equivalent.

Proof. We apply Mackey’s Imprimitivity Theorem to the system of imprimitiv-
ity (U,, P) constructed in the proof of Proposition 1 with X =G/H; so we get
v(U) and a unitary mapping W, of 9, onto Li(G/H, ) making (Ind§y(U), Pg)
unitarily equivalent to (U,, P) and such that (3.5), (3.6) are satisfied with V=
W.W. Obviously, V is onto Li(G/H, w) if and only if W is onto 9., i.e., if and
only if (U, M) is a system of imprimitivity. The other assertions follow im-
mediately. W

Remark 4. Equation (3.5) expresses the unitary equivalence of U to a
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subrepresentation of IndSy(U); conversely, if an isometric mapping V of § into
L3%(G/H, ) establishes such an equivalence, then (3.5) is satisfied and we have
V*V =1d,. Moreover, if M is defined by (3.6), i.e., by M(B)= V*Pg(B)V, then
(U, M) is a system of G-covariance in § based on G/H. Note that (3.4) implies
U(g)=W*U,(g)W for all ge G; the corresponding equation with Indgy(U)
instead of U, and V instead of W is obviously valid.

Remark 5. A posteriori, we see that, for each B € 3,4, the mapping g—
P(g.B) of G into £Y(9.) considered above is actually continuous since

(P(g.B)¢ | ¢). = (P(B)U,(g) "¢ | U.(g) "¢').
for all ¢, ¢’ in 9..

COROLLARY. Let G, H,9 be as in Proposition 2 and let U be a strongly

continuous unitary representation of G on 9. The following conditions are
equivalent:

(i) There exists a normalized Borel POV-measure M on G/H acting in O such
that (U, M) is a system of G-covariance in  based on G/H,

(i1) U is unitarily equivalent to a subrepresentation of a strongly continuous
unitary representation of G induced from H.

Every (weak) Borel POV-measure M on a locally compact space X acting in §

determines a Radon vector measure My on X taking values in £(9) ([13], §2),
defined by

Ma()= [ ) dMGx)  (Fe 200,

which is positive, i.e., such that Mx(f)=0 if f=0, and satisfies
IMe(ll=<sup |f(x).

This follows at once by noting that, for each fe 4&(X), the mapping

0> (([ 10 aM) o 1) = [ 10 aMy o)

is a bounded sesquilinear form, where the bounded complex Borel measure M, -
is defined by M, ,(B)=(M(B)y | ¢'). The converse is also true with M(B)=
Mg(dg) (B € By) after extension of My to the My-integrable functions ([13], §2,



On Mackey’s imprimitivity theorem 639

Prop. 3). One checks that M is a PV-measure if and only if My is a *-
representation of the C*-algebra €2(X).

If X is locally compact, we can then define a system of G-covariance also as
an ordered pair (U, Mr), where the Borel POV-measure M of Definition 2 is
replaced by a normalized norm-bounded positive Radon vector measure on X
taking values in £Y(9) and (2.2) is replaced by

U@Mer(HU(R) " =Mr(gf)  (fe X)),

with (g.f)(x)=f(g"'.x) for all xe X. Proposition 2 and its corollary can be
formulated accordingly and the theorem of Neumark used in the proof foilows in
this context from ([14], Theorems 1 and 4), where another realization of the
Hilbert space 9, is given; moreover, the separability assumptions on G, 9, §’, and
® can be dropped by choosing Blattner’s realization of IndSU [15]. In fact, the
subalgebra of €&(X) (with the sup-norm) generated by €2(X) and the constant
functions can be chosen as the C*-algebra &f of Stinespring’s Theorem 1. The
unitary representation U, of G on 9, defined by

U.(@f®v]=[gfRU(Y] (fed;¥e9),

where [ ] denotes an equivalence class modulo the elements with vanishing norms,
is strongly continuous because the linear representation g— g.f of G on &, with
g.f =f whenever f is a constant function, is continuous ([16], Chap. 8, §2, Props. 5
and 2). Finally, use is made of Blattner’s version of the Imprimitivity Theorem
([17], Corollary to Theorem 2).

4. Transitive projective systems of covariance

Let P(9) be the projective space deduced from a separable Hilbert space 9
and let wg be the canonical surjection of $—{0} onto P(9). We shall denote by
0 the canonical surjection of U(9) onto the projective unitary group PU(9) and
assume that U(9) is equipped with the strong operator topology and PU(9) with
the final topology for (). A strongly continuous unitary projective representation of
a topological group G on P(9) is then a continuous homomorphism U of G into
PU(D). Since U(9) (and therefore PU(Q)) is Polish, we can lift U to a Borel
unitary multiplier representation of G([12], Lemme 3), i.e., to a Borel mapping U
of G into U(9) satisfying U(1) =1dg and

U(@U(g)=al(g g"hU(gg)
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for all g, g’ in G. The multiplier a is a 2-cocycle of G with values in the circle
group (equipped with the trivial operation of G). A projective system of G-
covariance in 9 based on a topological G-space X is an ordered pair (U, M),
where U is a strongly continuous unitary projective representation of G on P(9)
and M is a normalized Borel POV-measure on X acting in § such that (2.2) is
satisfied by a Borel lifting U of U (and hence by every lifting of U). Two such
systems, (U, M) in 9 and (U, M) in §’, both based on X, are said to be unitarily
equivalent if there exists a unitary mapping V of © onto ' such that (2.4) is
satisfied together with

VoU(g)=U'(g)oV for all geG,

where V is defined by Vowg=wg o (V|H—{0}).

Let now G be a second countable locally compact group and let U be a
strongly continuous unitary projective representation of a closed subgroup H of G
on P(9). We shall denote by IndSU the projective representation of G induced
from H by U, namely, the (strongly continuous unitary) projective representation

G
0, 2w °IndgU,

where p is a G-quasi-invariant measure on G/H and Ind§U is the Borel unitary
multiplier representation of G induced from H by a Borel lifting U of U([2], §4).
We remark that IndSU is independent of the particular Borel lifting chosen.

PROPOSITION 3. Let G, H, u, 9 and ©’ be as in Proposition 2 and let ( U, M)
be a projective system of G-covariance in  based on G/H. There exist a strongly
continuous unitary projective representation y(U) of H on P(R), with & a separable
Hilbert space, and an isometric mapping V of § into L&(G/H, n) such that

VoU(g)=(IndSy(D))(g)eV for all geG,
VM(B)=Pgq(B)V for all B e%®Bg/y,

where V is defined by Vowg= w0 2cmm°(V |9—{0}.
The set

{Pa(B) VY | B € B/ and ¢ € D}

is total in L3(G/H, pn); the mapping V is surjective if and only if (O,M) is a
projective system of imprimitivity.
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If (U, M) is a projective system of G-covariance in ' based on G/H and
unitarily equivalent to (U, M), and if P(R') is the carrier space of y(U"), then the
projective systems of imprimitivity (IndSy(U), Pg) and (IndSy(U"), Pg) are unitar-
ily equivalent.

The proof of Proposition 3 parallels that of Proposition 2, but uses the
Projective Imprimitivity Theorem ([2], Theorem 6.6). The corollary to Proposi-
tion 2 may also be restated for projective representations accordingly, and
Proposition 3, as well as the corollary, can be formulated in terms of multiplier
representations.
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