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The secondary characteristic classes of parabolic foliations

HarsH V. Prrrie®?

When a manifold M has a foliation of codimension n, its de Rham cohomol-
ogy carries secondary characteristic classes associated to the normal bundle v in
degrees =2n+1: such classes exist even if v is trivial or flat, although some of
them depend on the choice of trivialization (flat reduction) (see Bott and Haefliger
[2]). A natural class of foliations with trivialized or flat normal bundles is obtained
from pairs (G, H) where G is a lie-group and H< G a closed subgroup: in the
first instance, one has the foliation of G by the cosets of H, and from this we can
construct two further classes of foliations—one on I'\G, I'c G a discrete
subgroup, and one on G°¢ (the corresponding complex group) by cosets of H¢. The
secondary classes for all these foliations can be computed ‘“‘simultaneously” in the
left-invariant complex A*(g*¢), g=1lie algebra of G, and so we shall by abuse of
notation refer to all these examples collectively by the notation (G, H).

In this paper we shall prove Fuks’ conjecture [4] for several cases of the type
(G, H): roughly speaking, this says that the examples (G, H) detect nothing more
than what is already detected on (SL (n+1), P,) where P, is the parabolic
subgroup which is the isotropy group of a point in the projective space P,. The
example (SL (n+1), P,) is well-understood, and its secondary classes have been
computed independently by several people. Our main result essentially verifies
this for all pairs (G, P) where G =noncompact, semi-simple lie-group, and P a
parabolic subgroup: we call this a parabolic pair. Our methods also allow us to
deal with pairs (G, S) where G is arbitrary, and S is nilpotent or solvable, and
here one gets more vanishing.

THEOREM 1. Let G be an arbitrary lie-group: the secondary classes for (G, S)
are given thus

a. If S is nilpotent, all secondary classes are zero .

b. If S is solvable, then all secondary classes are of the form {h®|i+|a|=
n + 1} (notation in Section 1).

Theorem 1b does not quite fall under Fuks’ conjecture: but this case is a side

1 Research supported by NSF Grant MCS 76-07181.
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602 HARSH V. PITTIE

issue here which we shall pursue elsewhere. The point of the theorem is that one
does not get very many more secondary classes by looking at nilpotent or solvable
groups.

THEOREM 2. Let (G, P) be a parabolic pair: then every rigid class is zero,
and every movable class is equal to ahh; - - - h, 7, where a is some scalar.

By combining Theorem 1b and 2, one obtains

COROLLARY. If (G, P) is a parabolic pair with P minimal (i.e. Borel) then
all nonzero classes are scalar multiples of the Godbillon—Vey class h,77.

We should mention that the first half of Theorem 2, that the rigid classes for
(G, P) vanish has been recently announced by Bott and Haefliger (in Bott [1]),
and they certainly had this result earlier. The other half of Theorem 2 is not really
as strong as what Fuks conjectured, but for all practical purposes it comes to the
same thing. The difference can be explained thus. Call the subspace of H*(W,)
generated by the classes {h;h; - - - h; 77} the G-V space: our result says that the
image H*(W,) - H*(qg) is contained in the image of the G-V space. Fuks stated
his conjecture in the stronger form that any class in H*(W,,) which is zero for the
“standard’’ example (sl(n +1), p;) is zero on all (G, H). This is false, as one can
show by direct computation (Section 3). Quite recently D. Baker [12] has given
systematic computations which also refute the strong Fuks’ conjecture. For
example, Fuks’ version implies that if {h,7,}=a{h,7]} on the standard example,
then this equation is true for all (G, P): our calculations show that the constant a
depends on the pair (G, P). In principle these constants can be computed in terms
of the root-system and if this could be done in some explicit way, one would get
more independence for the movable classes than one gets from the G-V space. In
practice the calculation of these constants becomes very penurious. Finally, our
proof of Theorem 2 yields an analogue of the “‘proportionality principle” of Bott
and Haefliger ([1], again), and we prove this in Section 3.

To end, here is a brief description of the paper by sections. In Section 1 we
recall the basic facts about homogeneous foliations, and we construct a particular
left-invariant Bott connection which we will use throughout the paper: after
recalling the facts about the associated secondary classes which come from
H*(W,), we prove Theorem 1-which essentially boils down to invoking the
theorems of Lie and Engel. In Section 2 we obtain further symmetries on the
connection and curvature matrix arising from the semi-simplicity of G and the
parabolicity of P: one main result here is that the first Chern form of the
curvature, T, =trace ({2) satisfies 77#0, and indeed is a Kiahler class for the
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complex variety G/P¢. Finally in Section 3 we prove Theorem 2: the proof uses
nothing beyond the standard structure theory of pairs (G¢, P°) (from Section 2)
together with elementary homological properties of Kahler manifolds. After
giving the proof we make some miscellaneous remarks to round out the discus-
sion.

It is a pleasure to thank Herb Shulman for conversations in the early stages of
this work, and Conner Lazarov for bringing Fuks’ paper to my notice.

1. Homogeneous foliations

Let G be a connected lie-group with S a closed, connected subgroup, and let g
and s be their lie algebras. G is foliated by the cosets {gS} of S. Denoting the
quotient projection by p:G — G/S, the normal-bundle v of this foliation is
p*(T(G/S)) where T(-) is the tangent-bundle functor. The pull-back p*(T(G/S))
is canonically isomorphic to the trivial bundle G X(g/s), and since TG is also
canonically trivial, left-invariant connections on v are in 1-1 correspondence with
R-linear maps

V:g—gl(V)

where V =g/s (we shall use this convention for the rest of the section). Among
these we can single out a set of Bott connections, which we call ‘“homogeneous
connections” for short, by requiring that the composite map

s ——>g——>gl(V)

coincide with the ‘“‘adjoint” action of s on V: this is the action of s on V obtained
(by passage to the quotient) from the adjoint action of s on g, since s is stable
under ad (s). It is easily verified that the curvature of this connection has entries in
the ideal I, € A*(g*) generated by V* = g*, which is the salient property of a Bott
connection. It is equally easy to check that any two homogeneous connections are
homotopic through a family of homogeneous connections, so the secondary
classes can be computed by using any one of these.

We shall now show how to construct homogeneous connections. The obvious
and traditional choice is to choose a linear splitting o:V — g for the exact
sequence

0—>s—>g—> V—>0
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and then to set
Vo(v) = w[X, o(v)].

If o' is another splitting, the line segment joining o to o' gives an (integrable)
homotopy of the corresponding V”’s regarded as G-invariant connections for the
foliation of GXR by S XR. However, we shall use another homogeneous
connection, which is better adapted to the lie algebra set-up.

Vx(v) =7w[X - om(X), o(v)]

Thus V°, V! coincide on s, but V! totally ignores the bracket-relations in o(V): to
see that these two are homotopic, put

Vi) = w[ X —ton(X), o(v)]

The dependence on o is therefore harmless, and in any case for parabolic pairs
there will be a “‘natural” splitting.

We now point out some features of V! which will be important in the sequel:
and these features allow us to prove Theorem 1 of the introduction simply by
invoking the theorems of Lie and Engel (see the end of this section). Fix a basis
vy,...,0, for V, and let @' be the connection form for this V' matrix: by
construction the entries (@) of @' lie in s*, and in fact ®' may be called the
“Maurer—Cartan” matrix for the representation of s on V. We could give a
basis-free description of @', but the reader can do that for himself. Now consider
the associated curvature form: 2'=d@'—O' A @'. Since the second term lies in
A?(s™), it is natural to decompose d =d’'+d” where

d’:s*——>A2(g*)—-i—t—>A2(s*)
and

d":s* —> A%(g*) —— (s* A VF)+ AX(VF)

Since V' is a Bott-connection, we must have d'@'= @' A ®' and so our curvature
formula becomes 2'=d"@'. This is of course just part of the general nonsense
about integrable structures, but it simplifies calculations considerably: moreover
for parabolic pairs this formula will acquire further symmetries.
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The foliation described above — with the left invariant trivialization of v — gives
several other foliations which can all be treated simultaneously. We describe two
such classes now, and we shall refer to them as ‘‘the foliation’’ associated to the
pair (g, s).

a. One can consider a complex group G° corresponding to g° = g® C and the
subgroup S°< G° corresponding to s° =s®C. This foliation is holomorphic of
course.

b. For any discrete subgroup I'c G, I'/G inherits a foliation “‘induced” by S.
This can be seen by noting that the differential ideal generated by V* in A*(g*)
gives a (locally-free) differential ideal in the deRham algebra A*(I'\ G).

Our discussion of connections above adapts at once to both these cases: and
with reference to case (b) in practice all the constructions and calculations are
made on G in the complex A*(g*) and then pushed down to I'\ G. Thus from now
on we shall confine our attention almost exclusively to lic-algebra pairs (g, s).

Since our constructions involve a particular choice of trivialization of v, the
appropriate truncated Weil-algebra is W, (n =dimg V = codimg S):

W, =A%y, hsy ..., b )QR[7y,..., 7. ])/(ideal deg>n)

where deg h, =2i—1, dh, =, and the 1, are the trace-forms associated to the
universal gl(n)-curvature ¥ —i.e., 7; = trace (¥”). Recall that there is a given recipe
for calculating the h; by a formal integration over the fiber of ¥: see Haefliger [7].
Since our connections are left-invariant the Bott-Haefliger map is

(B; x): W, > A*(g*)
inducing a map on cohomology

(B; x) : H*(W,) — H*(g).

In this framework there is clearly no harm in working with complexifications —
and this has considerable technical advantages. Thus we start with g°, s°, V¢ =¢°/s°
and construct C linear maps V:g° —gl(V°): the Weil algebra is then W< =
W, ® C, and the Bott-Haefliger map is (8; x)® 1. Unlike the passage from WO,
to WU,, W, does not acquire the ring generated by the 7, because we are
comparing the Bott connection with a flat, affine one (rather than a Riemannian
one). Moreover, by working with the complexifications from the start, we get
secondary classes for both (G¢, S¢) (case (a) above) and the foliations on I'\ G
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(case b):*® of course in the second case we get complex cohomology classes for a
real foliation, but this is of no importance. Note finally that when g is semi-simple,
then

a. H*(g: C)=HEr(G°: C) by Weyl’s unitarian trick
b. if I'c G is co-compact, then

H*(g: C) < H}x(I'\ G : C) by Poincaré duality

so we can work entirely in the lie-algebra without losing information.

The cohomology of W, has been computed by J. Vey [5]: a linear basis for
H*(W,) is given by {h; - h 7 |i;<i, - <i} where a=(a;,...,a,) is a
multi-index

1. i;+]a|=n+1 (|a|=Zjaj)
1

Heitsch’s formulae [9] for the rigid and movable classes adapt easily to this case
and we have

rigid classes: i;+|a|l=n+2

movable classes: i;+|a|=n+1 (for the monomials given above).

We end this section by giving the proof of Theorem 1.

PROPOSITION 1.1. Suppose s is nilpotent, g arbitrary: then all the h; and T;
(re. V") are zero.

Proof. By Engel’s theorem, we can choose a basis for V' in which the action of
s on V is given by strictly upper triangular matrices: we call this n(V). Since V!
only records the information given by this action, it is trivial to see that in the
chosen basis, ©' lies in n(V)®s*. It follows that the whole algebra generated by
@' and Q' in End (V)@ A*(g*) is comprised of strictly upper-triangular matrices;
since the h; and 7; are traces of certain elements in this algebra, they are
identically zero.

2To quote a well-known logic text, we get the full sweep of classes for (g,s) at one fell-swoop.
(With nothing swapped).
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It follows that any secondary form h; - - - h, 7* for (g,s) as above, and with
respect to any homogeneous connection, is exact, which proves Theorem 1a.

PROPOSITION 1.2. Suppose s is solvable g arbitrary: then with respect to V*
every closed form in the Vey-basis is zero, except possibly for hx®, j+|a|=n+1.

Proof. From the discussion above, we may first complexify g, s and V without
loss of generality. Then we find as above (by invoking Lie’s theorem) that @' is
upper-triangular. Let 6,,...,0, be the diagonal entries. It follows that Q! is
upper-triangular with diagonal entries d@,, ..., d6,: moreover that [Q', @']=
0mod n(V) and @' A =0 mod n(V).

Armed with these facts, the result follows quite simply: to calculate h; and 7;
we may work modulo the ideal n(V)® A*(g*): then

T = Z (doi)k
1
and
h, = trace (271@)= ) 6,(d6,)* .
1

Now consider a closed form h; - - - h, 7° Since i, +|a|=n+1, no more than 1h;
can occur, by Bott’s vanishing theorem: else one would have a polynomial in the
dé, of weight >n. For the same reason, i, +|a|=n+1, concluding the proof.

2. Parabolic foliations

Let g be a real semi-simple algebra of non-compact type, and p a parabolic
subalgebra: in this section we shall work out the special constraints on the
connection and curvature matrices associated to our ad-connection V' introduced
above, which arise from the parabolicity of p. As explained above, we may pass to
complexifications g°, p°¢ first. Our key result here is that if 7, = trace (2), the first
Chern form for V', then 77#0, n=dim, (g°/p°): indeed, that 7, represents a
Kahler class for the complex variety G¢/P-.

Let h be a Cartan subalgebra. One can find a simple system of roots

{ay, ..., oq}=b* which is adapted to p° in the following sense. Let A be the set of
all positive roots re - {a,, ..., o} and decompose g° as an ad (p)-module in the
usual way:

g°=b+§(ga +64)- (1)
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For any B € A, define p,(B)=coefficient of o; in the expansion B =3} mea —s0
that u;(B) = m,. Then there is a subset {i,, ..., i }={1, 2, ..., } such that if we put

A'={yeA|m(y)#0 for at least one i in the subset}
A"=A-4

then we can write the above decomposition (1) as

o = (b+ AZ % +9-a> + (; gw) + (ZL g_y) (2)

and p° =direct sum of the first two summands. We shall say that p° is defined by
(-0}
Label the three summands in the decomposition (2) by ¢, u, v:

r= (b+Zga +9-e), u=)g, D0v=)g.,
A" A’ A’

In these terms, p° =r@u, and o gives the canonical splitting o : g°/p° — v alluded to
in Section 1.

Choosing a Weyl basis for g° (decomposed as in (1)) it follows from the
standard theory that r is a reductive subalgebra — the so-called Levi factor of p°:
that u, v are isomorphic nilpotent subalgebras, which are both r-modules under
ad, and dual as r-modules. Finally v=g°/p° as r-modules, so our splitting o is
r-equivariant. All this is standard structure-theory and can be found in Bourbaki
[3] or Helgason [8].

At this point we can already make some reductions in our general formula for
the curvature Q of V' which was given by d"@ (Section 1). By construction the
entries 6, of @ lie in p*® and d” on p* is given by

d”:p* = (p* A p*)D (p* D o*) A 0* —> (p*D*)A 0*

the second map m being projection on the second summand.

PROPOSITION 2.1. w, = d"6, € u* Av*.

Proof. Writing p = r@®u, we have to show that d” has no components in r* A *

3 Henceforth we will be dealing with g°, p°, and so we drop the Superscript ¢ : p* = Hom. (», C).
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and v* A v*. Using the duality of d and the Lie-bracket, it is equivalent to show
that [r, o] and [v, v] have no component in p: but v is an r-module, and subalgebra
of g.

This proposition establishes two basic properties of the trace-forms ;=
trace (2'). From 2.1 we see that 7,€ A% (u*®v*) and even more, that 7, lies in
A'(u*)@ A’ (0*): in the natural double-grading of A*(u*@®v*), 7; is of type (j, j).
Moreover, each 7; is r-invariant: for any Rer, the adjoint action of R on
A*u*®o*) is given by the lie-derivative L =igrd+dig; now 7 is closed by
construction, and by 2.1, ir * 7; =0. We summarize these facts in

PROPOSITION 2.2. The trace forms 7; = trace ({2') lie in the relative complex
A*(g*/r*)”=A*(u*@n*)‘.

Curiously enough, the fact that the 7; are of type (j, j) is of no importance for
us.

We now come to analyzing 7, in more detail, and for this we need to introduce
the whole notational paraphernalia associated to a Weyl basis for g°. Let (,)
denote the Killing form: for every a € A there is a “co-root” H, €l which is
defined by

2(a’, a)

lecl®

o'(Hy)= for all a'€eA.

Also, for a € A we can find generators X, €g,, Y, €g_, suchthat[ X, Y_,]=H,.It
will be convenient to distinguish the roots in A’, A” by using different Greek
letters for them: we adopt the convention that a denotes a general rootin 4, B a
root in A” and vy a root in A’. We number the roots in A’ in some fashion:
A'={yy,..., v.} and then we write X, Y; for X , Y, and correspondingly ¢, u;
for the dual basis elements in g*. With this understood, we have our basic

THEOREM 2.3. 6; =, :7,=)7d"y,= — )1 bj& Am; where each b,>0.

Proof. By construction, the 6, are the unique forms in p* which satisfy
dn;, =) 6; Anm;. Evaluating this on a pair (X, Y,) where Xep we get 6,(X)=
—n;[X, Yi]. In particular, 6; €b* and 6,(H)= —n,[H, Y,]= +v,(H), so 6, =1.

Now consider d"y, evaluated on a pair of Weyl elements X;eg,, Y, €
g, :d"v(X;, Yi)= —v[X; Y. ]. This is nonzero only when j =k, and then it is

_ 2(‘Yi’ 'Yl)

—v.(H) =
WH) =P
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Thus

Z (’Yv 7}

and summing over i, we get 7, = —) 1 b;§ A m; where

v v)

by ==

o lwl?
with y=Y7v.

It remains to prove that (v, ;) >0 for every v, But p=), & and 0 =) 4. B so
that vy =p—a; and recall that for any a€ A4, (p, a)>0 because p=2) (fund.
weights). We claim that (y, 8) =0 for all 8 € A”: it suffices to prove this for the
simple roots a; which lie in A”, and here it follows from the fact that (p, o;;) =
e II? = (o, @;). Now suppose (v, v;) < 0: without loss of generality we may suppose
that v; is “minimal” in the sense that vy,# vy, + 8. Then

0=(y, ) =(p,v)=(0, 7))

so (o, v;)>0: hence (B, v;) >0 for at least one B € A” which implies that y, — 8 is a
root. If {e; , . . ., & } are the roots defining p, at least one of them occurs in v;, and
none of them occur in B: hence y, — B € A’, contradicting the minimality of vy,.

As a first consequence of the theorem, 77 # 0. Actually 7, is a Kahler class for
a suitable left-invariant form on G¢/P¢ as we now proceed to explain. Let g, be a
compact real-form of g°: and let f =g,Nr. Then g,=f Gm, as vector spaces and
even real ad (f)-modules: and IQC=r, m®C=u+v. Indeed, if G,, K denote the
compact connected groups corresponding to g, f, then (Helgason [8])

1. Go/K=G"/P".

2. the complex-structure on G,/K induced from #1 is realized on the tangent
space T,(Go/K)=m by an element Z e center of K such that Ad (Z)?,.= —
and u, v are the *i-eigenspaces of Ad(Z).

Thus we may identify the (1, 0) and the (0, 1) cotangent spaces of G°/P¢ at e
with u*, v* respectively. Then 7, is a left-invariant 2-form of type (1, 1) on G¢/P*
(pulled back to G°): since {&,, ..., &,} is a basis for u*, {n,,...,n,} for v*, and
each b,>0 (Theorem 2.3) 7, is the Kihler class*’ associated to a suitable left

4 Unless my minus signs are in error, 7, = —(Kihler-class) but this is of no moment.

-
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invariant metric ds®> on G¢/P°. This observation is indispensable for the next
section.

While we are on the subject, let us point out that the relative complex
A*(g, ¥) = A*(g*/r*)" introduced in 2.2 computes the cohomology Hir(G*/P< : C).
To see this, it is enough to note A*(g, r) = A¥(g,, )® C, and to apply the classical
Chevalley-Eilenberg theorem (see for example my notes [10], Appendix II,
Section 2). Finally, by using the Laplace operator associated to ds? T, is
harmonic: and we shall identify H5g(G</P¢:C) with the harmonic part of the
complex A*(g, ¥).

3. The vanishing theorem

We shall now prove our main theorem for the secondary classes associated to
(g, p): this is theorem 2 of the introduction.

THEOREM 3.1. Let ¢ =h, -+ - h7°(i;<i,---) be a closed form in A*(g*)
representing an element of the Vey basis for H*(W),, associated to the connection
V.

(@) Ifi,+|a|>n+1, ¢ is exact

(b) If iy +|al|=n+1, then ¢ is cohomologous to a class ¢ - hih, - - - h 7%, for

some scalar c.
The first assertion 3.1(a) says precisely that the rigid classes are zero: the second
assertion verifies Fuks’ conjecture [4] that the only nonzero secondary classes one
gets are already detected in the “‘standard’ foliation (sl(n+ 1), p,) coming from
the linear action of SL(n+1) on the projective space P,. (see Section 1). This
does not preclude the possibility that there might be more independence among
these classes than the 2"! independent classes in H*(sl(n + 1)): for it may well
happen that two given Vey forms ¢;, ¢, as in 3.1(b) evaluated on two examples
(g, )1 and (g, p), give different “ratios”: for this purpose, one would have to
compute the scalars ¢ (in 3.1(b)) in some explicit way. This can in principle be
done via the structure-constants associated to the root system: we shall return to
this question in a subsequent paper when we discuss variation.

The proof of the theorem is a fairly straightforward consequence of a certain
divisibility result which we now explain. In Section 2 we explained that 7, was the
Kihler class associated to a certain left invariant Kadhler metric on G°/P°: and
using this metric we identified the de Rham cohomology of G°/P¢ with the graded
subspace of harmonic forms in A*(g, r). We now define 7§, = harmonic-component
of 7°: note that in general this is not multiplicative. We set

T =14+do ogeA*(g, 1)
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LEMMA 3.2. Given ¢ as in the theorem, ¢ is cohomologous to h; - -+ h, 7.

Proof. We need only show that h; - - - h, do is exact. Since ¢ is a closed form
in the Vey basis, i,+|a|=n+1, or 2i,+deg(7*)=2n+2. Since deg(o)=
deg (7*)—1, we find that 7,0 =0: it is sufficient to check this for 7, o, and this
follows from the inequalities above, since A*(g, r) is concentrated in degrees < 2n.
Hence, if we put ¢y =h, -+ - h o, d¢gy==xh, - - - h, do.

What the lemma 3.2 really says is that we can replace 7 by any closed form in
A*(g,xr) which defines the same cohomology class in H*(G</P°:C), without
altering the cohomology class of ¢. We now state the divisibility result proper.
First recall that since ¢ is a form in the Vey basis, i;<a,=<|al, so that |a|=
(n+1)/2, or deg (v*)=n+1.

PROPOSITION 3.3. If deg (v*)=n+1, then 75, = 7,p, for some closed form p
in A¥(@g, 1).

Proof. G°/P° is a Kahler variety with Kahler class 7,, so the ‘“Hard Lefschetz
Theorem™ (Griffiths and Schmid (6], p.41 or Weil [11], p. 28) says that the
Lefschetz operator L (multiplication by 7,) induces isomorphisms

Lk:Hn—k(Gcch) - 3 Hn+k(GC/Pc)
and so every element in H"*'(G°/P°), =1 is divisible by 7.

Now the proof of the theorem is deduced thus.

Proof of 3.1. Using the two lemmas, we may suppose without loss of general-
ity that

é=h - h1p
where deg p =2|a|-2.

a: If i;+|a|=n+2, then i;>1, else 7°=0. So define {=hh; - - h,p. As
above, 1, p =0 for each i, (because 2i;+degp=2n+4) so d{ =+ 4¢.

b: If i;=1, then i,+|a|=n+1 implies that |a|=n. The complex A*(g, 1) is
1-dimensional in degree 2n, so 7@ =c - 7. If i; > 1, use the same form { as above:
now deg(r,p)=2nand 7, - p=0for j>1. Hence d{ =+ th,h, - - - h,7 ‘- p and
7, - p = ct] for some constant c.

Using the methods above we can prove a “proportionality principle” analog-
ous to the one in Bott [1]. In some ways it is stronger because we can treat all the
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movable secondary classes, rather than just h;7%: on the other hand, we do not

have a “‘concrete” description of the 7* in terms of the characteristic numbers of
G°/P-.

PROPOSITION 3.4, Let ¢=h, -+ h, 7 and ¢=h, - - - h, 7" be two closed
movable Vey forms with the same string of h;’s and |a|=|b|=(n+1)/2. Then there
are constants A, B depending on (1., 7% 7°) such that B¢ = Ay in cohomology.

Proof. The conditions on |a|, |b| imply that 7* = 7,p, 7° = 7,0 and 7, p = AT},
7,0 = Br}. Then by the proof of 3.1 above,

¢~ Ahh, - - - h, 77 (cohomologous)
llf"‘Bhlhi2 e hikTrll

so the result follows. Of course, just as in [1], we do not make any claim about
when hh; - h, 77 is nonzero.

Finally, here is a computation to show that the strong form of Fuks’ conjecture
is not true. We will compare the classes h,;7; and h,7, for the standard example
(sl(8), p,) of codimension 7, with another codimension 7 pair (g, p) to be described
below. Both these classes lie in H*".

(i) In the standard example, it is known that h,7] =8%- h,7, (see my notes
[10], page 35) and by Fuks [4] or the work of Kamber Tondeur, that h,7] is not
zero in H(sI(8)).

(ii)) For the example (g, p) we take g=sl(5) and p to be the non-maximal
parabolic defined by the first two roots «;, a,: in terms of matrices

pz{(aij)7 OSI, ]S4| Z a]']' =0a ai0=0’ lZl’ ajl=09 122}
This is a codimension 7 foliation whose associated complex variety is the natural
Ps-bundle over P,. An explicit calculation of h, € H'(r) together with an elemen-
tary spectral sequence argument shows that h 7] # 0 in H">(sI(5)). For a suitable
generator x of this group one gets

hit]=Q2%2-3%-5-7)x
rather easily: and with considerably more work,

hyr,=—(2%5-T)x

so that the ratios are quite different in the two cases.
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As mentioned in the introduction, D. Baker [12] has systematic independence
results for some classes of parabolic foliations. These give counterexamples to the
strong Fuks’ conjecture, and they also go some way towards the computation of
the scalars alluded to in the beginning of this section. However, for the most part
his explicit computations (Section 5 of [12]) deal only with maximal parabolic
subgroups: it is for this reason alone that we have sketched the example above.
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