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Comment. Math. Helvetici 54 (1979) 583-600 Birkhduser Verlag, Basel

On the number of solutions of linear equations in units of an
algebraic number field

K. GYORY

1. Introduction

Let K be an algebraic number field of degree n over the field Q of rational
numbers, and let r denote the number of fundamental units in K. As is well-
known, many diophantine problems lead to equations of the form

ax;tax, = (1)

where the coefficients a,, a,, B are non-zero algebraic integers and the variables
x;, X, are units in K (see e.g. Siegel [22], [23], Skolem [25], Nagell [15], [17],
Mordell [14], Baker [1], [3], Sprindzuk [26], [27], the author [7], [9] and the
references mentioned there). We may suppose that in (1) m =|Ng,o(B)|l=m, =
|Niso(ay)| for k =1, 2. It follows from a general theorem of Siegel [22] concern-
ing the Thue equation that the number N of solutions of (1) is finite (and these
solutions can be effectively determined by Baker’s method, cf. [3]). This result on
the finiteness of N has various generalizations, see e.g. Mahler [13] and Lang
[11]. From the point of view of some applications of (1) it is crucial to have a good
upper bound for N. The best known bound for N is 3%c¢'(n) when m=
min, ¢"(n, o). It can be deduced from a recent theorem of Choodnovsky ([4],
Theorem 2.1, (2)) on the number of solutions of the Thue equation. In [4]
c'(n)(=1) and ¢"(n, o) are effectively computable in terms of n and o, but they
are not explicitly computed.

In this paper we give a direct proof for estimating N which enables us to
considerably improve the above quoted estimate. Using Baker’s method we prove
that if m is sufficiently large relative to min (m,, m,) and certain parameters of K
then N=<r+1. This upper bound is best possible for r=1. Further, for small
values of m our result does not remain valid in general.

We prove our main result in a more general form, for the number of solutions
of (1) in S-units x,, x, of K. Our theorem has several applications which will be
published in separate papers. It implies e.g. [10] that in our Theorem 1(a) in [6]

583



584 K. GYORY

there exists no so-called exceptional polynomial f(x). The explicit and good
dependence on r in our bound is particularly useful in certain applications.

2. The main result

Throughout this paper K will denote an algebraic number field of degree n=1
with ring of integers Zx. Let Rx and hg be the regulator and the class number of
K. Let R =max (Rg, e) and let r be the number of fundamental units in K.
Denote by S a finite set of normalized valuations |- - -|, of K containing the set S,
of the archimedean valuations. For a €K put |la|, =|a|3 where n,=[K,:Q,].
Suppose that the non-archimedean valuations of S belong to the prime ideals
p1---,ps and that these prime ideals lie above rational primes not exceeding
P (=2). Ug will denote the group of S-units in K. Ug obviously coincides with the
group Uk of units in K for S=8..

Let a,, a, and B be non-zero algebraic integers in K with m, =[], <s llaells
k=1, 2 and m =[], s ||Bll,- Consider the equation

a;x;taxx, = (2)

in S-units x;, x, of K. We may suppose without loss of generality that m =
max (m,, m,). It follows from a theorem of Parry [19] on the Thue-Mahler
equation that the number of solutions of (2) is finite and can be estimated from
above in terms of K, S, «,, a, and B.*

In this paper we derive an upper bound for the number of solutions of (2) in a
more direct way, without using the Thue-Mahler equation. This new approach
enables us to establish a much more precise result on the equation (2).

THEOREM. Let K, S, a,, a, and B be as above. Suppose that

2
logm>¢"'log (;)(ZS(r + 5 +3)n)0c D 3sprp

- (Rk + hy log P)*(Rk + shy log P)[s(Ry + hx log P)+1]log (RE(1+shgP)) (3)

and that min, (m,)=m'"° for some & with 0<e <1. Then the number of solutions
of (2) in S-units x,, x, of K is not greater than r+4s+1.

! In case K =Q better and explicit estimates can be deduced from a result of Lewis and Mahler
[12].
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Remark. If in our theorem max, (log m;)=<(log m)'* with some ¢, 0<e=<1,
and m > C(g, n, R, hg, s, P) (where C can be expressed explicitly in terms of ¢, n,
Ry, hy, s and P) then the number of solutions of (2) is at most r+2s + 1. Further,
if in particular K= Q and s =1, this bound can be improved to 2s. For s =1 this
result is best possible.

In case $ =S, our theorem implies the following

COROLLARY. Let K, a,, a, and B be defined as above. If
2
log |Ng,o(B)|> € log (;)(ZS(r +3)n)*°*?R2Zlog RE 4)

and min, |Ng,o(a)|=<|Nio(B)|'~° for some & with 0<e =<1, then the number of
solutions of (2) in units x,, x, of K is not greater than r+1.

It is easily verified that for number fields K of unit rank r=<1 the bound r+1 is
already best possible.

Nagell proved [16] that for every n =5 there exists a number field K of degree
n such that x; +x, =1 has at least 3(2n — 3) solutions in units x,, x, of K. In other
words, if m is small or 8 =a; =a, our theorem is not true in general. In these
cases we can derive an explicit upper bound for the number of solutions of (2) by
using our Lemma 6, but this bound depends on r, s, R, hy and P.

Finally we mention an application of our Corollary. Newman showed [18] that
if [K:Q]=n=4 and in K there is an arithmetic progression n, n+p,...,n+kpB
consisting of units then k <n —1. When  satisfies (4) and r <n —2, our Corollary
improves Newman’s estimate to k<r+1.

3. Lemmas

In order to prove our theorem we need some lemmas. We keep the notations
of Section 2. We suppose that there are r, real conjugate fields to K and 2r,
complex conjugates to K and that they are chosen in the usual manner: if « is in
K then a® is real for j=1,...,r, and a®*?=a® for j=r,+1,...,r,+r, Let
e=1if l=sj=srand ¢=2if rn+1=<j=r +r,.

As usual, rix_l will denote the maximum of the absolute values of the conju-
gates of an algebraic number a. We denote by H(a) the height (in the usual
sense) of a.
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LEMMA 1. If r=1, then there exist independent units n,,...,n, in K such
that

D max (log F;;—I, 1)<c;Rk (5)

i=1

and the absolute values of the elements of the inverse matrix of (e; log|n{’|)1<; =, do
not exceed c,, where

6rn?
ogn

r
1= ) and c,=

Proof. This is a special case of Lemma 2 of [9]. It follows from the work [24]
of Siegel (combining his argument with a recent result of Dobrowolski [5]).

If r=1, let n4,...,m, be fixed units in Zx with the properties specified in
Lemma 1 and let U denote the multiplicative group generated by n,,..., 7, In

case r=01let U={1} and ¢, =c,=1.

LEMMA 2. Let a be a non-zero element in K with |Ng,o(a)| = M. There exists
a unit € € U such that

log| M7 (@e)?l|< " Ry, j=1,....n ©6)

Proof. This is a special case of Lemma 3 in [9].
Let a,,...,a, be m=2 non-zero algebraic numbers in K with heights

respectively not exceeding A, ..., A,. (with loglog A, =1). We further suppose
that A,<A,=<---<A, =A’ and we set

2'=@1ogA,) - (logA,._), c3 = (25(m + 1)n)10m+D
and T = c,02' log £2'. Write

A=b,loga;+---+b,,_, loga,,_,—log a,,

where b,, ..., b, _, are rational integers with absolute values at most B and all
the logarithms have their principal values.
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LEMMA 3 (A. J. van der Poorten and J. H. Loxton). If A#0 and for some
>0

|A] <e™®",
then B<8 'Tlog (6 'T)log A’ or B<c3'*Tlog(c5"*T)log A’ according as & <
c3Y?T or 6> c3?T.

Proof. This deep result is Theorem 3 in [21]. It is an explicit form of Theorem
2 of Baker [2].

We shall use the following consequence of Lemma 3. Put
c,=25(m+2)n)'*"*? and T =c, 02 log .

With the above notation we have
LEMMA 4. If 0<8<2mc;"*T' and
0<l|abi-:-abmya;l—1|<e B

then B<4e8 'T' log (4emé'T) log A'.

Proof. LLemma 4 can be deduced from Lemma 3 by a well-known argument.
Let b,, = —1. By taking the principal values of the logarithms we get

log (% - - - aby)= ), b, loga; +bolog (—1)
i=1
where |bo|<|b,|+: - - +|b,.| =mB. Since |log z| <2|z—1| for |z—1|=3, it is clear
that Lemma 4 is a direct consequence of Lemma 3.

Let p be a prime ideal of K lying above the rational prime p. Following van der
Poorten [20], we write e, for the ramification index of p and f, for its residue class
degree, so Ngo(®) =p- Let g,=[3+e/(p—1)] and G,=p**(p~—1). Let
ay,...,0,,02 and A’ be defined as in Lemma 3 and write c¢s=
(16(m +1)n)2"*D T* =G, Q' log 0.

LEMMA 5 (A. J. van der Poorten). If 0<8*<1 and there exist rational
integers b, . . ., b,,_; with absolute values at most B such that

w>ord, (@b - - - alr-ja;l-1)>8*B

then B <(6*) 'T*log ((6*)"'T*)log A’".
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Proof. This is Theorem 4 of van der Poorten [20].

We remark that G,<p" if p>3 and G,<p®>" if p=3.

Let S be defined as in Section 2 and put Gg=max,;-, G, for s=1 and
Gs =1 for s =0. Denote by N the set of algebraic integers a in K satisfying
With the notation introduced above we have the following

LEMMA 6. Let a,, a,, a3 be non-zero algebraic integers in K with
max, 3 lak ] =< A. If x,, x, and x5 are non-zero algebraic integers in K satisfying

a1 X, +ax,+asx;=0 and x,, X5, x3€ N (UgNZg) (7)
then for some o€ Ugs NZy and p, € Zy we have
X =op, k=1,2,3 (8)

and

max ]-pT' < exp {csG; (log P)[s(Rk + hx log P) log (1 +sRghy)+1]

1=k=3
X (Rk + hg log P)*[log RE + s log (1 + Rihk log P)T
- [Rg + shg log P+log (AN)]}, 9)

where Ce = (25(r +s+ 3)n)19r+13s+2rs+36.

As is known, this statement, with weaker estimates, was earlier implicitly
proved in several papers. In the special case s =0 we obtained in [9] a slightly
better result. Our Lemma 6 has several applications. By using this lemma we can
improve, for example, our estimates established in [8].

Put p'<= (1r;) with some m,€Zg fori=1,...,s. As will be apparent from the
proof of Lemma 6, in (8) ¢ may be chosen in the form n#7{: - - - w5 where n € Uy
and a,, ..., a, are non-negative rational integers.

Proof of Lemma 6. Since in the case s =0 we obtained in [9] a better estimate
than that occurring in (9), in what follows we suppose s> 0. By hypothesis we
have

Xy = 8kak, k= 15 2a 3’ (10)
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where

INgio(8)|=N (11)
and

(i) =pit - - - pi. (12)

Write u, = hgvy +r; with 0=r; <hyx and p'<=(m;) with m, €eZyg for i=1,...,s.
By Lemma 2 we may suppose that

_ cqr
max |m [ <exp {71 Ry + hy log P}. (13)

1

Further, by (10) (8 )pj*«- - p= is a principal ideal with norm at most NP«
Applying again Lemma 2 we may write

Xie = E YTt * 0 W, k=1,2,3, (14)

where g, is a unit in K and v, is an algebraic integer satisfying

- Cqr
rl=NUphexp (TR, k=1,2,3 (15)

Put a; = min, v, and v}, = v, —a;, for k=1,2,3and i=1,...,s. Suppose, for
convenience, that V=max, ;- vix =v1; and v;3=0. If r=1, let n,,...,n, be
units with the properties specified in Lemma 1. By Lemma 2 we may write

eles=eimyn oMy, elles=ghnyc e (16)
where wyq,...,W,;, Wi, ..., W,, are rational integers and &7, €5 are units in K
such that

T T Gar
max (&1, |e5)) =exp _Z"RK . (17)

(16) and (17) are valid both for r=1 and for r =0 (when the n; do not occur in
(16)). Put e5=1 and y.=¢rv, k=1, 2, 3. Then we have by (15) and (17)

max ﬁ_,—’:l <= NY"Ph< exp {, Rk }. (18)
k



590 K. GYORY

Consequently

Xy = Opy
where o =e;7%1 -+ 7%, g =viqPw .- gl - %% and wyz =+ =w,3=0.
We shall prove that o and p,, k =1, 2, 3, have the required properties.

From (7) we get

a0+ aprtazp;=0, (19)
whence
r=-22P2 1 %P1, (20)
Q3P4 Q303

We are now going to derive an upper bound for H=max (V, W) where W=
max;; |w;|. We assume that

H>16(r+1)*n%c,c,sRg(Rk + hy log P)° [ Rk + shy log P +log (AN)]. (21)

First suppose V=7H where 7 =[16rmnc,s(rc;Rx + hyx log P)+1]*. Since

nlog A
log 2

ord, a;=

b

it follows from (20) that

nlog A
ord,, log 2
so, by (21),
ayy; 30,4 27 Y,3 T
0> - Wi2eao 'Wr2 V"%, ;’lZ 0-3—1)>‘_H.
Ord"‘( avi M e i 2 (22)

Let us apply now Lemma 5 with p, and 6* = 7/2. Write A, =max (H(mw;), e°) for
ji=1,...,rif r=1 and A, =max (H(m;_,),e°) for j=r+1,...,r+s. Since

H(n)=Q[n])" and H(m)=Q[m]",
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so by Lemma 1

log A, <2n max (log[n;], 1)<2nc;Rg,  j=1,...,r (23)
and by (13)
log A; <2n(c,rRk + hg log P), j=r+1,...,r+s. 24)

Thus, by Lemma 1 we have
Q'=logA, - logA,.,<c,(2n)"Rg(c,rRx + hx log P). (25)

Further, we have by (18)

az‘Yé
H(— ,> =< (layys| +]asvi)" = (2A)"NP* ~ exp {2c,nrR} = A’ (26)

a3Y3

where A'=A; for each j. Define T*=c¢,G2'logN’ with c¢,;=
(16(r+s+2)n)**"**2 By Lemma 5 we get from (22)

2 2 4 2
H <; T* log {; T*} log A’ <;— ¢;,Gs log {;— c7Gs}.Q’(log 2')logA'. (27)

Suppose now that V<7H when V<W=H and r=1. Assume, for conveni-
ence, that W=|w,,|. Then we obtain

wiilog [n{l+- - -+ w,, log n{’ =log [p{’| —log [vi?¥| - X, v, log |

for each conjugate with j=1,...,r. Suppose that the right sides attain their
maximum in absolute value for j=J, 1<J=<r. By Lemma 1 we get

W= 2rc2{llog p{”l|+llog| v |+ X vf, llog| | }

Thus, by (13), (18) and (21) we obtain

1
llog|p{"||= W —(log N + snhg log P+ c;mRg) — TWsn(c,rRx + hy log P)

2rc,

3
=—H.
8rc,
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But we have

log [N (p1)] =10g [Niio (Y1) + X vis 10g [Niya ()|

1
=<log N + snhg log P+ c,;mRg + tHsnhg log P <

H.
8rc,

Hence

1
log|p{¥|< —————H
Oglpl ! 4r(n_1)C2

for some 1= g=n. Further it is easy to see that

a ()

log <log 2A)+(n—1)log|asps|=

1
s ——— H.
afps 8r(n—1)c,

Thus we have

(®) ,(2)
a®’pt*

agg)pgg)

0<|Ir'®| =

<e SH (28)
where 8 =(8n’c,)"'. We can now apply Lemma 4 in a similar way as we applied
Lemma 5 before. Write cg=(25(r+s+3)n)*°""*» and T =g’ log?’. Since
8 =2(r+s+1)cg*T’, by Lemma 4 we have

H <32en’c,T' log (32e(r+s+1)n*c,T)log A’
and, by (25) and (26), we get

H <32en?c,cglog (32(r+ s+ 1)nc,ce)2'(log 2')*log A'. (29)

It is easily seen that the right hand sides of (27) and (29) can be estimated from
above by

(25(r+s+3)n)'* 1231 G4 (log P)
X [s(Rg + hx log P) log (1+ shxRi)+1]- Q'(log 2')?log A'.

So by (25) we have

H <coGs(log P)[s(Rg + hy log P) log (1+ shx Ry )+ 1]Rx (Ry + hy log P)*
- [log RE+ s log (1+ Rghy log P)P[Rk + shy log P+1log (AN)] (30)
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where cg = (25(r + s +3)n)!7->7*135+25+345 Einally, by virtue of (13), (18), (23) and
(30)

ol =Hil (T ) (T =)

i=1

=<exp {con(r+1)c,Gs(log P)[s(Rg + hi log P) log (1+ shgRg)+1]
- R ((s + 1)Rg + shx log P)(Rk + hi log P)*[log RE + s log (1+ Ryghg log P)J

- [Rg + shx log P+1og (AN)]}.

Since con(r+1)c; < (25(r +s+3)n)'r+135+2+36 (9) js proved.

4. Proof of the theorem

If r+s=0 and x,, x, is a solution of (2) then x, and x, are roots of unity.
Assume that x;, x, is another solution of (2) and m,<m'"*. Then we have
B(x;—x,) = a,(x,x5—x1X,) and, by taking the norm on both sides, we arrive at a
contradiction.

We suppose now that r+s>0 and that (2) is solvable in S-units x,, x,. We
first show that we can make certain assumptions without loss of generality. Write
(B)=ap5 - - - p> where a is an integral ideal in K such that (a,p,----p,)=1.
Putting p'< = (m,) with some fixed m, € Zx and b, = hgw; +d; with 0=d, <hy, we
obtain ap{: - - - p% = () for some ¥ €Zy. Since

m SINK/Q(ﬂ)l = mNK/Q(pflil .- o pg,)SPsnhK - m,

it follows from Lemma 2 that an associate 9’ of 3 can be determined such that

ciom" = | P|=c;ym, l=1,...,n,
with
cyr cir
C10 = €XPp {—-7 RK}, Cy11 =P exp {—5— RK}.

Now B=&nyr- - - w2 where £ is a fixed unit in K and m; /9 for i=1,...,s.
Since &nyi---awy- is a fixed S-unit in K, multiplying both sides of (2) by
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(énrys -+ - ) ! and incorporating this S-unit in x,, x, we get (2) with B replaced
by 9¥'. So we may suppose without loss of generality that in (2)

m=|Ngo(B)| and c¢,om'" =|BP|=c;ym'", I=1,...,n (31)
Similarly, we may assume that in (2)
®

m;. < |Ng,o (a4 )| = P*<my, led| = ciomi™, I=1,...,n (32)

and m X for k=1,2and i=1,...,s.
Let x,, x, be an arbitrary but fixed solution of (2) in S-units. Then we have

(xk)zpl e p:h- k= 1, 2> (33)
with some rational integers @y, . .., dxs. Write ay; = hxvy; +aj; with 0= af; < hg.
Then pj«: - - - p2 is principal, say (7)), and 7, € Zg. By Lemma 2 we may suppose
that

— cqr

ImISexp{—é—RK+hK10gP}, i=1,...,s (34)
and

— cqr

|7 [=exp {7 Ry + shy logP}, k=1,2.

Consequently, there are units «,, k, in K such that x, =k, 77w - - 7. If r=1,
let my,...,m, be units with the properties specified in Lemma 1. Then k, =
Kini< -+ - ) where k, is a unit satisfying

With the notation ;. = k;7, we have
Xie = Xa M 0 M g (35)
and

[x |=exp {c,rRk + shy log P}. (36)
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We are now going to give an upper bound for the solutions of
QXM MY Wt Ao M we = (37)

in rational integers y,;, vy;. Write Y;=[[{_; ;™" ®w > ? and multiply both sides
of (37) by Y;. Putting Y, = Ysnip - - - miumiey - - - wee for k=1, 2, from (37) we
get

a1 x1Yitax,Y,=BY;. (38)

We could now apply Lemma 6 to (38) and we should obtain

Y. =mp, k=1,2,3; max |p|=com (39)

1=k=3

where ne Uy, p. €Zk and c;,, ci5 are explicit constants. This would imply an
explicit upper bound for |y,;| and |v,|. However, we can get a slightly better
estimate if we observe that the equation (38) is of the same type as (19). Thus, by
(30) we have

Tax (l)’kj |, lo]) = c1alog m (40)
A

where

Cc1a=2 " 3"coP"(log P)[s(Rk + hi log P) log (1+ sRghg)+1]Rk
- (Rk + hg log P)*[log R¥+ s log (1+ hg Rk log P)P
with the constant ¢y occurring in the proof of Lemma 6.

Let ¢,5>0 be a number determined later. We shall now prove that (37) (i.e.
(2)) has at most r+1 solutions

Xy = XMt MIUTN WG, Xy = XMyt MIEWYR W
such that
max |v;|=<c,slog m. (41)
ki
Write i« - - - i« =g, in x,. Suppose that (37) has at least r+2 solutions x,,

x, with the property (41). Assume that m,;<m'"°. Let us order the conjugates of
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a, &, in the same way as in Section 3. By (32) we have

r, r +r
H l(a13)(1)| H |(a181)(1)lz<Psnhxm < P (42)
i=1 i=r+1

for each of the r+2 solutions. Hence there exists at least two solutions for which
|(a;£,)?| is minimal for the same I, 1=<I=<r,+r,=r+1. For these two solutions
we have

[(at,€,)P| = Prxm Ve (43)
and, by (34) and (41),

‘(fn-‘l’u . e ﬂ';ls)(!)ISmcxs

where
Cir
C16= Ci5s [sn(—i— Ry + hg log P) +1 ]
So, by taking
-1
Ci6= 8/2" (i.e. Ci5= 2 [S(n 1)( RK+h'K log P)+1] )

we get

|B(!)_a(21)x(21)| = I(alsl)([)‘ ‘X(l)| |(,n_vu - Tl"s)")(l)’ < C17m1/n+cm-e/n — Cl7m1/n—e/2n
(44)

where ¢,; = exp {¢,rRg +2shy log P}. We deduce from (3), (31) and (44) that

. _ Cio 1
|a(21)x(21)‘ - |B(l)‘ _ C17m1/n e/2n = ¢y 1/n _ C17M /n—e/2n - ) m /n. (45)
Let x;, X, and xj=xiMi" - MPm WY, Xp= XM A W

denote the two solutions in question. From (44) we obtain

M, 1) O, 1/n—e/2
lay’ x5V —af’xy’| =2¢;,m PR
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whence, by (45) and (3),

b . £
T“1| = T )|<exp{— (2cq4log m)} (46)
x2 8"614
where
F =X_2. n{’Z]—yzl PR n:;r-y2rw§’21_u2l - »-n-:,zs_uzs— 1_
X2

Here we may suppose that

X2,
X2

In (46)

x’2“)
XD

—-1#0,

since otherwise we should have x4 = x, and, from (2), x] = x,. Since in view of
(40) we have |y5—vy,l, |v5i—v.|=2ci4logm for each i and j, we may apply
Lemma 4 to (46) with 8 = &(8nc,,)"' and we get

[4e(r+ s+1)
£

4
2ci4logm <€ (8nc.4) T log (8nc14)T'] log A’
€

where T =c5Q log V', ¢;5=(25(r +s+3)n)'°"**? with the ' specified in (25)
and

H(ﬁ)smm)n <Qcy) = A @7)

X2

Thus we have

logm=¢""log (%)(ZS(r + 5 +3)n)?0C 2+ 13 . prRL (R + hy log P)°
- (Rg + shy log P)[s(Rg + hy log P)+ 1]log (RE(1 + shiP))

which contradicts (3).
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We shall now prove that (37) has at most 4s solutions x,, x, for which

max |v,|> c;5log m (48)
ki

with

-1
Cis =2 [sn(ﬁl—rRK + hg log P)+ 1] .
2n 2

Assume that (37) has at least 4s+1 solutions with the property (48). Then we
may assume, for convenience, that there exist three solutions for which |v,,|>
ci5 log m. '

First suppose that for at least two of these solutions, say for x,, x, and x{, x5,
vy; and vy, are positive. Since m, 4 B, from (37) we deduce that ord,, (a,x,)=0.
Further (37) implies ord,,, (B —a,x,)=v,; and ord,, (B— a,x;)=v;,, whence, by
(48),

©>ord, (a,x;—a,x;)>cslogm

and hence
4

©>ord, I'=ord,, (%— 1) >§*(2c¢14log m)

2

with

C
§*=—<1,
2¢14

Consequently, by Lemma 5 we have
2ci4logm < (8% 'T*log (6 'T*) log A’

where T* =c,,G2' log ', c,o=[16(r+s+2)n]2"***? and Gg is defined as in
Lemma 6. Thus

2
log m <§£ Gs(2' log ' log [ 14 . 4G’ log .Q’] log A’

15 Cis
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=¢e'log (%)(ZS(r +543)n)200 2 3sprR. (Rg + hg log P)*
* (R + shi log P)[s(Rk + hi log P)+ 1]log (RE(1 + shiP))

and, in view of (3), this yields a contradiction.

Finally suppose that there exist two solutions, say x,, x, and x;, x5, for which
|v14), |051]>c15log m and v,,, v}, are negative. Since 7,4 a,, we can reduce this
case to the preceding one by multiplying both sides of (37) by x;' and x;*
respectively. This completes the proof of our theorem.

To prove the Remark stated after our Theorem it is enough to show that there
exist no solution x,, x, with the properties |v;;|>c¢,5log m and v,, <0. Indeed,
the existence of such a solution x,, x, would imply

ayXq

ord,, (— —-1)>c{5 logm

X

which would yield a contradiction in a similar way as in the above proof. If in
particular K=Q, s=1 and (2) is solvable then in our above proof (48) must
hold. So, in this case the number of solutions is at most 2s.
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