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On Mackey's Imprimitivity Theorem*

U. Cattaneo

1. Introduction

Mackey's Imprimitivity Theorem ([1], Theorem 2; [2], Theorem 6.6) has

played a fundamental rôle in the genesis and development of the représentation
theory of locally compact groups, and has found applications in other fields of
mathematics as well as in quantum mechanics. In the course of the years, it has

been extended to mathematical structures différent from groups (cf., for instance,
[3]) and new versions hâve appeared, some of which avoid Mackey's separability
assumptions.

In the présent paper, we look for a generalization of the Imprimitivity
Theorem in another direction, namely, by admitting subrepresentations of in-
duced représentations. It turns out (Section 3) that the Imprimitivity Theorem is

essentially still valid provided transitive Systems of imprimitivity are replaced by
"transitive Systems of covariance" (Section 2), Le., provided positive-operator-
valued measures take the place of projection-valued measures. In particular, we
show that a strongly continuous unitary représentation of a second countable

locally compact group G on a separable (complex) Hilbert space is unitarily
équivalent to a représentation induced from a closed subgroup of G if and only if
there exists an associated transitive System of covariance. The same problem has

been tackled by Scutaru ([4], Theorem 1) who has shown that the Imprimitivity
Theorem can be generalized to subrepresentations if the positive-operator-valued
measures involved satisfy a given continuity condition. Indirectly, we show hère
that Scutaru's condition is always satisfied (cf. Remark 5). In Section 4, we extend
the resuit of Section 3 to projective représentations.

Every group appearing in what follows will be written multiplicatively, with
neutral élément 1. For each topological space X, we shall dénote by 38X the Borel
structure (i.e., the or-field) generated by the closed sets of X; whenever X is seen

as a Borel space, it will always be with respect to this structure that we shall call
the Borel structure of X. Every Hilbert space $ considered will be tacitly
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630 U CATTANEO

understood to be a complex one, and &(&) will stand for the (complex) vector

space of ail continuous linear operators in £. The symbol <f>A will dénote the
characteristic function of a set A.

2. Preliminaries

In préparation for formulating our generalization of Mackey's Imprimitivity
Theorem, we begin by introducing some terminology which will be used exten-
sively in the sequel.

DEFINITION 1. Let X be a topological space and let & be a Hilbert space. A
(weak) Borel positive-operator-valued measure (concisely: a Borel POV-measure)
on X acting in § is a mapping M:âBx -» &(§) such that

(i) M is positive, Le., M(0) O and M(B)^0 for ail Bemx;
(ii) M is (weakly) countably additive, i.e., if (B,)iGN is a séquence of mutually

disjoint éléments of Ô8X, then

Û) (2.1)

where "w —£" means that the séries (M(Bt)) converges in the weak operator
topology on #(&).

If M(X) Ide, then M is said to be normalized.

Note that if in addition to (i) and (ii) M satisfies

(iii) M(B)M(B') M(BnBr)
for ail B, B' in 38X, then M is a Borel projection-valued measure (concisely: a Borel
PV-measure).

Remark 1. The increasing séquence of positive operators (Xr=o M(J3l)) in (2.1)
is norm-bounded by ||M(X)|| and therefore converges in the strong operator
topology. It follows that the right-hand side of (2.1) always exists and that the
weak measure M is a strong one too. The norm-boundedness of the séquence
also implies that M is an ultraweak (resp. ultrastrong) measure, i.e., that

converges in the ultraweak (resp. ultrastrong) topology on

Remark 2. In order that the mapping M:0èx^>g(tQ) be a Borel POV-
measure on X acting in & it is necessary and sufficient that the mapping
M+:&x-+C defined by M^iB) (M(B)ip \ $) be a (bounded) positive Borel
measure for ail $ eip. Sufficiency follows easily by using the polarization identity.
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Let G be a topological group. A topological space X£ 0 is said to be a

topological (left) G-space if G opérâtes continuously on (the left of) X, i.e., if
there exists a continuous mapping (g, x)»->g.x of the topological product space
G xX into X such that, for each x eX, we hâve 1.x x and (gg').x gXg'-x) for
ail g,g' in G. If H is a subgroup of G, we dénote by G/H the topological
homogeneous space of left cosets of H in G, which is a topological G-space in a

canonical way.

DEFINITION 2. Let G be a topological group, let X be a topological
G-space, let U be a strongly continuous unitary représentation of G on a Hilbert
space &, and let M be a normalized Borel POV-measure on X acting in #. We
say that M is G-covariant and that the ordered pair (17, M) is a system of
G-covariance in & based on X if 17, M satisfy

U(g)M(B)U(g)-1 M(g.B) (2.2)

for ail geG and ail Be38x. The system (U,M) is said to be transitive if so is the
G-space X.

We note that if M is a Borel PV-measure, then (17, M) is a Mackey's system o/
imprimitivity for G based on X and acting in £>.

Two Systems of G-covariance, (17, M) in & and (17', M') in &, both based on
X, are said to be unitarily équivalent if there exists a unitary mapping V of # onto
£' such that

>=l7'(g)V for ail geG (2.3)

and

VM(B) M'(B)V for ail B g &x. (2.4)

3. Transitive Systems of covariance

Given a family (YJLeI of Borel spaces and, for each i e I, a mapping /t of a set

X into Yt, we shall dénote by a»(/t) the weakest Borel structure on X making
Borel ail the mappings ft. The symbol iPs(#) will stand for the vector space %($b)

equipped with the strong operator topology (i.e., the topology of pointwise
convergence) and -&70&) will stand for the same vector space endowed with the
weak operator topology, which is the topology of pointwise convergence when &
is considered with the weak topology. We shall dénote by ft*+'(tfr, #' in &) the

mapping A>~+(A*lt \ t/r') of &($) into C. To end this notational introduction, we
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remember that a topological space X is said to be fully Lindelôf if every subspace

of X is Lindelôf.

LEMMA 1. Let (YX*i be a family of topological spaces and, for each i e I, let

ft be a mapping of a set X into YL. If X, equipped with the weakest topology making
continuous ail the mappings /t, is fully Lindelôf, then &xand cr^ifj are identical.

Proof. The identity mapping of the Borel space (X, @tx) onto (X, o-^ifj) is

Borel. On the other hand, let U be an arbitrary open set of the topological space
X. Since U is Lindelôf and since a base of the topology of X is given by the finite
intersections of sets of the form /~1(Ol)(t6 J; Ot open set of YJ, there exist, for
each NgN, a finite subfamily (f^,)^^,^ of (AXei and a finite séquence
(OtNi)!^nN of open sets with OtNi s YtNi such that

u= û

Therefore U is a Borel set of (X, a&ifj) and the identity mapping of (X, <T&(ft))

onto (X, $x) is Borel. ¦
LEMMA 2. Let § be a separable Hubert space. The Borel structure of 5es{&)

(resp. J£7(&)) is identical with a-^ih^^).

Proof. Our first remark is that <£{$$) equipped with the compact-open topology
is a Lusin space ([5], Part I, Ch. II, Theorem 7); hence the Borel structure
generated by its closed sets is identical with the Borel structure of the Lusin space
^s(ê) (resp. iC(&)) by virtue of a well-known Souslin's theorem ([6], TG.IX, §6,

Prop. 14). It follows that the lemma is also proven for i?s(&) once it is proven for
&"(&). On the other hand, the desired resuit for «^rfô) follows from Lemma 1

because a Lusin space is fully Lindelôf. In fact, every subspace of a Lusin space is

image by a continuous mapping of a subspace of a Polish space, thus it is Lindelôf
([6], TG.IX, Appendice I, Prop. 1). ¦

LEMMA 3. Let G be a second countable locally compact group and let X be a
transitive Hausdorff G-space. If & is a separable Hilbert space and M is a Borel
VOV-measure on X acting in &, then the mapping g*+M(g.B) of G into
(resp. <£s(®)) ^ Borel for ail Be&x.

Proof. We first show that, for each tyeSè and each Be<%x, the real-valued
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function

defined in G is Borel. To prove this, we remark that the function

of the Borel product space G XX into R is Borel. In fact, X is a Souslin space
since, for a fixed xgX, the mapping g*-*g.x of the Polish group G onto X is

continuous; therefore we hâve ®Gxx=®gx®x ([7], Ch. III, §2, Theorem 2),
namely, the Borel structure of the topological product space G x X is identical
with the product of the Borel structures of G and X. This implies that the
mapping (g, jc)»->g"1. x of the product Borel space G xX onto X, and hence fB,

are Borel. Following Mackey ([8], Lemma 7.1), we can now apply a part of
Fubini's theorem (cf. [9], §36, Theorem B) and conclude that the function

J 4>gB(x) dM+ix) J/B(g, x) dM*(x)

is Borel.
By using the polarization identity, we see that the complex-valued function

defined in G is Borel for ail fa fa in £. The desired resuit follows from Lemma 2,
since a mapping / of a Borel space into i£(&) equipped with am {hM>) is Borel if and

only if h^^Ol is Borel for ail fa fa in $Q. ¦
Remark 3. Lemma 3 is also valid if X is a Borel G-space (not necessarily

transitive), i.e., if X is a G-space, is endowed with a Borel structure, and the

mapping (g, x)»-»g.x of the product Borel space GxX onto X is Borel. The
définitions of a Borel POV-measure (Définition 1) and of a System of G-
covariance (Définition 2) are obviously also meaningful if X is a Borel G-space
and 08X the Borel structure of X. The same is true for the notions of a System of
imprimitivity and of unitary équivalence of two Systems of G-covariance.

PROPOSITION 1. LetGbea second countable locally compact group, let X be

a countably generated Borel G-space, and let S&, & be separable Hilbert spaces. If
(17, M) is a System of G-covariance in $ based on X, there exist a separable Hilbert
space &e, an isometric mapping W of & into !&e, and a System of imprimitivity
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(17C, P) for G based on X and acting in Qe satisfying

WU(g)= I7e (g) W for ail geG, (3.1)

WM(B) P(B)W for ail B e®x, (3.2)

and such that the set

and

is total in Qe.

The mapping W is surjective if and only if (17, M) is a System of imprimitivity.
Let (17', M') be a System of G-covariance in & based on X and unitarily

équivalent to (17, M). If there exist &e, W\ P', U'e, W mutually satisfying the same
relations as, respectively, &e, W, P, 17C, 2R when &, U', M', replace £, 17, M, then

the Systems of imprimitivity (I7e, P) and (U'e,Pf) are unitarily équivalent

Proof. By a theorem of Neumark [10], there exist a Hilbert space &e, an
isometric mapping W of fè into £e, and a normalized Borel PV-measure P on X
acting in &e such that

for ail Be®x. We realize £e, W, and P as follows. Let %^{mx) be the complex
vector space of ail step functions based on 3BX taking values in £. Define a

positive Hermitian sesquilinear form <-|-) on ^(^8X) by

(3.3)

where the sums are finite and (• | •) is the inner multiplication on $&. The
right-hand side of (3.3) is independent of the particular form the éléments of
ï?#0%x) can have as finite sums of terms i^B(^e£; J3€â8x). This follows from
the additivity of M and from the fact that, given a finite family of éléments of $JX,

it is always possible to choose a finite family of mutually disjoint éléments of 3BX

such that every élément of the first family is the union of éléments of the second.
The positivity of <|) is a conséquence of the positivity of M. Let $ be the
subspace of ail /e^(98x) such that </|/) 0; then &e is the completion of the

quotient space %§ (98X)/^ equipped with the extended quotient form which we
shall dénote by (• | -)c. The mapping W is defined by Wif/ [&], where /* g S$(»x)
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is the constant mapping with the value i/r and [f+] dénotes the équivalence class of

fa modulo $\ the PV-measure P is given by

and extension by continuity. We remark that, for each B g38x, we hâve M(B)
W*P(B)W and W*W ld& where W* is the adjoint of W. The set

and

is total in &c ; it follows that P is weakly countably additive because the subset

{P(B) | B g38x} of iP(&J is norm-bounded and, for each séquence (B,) of mutu-
ally disjoint éléments of 3BX and each pair P(B)W$, P(B')Wty' of éléments of 3ft,

we hâve

t (P(B,)P(B)W* | P(B')W4>')e.
1=0

Since 9BX is countably generated and & is separable, &e is separable. For let
JieN be a clan (or ring) of éléments of 38X generating 38X and let {ifc}l€N be a

dense subset of éléments of ^>; the set

mo {P(Bk)<lfl\Bke{Bl} and ^g{^}}

is dense in Wt. In fact, for each P(B)W^eTt and an arbitrary positive real
number e, we can choose Bke{Bt} such that (P(BABk)Wty\W\it)\l2<el2 ([9],
§13, Theorem D) and ifo ei^} such that ||^-i^||<e/2; then we hâve

Wi|r)e11/2
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Now, for each g g G, let Ue(g) be the unitary operator in &e defined in 9K by

t/€(g)P(B)W* P(g.B)Wl/(g)i/, (3.4)

and extended to fèe by linearity and continuity. This définition makes sensé since

(Ue(g)P(B)Wty | l/e(g)P(B') W)e (Af(g.(B fiB')

for ail P(B)Wty, P(B')Wi/r' in Hft. Let S£s(§e)i be the closed unit bail of
equipped with the strong operator topology. The mapping g*-+(P(g.B), WU(g)tl/)
of G into the topological product space 2a(fbe)ixQe is Borel for ail Be38x and
ail \\f e& by Lemma 3 (Remark 3) and because the Borel structure of «S?s(fèe)i x&e
coincides with the product Borel structure. In addition, the mapping (A, ^)>-> Ai/r
of 3!s(Qe)ix&e into Qe is continuous. From this, from Lemma 1, and from the
uniform equicontinuity of the unitary group U(iQe), we can conclude ([11], Chap.
III, §3, Prop. 5) that the homomorphism g»-»t/c(g) of G into U(fèc) equipped
with the strong operator topology is Borel, hence continuous. (Note that the

strong operator topology is identical on U(fèe) with the weak operator one and
makes U(ipe) into a Polish group ([12], Lemme 4)). Finally, we get that (Ue, P) is

a System of imprimitivity for G based on X and acting in £e, as can be easily
checked in 3W.

Given the System of G-covariance ([/', M'), suppose that we hâve a Hilbert
space $e an isometric mapping W of & into $é, a System of imprimitivity (U'e, P')
for G based on X and acting in Q'e satisfying W'*P'(B)W M\B) for ail B e38X,

W*l/;(g)W= l/'(g) for ail g 6 G, and suppose that the set

W {P'(B)W'il, | B g ®x and ^ g&}

is total in $&'e. If Z is a unitary mapping of !& onto & establishing the équivalence
of (U,M) to (LT',M'), then the mapping P(B)Wtl/*-*P'(B)W'Zilf of m onto SW

extends by linearity and ôontinuity to a unitary mapping of £e onto fèé making
(Ug, P) and (U'e, P') unitarily équivalent. The assertion about the surjectivity of W
follows at once. ¦

Let G be a locally compact group and let H be a closed subgroup of G. We
dénote by ïnd^U the (strongly continuous unitary) représentation of G induced
from H by a strongly continuous unitary représentation U of H on a Hilbert
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space, say fè. In what follows, whenever G is second countable and ^ separable,
we shall always assume that Ind^t/ is realized on 12(G/H, jul), the Hilbert space
of ail équivalence classes of /ut-square-integrable mappings of G/H into &, where

ix is a G-quasi-invariant measure on G/H. Moreover, we shall dénote by P& the
standard Borel PV-measure on G/H acting in L%(G/H, /m) defined by

P©(B)/ *nf (feLj(G/H,fi))

(with the familiar abuse of notation of using the same symbol for a mapping and
for its équivalence class).

PROPOSITION 2. Let Gbea second countable locally compact group, let H be

a closed subgroup of G, let n be a G-quasi-invariant measure on G/H, and let
&, & be separable Hilbert spaces. If (17, M) is a System of G-covariance in & based

on G/H, there exist a strongly continuous unitary représentation y(U) of H on a
separable Hilbert space Si and an isometric mapping V of & into L®(G/H9 /ut)

satisfying

(Indg7(L0)(g)V for ail geG, (3.5)

P^(B)V for ail Be®G/H, (3.6)

and such that the set

{P^(B)Vilf\BemG/H and </re£}

is total in L®(G/H, /ut).

The mapping V is surjective if and only if (17, M) is a system of imprimitivity.
If (l/', M') is a system of G-covariance in & based on G/H and unitarily

équivalent to (17, M), and if ®' is the carrier space of y(Uf), then the Systems of
imprimitivity (Ind27(l/), P^) and (lnd^y(Uf), P®>) are unitarily équivalent.

Proof. We apply Mackey's Imprimitivity Theorem to the system of imprimitivity
(Ue, P) constructed in the proof of Proposition 1 with X G/H; so we get

7(17) and a unitary mapping We of $e onto L®(G/H, /ut) making (ind^yiU), P®)

unitarily équivalent to (Ue,P) and such that (3.5), (3.6) are satisfied with V
WeW. Obviously, V is onto L%(GIH, n) if and only if W is onto Qe9 i.e., if and

only if (17, M) is a system of imprimitivity. The other assertions follow im-
mediately. ¦

Remark 4. Equation (3.5) expresses the unitary équivalence of U to a
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subrepresentation of Ind2Y(l/); conversely, if an isometric mapping V of i& into
L%(G/H, jx) establishes such an équivalence, then (3.5) is satisfied and we hâve

V*V Ids. Moreover, if M is defined by (3.6), i.e., by M(B)= V*P®(B)V, then

([/, Af) is a System of G-covariance in & based on G/H. Note that (3.4) implies
U(g)= W*Ue(g)W for ail geG; the corresponding équation with In
instead of Ue and V instead of W is obviously valid.

Remark 5. A posteriori, we see that, for each Be&G/H, the mapping
P(g.B) of G into «S?r(#e) considered above is actually continuous since

for ail ^, i/r' in &e.

COROLLARY. Lcf G, H, Q be as in Proposition 2 and let U be a strongly
continuous unitary représentation of G on &. The following conditions are

équivalent:
(i) There exists a normalized Borel POV- measure M on G/H acting in ip such

that (17, Af) is a System of G-covariance in $ based on G/H;
(ii) U is unitarily équivalent to a subrepresentation of a strongly continuous

unitary représentation of G induced from H.

Every (weak) Borel POV-measure M on a locally compact space X acting in &
détermines a Radon vector measure MR on X taking values in .270&) ([13]> §2),
defined by

MRtf)=j/(x)dM(x) (/e«S(

which is positive, i.e., such that MR(/)>0 if f^O, and satisfies

l|MR(/)Nsup|/(x)|.
X€=X

This follows at once by noting that, for each /e^êCX"), the mapping

/(x)dM(x)Vlf)= \f(x)

is a bounded sesquilinear form, where the bounded complex Borel measure MM>
is defined by M*t^(B) (M(B)ifr | $'). The converse is also true with M(B)
MK(<f>B) (Be0èx) after extension of MR to the MR-integrable functions ([13], §2,
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Prop. 3). One checks that M is a PV-measure if and only if MR is a *-
représentation of the C*-algebra *£(X).

If X is locally compact, we can then define a System of G-covariance also as

an ordered pair (17, MR), where the Borel POV-measure M of Définition 2 is

replaced by a normalized norm-bounded positive Radon vector measure on X
taking values in ,27(3?) and (2.2) is replaced by

U(g)MK(f)U(g)-1 MK(g.f) (fe <€°C(X)),

with (g./)(x) /(g~1.x) for ail xeX. Proposition 2 and its corollary can be
formulated accordingly and the theorem of Neumark used in the proof follows in
this context from ([14], Theorems 1 and 4), where another realization of the
Hilbert space $e is given; moreover, the separability assumptions on G, $, &, and
S can be dropped by choosing Blattner's realization of Indgl/ [15]. In fact, the
subalgebra of %cCX) (with the sup-norm) generated by ?cW and the constant
functions can be chosen as the C*-algebra si of Stinespring's Theorem 1. The
unitary représentation Ue of G on &e defined by

where [ ] dénotes an équivalence class modulo the éléments with vanishing norms,
is strongly continuous because the linear représentation g*-+g.f of G on si, with
g./= / whenever / is a constant function, is continuous ([16], Chap. 8, §2, Props. 5

and 2). Finally, use is made of Blattner's version of the Imprimitivity Theorem
([17], Corollary to Theorem 2).

4. Transitive projective Systems of covariance

Let P(&) be the projective space deduced from a separable Hilbert space &
and let û># be the canonical surjection of $—{0} onto P(&). We shall dénote by
Ûq the canonical surjection of U($) onto the projective unitary group PU(ip) and

assume that U(#) is equipped with the strong operator topology and PU(4?) with
the final topology for /2Ô. A strongly continuous unitary projective représentation of
a topological group G on P(£) is then a continuous homomorphism Û of G into
PU(&). Since U(&) (and therefore PU(£)) is Polish, we can lift Û to a Borel
unitary multiplier représentation of G([12], Lemme 3), Le., to a Borel mapping U
of G into U(&) satisfying U(ï) Ide and
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for ail g, g' in G. The multiplier a is a 2-cocycle of G with values in the circle

group (equipped with the trivial opération of G). A projective System of G-
covariance in & based on a topological G-space X is an ordered pair (Û, M),
where Û is a strongly continuous unitary projective représentation of G on Pfô)
and M is a normalized Borel POV-measure on X acting in & such that (2.2) is

satisfied by a Borel lifting U of Û (and hence by every lifting of Û). Two such

Systems, (Û, M) in & and (Û\ M') in &, both based on X, are said to be unitarily
équivalent if there exists a unitary mapping V of & onto £>' such that (2.4) is

satisfied together with

V o Û(g) Û'(g) ° V for ail g € G,

where V is defined by V°<o$ <o&<>(V\Q-{0}).
Let now G be a second countable locally compact group and let Û be a

strongly continuous unitary projective représentation of a closed subgroup H of G
on P(£). We shall dénote by Indgt/ the projective représentation of G induced
from H by Û, namely, the (strongly continuous unitary) projective représentation

where n is a G-quasi-invariant measure on G/H and ind^U is the Borel unitary
multiplier représentation of G induced from H by a Borel lifting U of Û([2], §4).
We remark that Ind^f/ is independent of the particular Borel lifting chosen.

PROPOSITION 3. Let G, H, jx, £ and £' be as in Proposition 2 and let (Û, M)
be a projective System of G-covariance in & based on G/H. There exist a strongly

continuous unitary projective représentation y(Û) of H on P($), with & a separable

Hilbert space, and an isometric mapping V of & into L@(G/H, jul) such that

VoÛ(g) (lnd£y(Û))(g)oV for ail geG,

VM(B) P®(B) V for ail

where V is defined by V ° û)$ (ol^(g/h>(->)o (V | £-{0}).
The set

/H

is total in L|(G/H,/ut); the mapping V is surjective if and only if (Û,M) is a

projective system of imprimitivity.
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If (Û',M') is a projective System of G-covariance in &' based on G/H and
unitarily équivalent to (Û, M), and if P(®') is the carrier space of y{Û'), then the

projective Systems of imprimitivity (Indgy(L0, Pgt) ond (IndnyiÛ'), P®>) are unitarily

équivalent.

The proof of Proposition 3 parallels that of Proposition 2, but uses the

Projective Imprimitivity Theorem ([2], Theorem 6.6). The corollary to Proposition

2 may also be restated for projective représentations accordingly, and

Proposition 3, as well as the corollary, can be formulated in terms of multiplier
représentations.
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