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Some topological aspects of C* actions on compact Kaehler man-
ifolds

James B. CARReLLY and ANDREW JOHN SOMMESE?

Ia. Introduction

T. Frankel proved in [F] the classical description of the homology of a compact
Kaehler manifold X of dimension n admitting an infinitesimal isometry V with

zero (V) = F# ¢.

THEOREM. The contraction i(V){2 of V and the Kaehler form (2 of X is exact:
i.e., there exists a smooth real function f on X such that i(V)Q2 = df. Moreover, f is a

Morse function on X whose critical manifolds are the components F,, ..., F, of F.
For any coefficient field, Z, or Q,

Bi(X) =2, b, (F) (1)

where A, is the index of f on F;, each A; is an even integer, and finally, X has torsion
if and only if F has torsion.

More recently, Carrell and Lieberman showed that if X admits a holomorphic
vector field with variety of zeros F, then H?(X, 29)=0 if |p —q|>dim_ F[C-L,].
In addition, if F is finite, there exists a filtration of H°(F, §:;) whose associated
graded ring is H'(X), where H'(X) denotes cohomology of X with complex
coefficients ([C-L,])).

In this note, we shall enlarge upon these results in two ways. First of all, we
prove in Theorem 1 a geometric version of Frankel’s Theorem for a compact
Kaehler manifold X having a holomorphic C* action with fixed point set F# ¢
which is valid even for Z coefficients. It follows, for example, that if H.(F, Z)
admits a basis of analytic cycles, then so does H.(X, Z). Moreover, Theorem 1

! Partially supported by a grant from the National Research Council of Canada
2 Partially supported by an N.S.F. grant
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568 JAMES B. CARRELL AND ANDREW JOHN SOMMESE

leads to an interesting description of the Picard variety of X (Theorem 3) and to
the Hodge numbers h”9(X) in terms of certain Hodge numbers h° %9 7*(F)
(Theorem 2). The proofs of these results use the Bialynicki-Birula decomposition
[B-B] as proved for compact Kaehler manifolds in [C-S]. An additional crucial
ingredient is the fact that the Morse function f increases on the trajectories of the
vector field generated by R* < C*. Recently, J. Jurkiewicz [J] gave a surprising
example of a compact algebraic variety with a C* action with fixed points on
which no such function can exist. It seems that because of this example, one
cannot in general expect Frankel type theorems to hold for algebraic nonKaehler
manifolds.

We remark in IIc that Theorem 1 is still true when a C* action on a compact
algebraic manifold has finite fixed point set provided the B-B decomposition satisfies
an extra transversality condition. On the other hand, the results connecting
the cohomology ring of a compact Kaehler manifold X and the zeroes of a
holomorphic vector field give one a different perspective on the relation between
topology and fixed points, and it is an interesting question as to how this relates to
Theorem 1. In light of the differences that can arise between Kaehler and
nonKaehler C* actions, it is worthwhile to carry over to the nonKaehler case
what one can say concerning vector fields.

Ib. Statement of some results

Let X denote a compact Kaehler manifold of complex dimension n with a
holomorphic C* action, C*x X — X. The fixed point set F of the action will
always be assumed nontrivial. Let F,, . . ., F, denote the connected components of

F, and let A; denote 2n-(index of f on F;)-dimg F;.

THEOREM 1. There exist injective morphisms defined over Z, Q, or Z,, for
any prime q, of the form

Mk - Hk—x, (F)) — H.(X) (2)
so that w, =Y, ;. (1=j=r)is an isomorphism, for any k=0,1,...,2n.

THEOREM 2. Let H'(X) denote deRham cohomology of X over C and let
H*(X)=®,,q-« H*(X) be the Hodge decomposition. Then if 0=k <2n and

pEHYX) > ® H*NEF)  (1=j=<r) 3)
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denotes the isomorphism dual to p,, we have pF(H™%(X)) = ®; H*~**"%(F,) where
d, = \,;/2. Consequently, h»4(X) =Y, h*" %1 4%F,).

THEOREM 5. Let V be a special holomorphic vector field (IIIb) with nontri-
vial zero set Z on a compact complex manifold X of class M (II1a). Then for any k
with 0=k <2n,

Y kMX0= ) h™(Z) C)

p—a=k p—a=k

In particular if Z has components Z,, ..., Z, and k; =max{p—q:h™¥(Z)#0},
then if r=max{k;}, h*4(X)=0 for |[p—q|>r.
This result sharpens the vanishing theorem of [C-L,].

Ic. The Bialynicki-Birula decomposition

The remarks made in this section are valid when X is a compact Kaehler
manifold or a compact algebraic manifold. Let C*x X — X be a C*-action with
nontrivial fixed point set F having components F,, ..., F,. Each F, is a complex
submanifold of X. It is a basic fact [S;] that for any xe
X, C*x{x}—> X:(A, x)—> A - x extends to a holomorphic map P! x{x}— X. Thus
lim, _,o A - x and lim,_,. A ‘- x exist, and by the group action properties, both must
lie in F. The immediately suggests two invariant decompositions of X, the plus
and minus decompositions:

X =UX;=UX; where X,?*={x: lim )\-xeF,-}

A—0

and X,-‘={xeX: lim )\~er}.

A —>»o0

These decompositions were first discussed in the algebraic case by Bialynicki-
Birula [B-B] and subsequently shown to exist in the compact Kaehler case in
[C-S], where proofs of the following assertions can be found. Assume X; is one of
X or X;. Each X; is a complex submanifold of X Zariski open in its closure (i.e.
}2,. is an analytic subvariety: see IIb); the natural map p; : X; — F; is a holomorphic
C*-equivariant maximal rank surjection; F, is a section of X;; and the normal
bundle of F; in X; is a specific subbundle of the normal bundle of F; in X which
we now describe.
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For each x € X, A € C* acts linearly on the holomorphic tangent bundle T(X),
of X via the differential dA,. It is well known that the resulting complex
representation of C* is determined by the existence of a basis v,,...,v, of
T(X), and integers a,,..., a, such that A - v; =dA (v;)=A%v, The a,,...,a, are
called the weights of the action of C* on T(X),. Therefore, for each j, one
has a canonical holomorphic direct sum decomposition T(X)|F,=
T(F,)® N(F,)*® N(F,)~, where N(F,)* (resp N(F,)") is the holomorphic vector
bundle on F; whose fibre at x is generated by v; corresponding to positive (resp.
negative) weights a;, and T(F)), is generated by v, with a; =0. Then N(F,)" (resp.
N(F;)") is the normal bundle of F, in X; (resp. X[ ). Note that using the definition
of A; from Theorem 1 gives A; =dimg N(F,); for any x € F;.

Finally, we recall that there are exactly two distinguished components F,
(called the source) and F, (called the sink) such that X7 and X, are Zariski open
in X. Note that N(F;)” and N(F,)* both have rank 0.

There are two important sources of examples of C* actions. The first class is
made up of the algebraic homogeneous spaces G/P, where G is a complex
semi-simple Lie group and P a parabolic subgroup. Every regular one parameter
subgroup H of P defines a C* action on G/P with finite F, and, by a result of E.
Akyildiz [A], the B-B decomposition coincides with a Bruhat decomposition.
Thus for most actions, the )_(,-* may be regarded as generalized Schubert cycles.
The second class of examples, in which one finds some nonprojective actions,
consists of the torus embeddings (i.e. equivariant completions of ((C*)"). These
are studied in [K-K-M-St. D] and [M-O].

IIa. The Lyupanov function

Associated to a C* action on X are the circle and radial actions arising from
the circle S* < C* and the radial subgroup R* of C™* consisting of all positive real
numbers. In this section we will show that the Morse function f of §Ia is a
Lyupanov function, i.e. is strictly increasing along the radial orbits in X. We will
also prove some geometric consequences of the existence of this function.

Let X have Kaehler form {2 which we may suppose is invariant under the
circle action. The two actions give rise to a pair of vector fields V and W on X
such that JV = W, where J is the complex structure tensor of X. For any smooth
function g on X, set

a4

% g€ x)|o0 (0€R)

V.g=

d »
Wxg=;1—rg(r-x) -1 (reRY)
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Note that zero (V) =zero (W)=F.
The trajectories of W, that is, the rays r - x, have limits in F as r — 0 or . The
next lemma shows that these lie in different components of F.

LEMMA 1. The Morse function f is increasing along the trajectories of W.

Proof. One need only show that if x¢ F, then df(W)>0 at x, and this is
obvious since

df(W)=({i(V)Q)W=Q(V, W)=0Q(V,JV)>0
unless V, =0.

COROLLARY 1. The index of f at x€ F, is dimg N(F;),. Consequently the
index is even.

COROLLARY 2. The source F; of X is {xe X:f assumes its absolute
minimum at x}. Similarly, the sink F, of X is {xe X:f assumes its absolute
maximum at x}.

Proof. This follows from the fact that T(X) | F, = T(F,)® N(F,)" and conse-
quently f is increasing in every direction normal to F;. The other assertion is
similar.

Therefore the fixed point components can be indexed Fy, F,, ..., F, so that

fF)<f(Fy)=---=f(F_)<f(F) (5)
J. Jurkiewicz has given an example in [J] of a 3 dimensional torus imbedding
containing nonfixed points x,, ..., x¢ for which

limr-x; =limr-x;,, (1=i=5)

r—> r—0
and

limr-xg=limr-x,
r—»o0 r—0

Such X cannot admit a Lyupanov function.

It is useful to have the following example since by Blanchard’s Theorem, any
projective manifold X admitting a C* action with F# ¢ admits an equivariant
projective imbedding.
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EXAMPLE. Suppose X=P" and let a,,...,a, be integers such that a,<

-+ =<aq,. One defines a C* action by on X by A *[x,, ..., x,]=[A%x,, ..., A%x,].

Then it is not hard to see that with respect to the Fubini-Study metric {2 on P",
(V)2 = df, where

flxos - - s % 1= 2 @ %21 |x)?

This function separates the components of F.

One obtains some interesting information from this example for a projective X
embedded equivariantly in P". In fact, if Q*(resp. f*) denoted the pull back of 2
(resp. f) to X, then i(V)Q* =df*, so f* is a Morse function of X. It follows that
C* has fixed points on X (hence the Borel Fixed Point Theorem). Indeed, the
B-B decomposition for X is induced on X from the B-B decomposition of P™.
The following fact is slightly more surprising.

PROPOSITION 1. Suppose X is as above and, in addition, X is contained in
no C* invariant hyperplane of P". If F, (resp. F¥) denotes the source of P" (resp.
X), then F¥=XNF,. An analogous result holds for the sinks.

Proof. Since the hyperplane x,=0 is invariant, there exists a point x in X of
the form [1, x,,...,x,]. Since lim,_,r-x lies in F,, it must also lie in FT by
Lemma 1. It follows that

F¥=f*"ao), so Fi=f=""ap)=fa)NX=F,NX
This completes the proof.

Therefore f(X)=f(P"), however it is not true that X meets every component
of (P")°". We conjecture the following: if X" is finite and X is equivariantly
imbedded in P", then x(X)=#X "=x(P*)=n+1, where x denotes Euler
characteristic.

IIb. Construction of the maps

Let X be compact Kaehler, let C* act on X, and let F, be any component of
the fixed point set F. In this section, we shall construct morphisms
i : He—, (F;) = H(X) which may be viewed as realizations of the following
construction: for any cycle z in F,, let z*=p;7'(|z|) and let w,,(z) be the closure
of p;'(z). (Actually, we should denote p,, by p;, since there is dually a natural
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pj for the minus decomposition.) Then y;,(z) is a cycle in X. Note that the
degree of w;,(z) is (degree of z)+ A, since A; =dimg N(E)".

Recall that it was stated, but not explicitly proved, in [C-S] that X} is a
subvariety of X in which X is Zariski open. We shall now explicitly prove this by
constructing a certain compactification B; of X so that the holomorphic
equivariant map i:X; — X extends meromorphically to ¢, : B; = X.

Let 7 denote the trivial line bundle on F, and let B; = (X;@®1)—F.. On B, take
the product C* action and denote C*\B, by B,. Clearly p, makes B; a holomor-
phic fibre bundle over X;". The points of B; will be denoted [v, t]. Note that X
sits naturally inside B; as the set of all points of the form [v, 1]. The space
P,= B, — X is a holomorphic fibre bundle over F, whose fibre over x is isomor-
phic to the V-manifold C*\(N(F,); —zero).

LEMMA 2. i:B; — P, — X extends meromorphically to ¢;:B; - X.

Proof. Begin by choosing a nonsingular point [v,, 0] of P;,, where, say, vo€ X .
Near [v,, 0], B; may be parameterized by A™ xA, where A is a sufficiently small
disc about 0 in C and m =dim X; —1. Define ¢;:4™ xA* > X by ¢;(v, )=
i(67 ' v,1)=i(6'-v). By Lemma IIA of [S,], lims_,, (6 - v) exists and, in fact,
for each v, § —(87'-v) is holomorphic at the origin. Therefore ¢; extends
holomorphically to {v}x A for each ve A™. It follows from Lemma IA and Siu’s
Extension Theorem [S,] that ¢; extends meromorphically to B;.

The assertion that X' is a subvariety of X in which X' is Zariski open follows
immediately from Remmert’s Proper Mapping Theorem and the fact that the
closure I of the graph of ¢; in B; XX is an irreducible subvariety of B; X X. By
Hironaka’s resolution of singularities [H], there exists smooth compact complex
manifold I’; and a holomorphic map 6, : I; — I';. One obtains holomorphic maps
h;:[;— X and g :I; — F, from the following diagram

~

I

]

! B;xX

Fj ¢
ren! %,

Let H. denote cohomology with compact supports, and let b; =dim,_ F,. The
map w; : Hi_,,(F;)) = H.(X) is defined (for Z or field coefficients) by the compos-
ition

(7)

H,_, (F) = H® "™\ (F)—

— H2 N[ — H (F)—2> H, (X) 8)



574 JAMES B. CARRELL AND ANDREW JOHN SOMMESE

where the first and third maps are Poincaré duality maps. For a € H,_, (F)), we
denote p,,(a) simply by a”. As mentioned there is a corresponding class a~
obtained by replacing X" by X in the above discussion.

The construction we have just described works of course without the Kaehler
assumption. The next lemma, however, requires the existence of the Lyupanov
function.

LEMMA 3. Suppose the Morse function f has value a; on F,, and let z be a
cycle representing a € H.(F}). Then there exists a cycle z* in X representing a™ with
|z*|< X;". Consequently f(|z*|)<[a;, *[. Similarly, there exists a representing cycle
2~ for a” such that f(|z7[)c]—, a;]

Proof. Since I; — X factors through X;, and since f is increasing along the
radial trajectories, f(X;)<[a;, o[. This proves the first assertion. The second
assertion is similar.

Remark. It is clear from the construction of a™ that if a is an analytic cycle on
F;, then a™ is an analytic cycle on X. Consequently, if H.(F,) admits a basis of
analytic cycles, then Theorem 1 implies that the same is true for H.(X).

IIc. Proof of Theorem 1

The importance of the construction of IIb is that for any a, B € H.(F}), the
intersection product a™ - B~ can be computed on F,, as we shall show. Note that if
F; = F,, the source (resp. F,, the sink), then a™ (resp a™) is ix(a) where i: F, > X
is the inclusion.

LEMMA 4. Assume a € H,(F)) and B € H,(F)). Then a*- B~ =is(a"B).

Proof. It is an easy exercise to show that a™-B € H,,, ,,(X) where b=
dim_ F,. The proof therefore follows from Lemma 3.

In light of Frankel’s Theorem, to prove Theorem 1, one need only show that
for each q,0=q=2n=2 dhpc X, and, for coefficient field Z,,

Ba=2 Miq’ ® H,,(F) = H(X)
i

is a monomorphism. Let o; € H,_, (F;) for each j and suppose ¥ =}, .(e;)=0.
We first claim that «,, the class at the lowest level of f, vanishes. For if a;#0,
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then one can find B, € Hy,_g.a (Fy) so that a,-B; #0 in H(F,). Now
BI°‘I’=BI'aT=i*(Bl'a1)

Hence i.(B;:a,) =0, a contradiction

Similarly, having renumbered the F; so that F,, ..., F,, are at the next critical
level, we can show by the same technique that «,,...,a, all vanish. By
continuing in this manner, we finally deduce that all a; =0.

Remark. The main construction in the proof of Theorem 1 will go over
unchanged to any compact complex manifold for which the Bialynicki-Biruia
decomposition exists. The injectivity argument only breaks down when one has
cycles ala IIa, and thus the Morse function is useful because it guarantees that no
cycles exist. If X is compact complex, F is finite, the B-B decomposition exists,
and all X; and X are transverse, then a theorem of Smale [Sm] guarantees the
existence of a Morse function f on X so that: (a) the critical point set of f
coincides with F, (b) the index of f at x;e F is dimg N{{x;})~, (¢) f(x;)=
dimg N({x;})~, and (d) f is increasing on radial orbits. Thus the injectivity of the
maps (2), when F is finite, is true as long as the B-B decomposition exists. For X
in a large class of compact complex manifolds, namely those with a C* action with
finite F# ¢ in the class # defined in IIla, the surjectivity is also true, and may be
seen by applying Theorem 4 of IIla, Corollary 4 of [C-L,], Corollary 1.7 of [Ful,
and the fact that the B-B decomposition exists if X is in /.

COROLLARY 3. If Xis of class M, F is finite, and all X" and X, are transverse,
then Theorem 1 is valid.

I1d. Proof of Theorem 2

In this section we will be concerned with studying the duals of the isomorph-
isms w, : D;H,_, (F)) > H(X) defined by (8). We shall consider complex coeffi-
cients only, and the complex dual of H, will be understood to be the complex
deRham cohomology group H*. Let H*(X)=® ., H**(X) be the Hodge
decomposition. This decomposition arises from the fact that on a compact
Kaehler manifold, the Laplacian A preserves type. Consequently if T=3 ., Tpq
is a k-form where 7,, has type (p, q) and if A7 =0, then Ar,, =0 for all 7,,. We
shall show that if uy denotes the complex dual of y,, then

pr(H* (X)) = @ H* *"4(F)
i
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where 2d; = A;. The bijectivity of ui will then imply Theorem 2.
Reversing arrows in (8) gives

Hk(fj)—>(szi_kﬂ"(f}))*—)(sz‘_de"(E))*—*Hk_)‘f(E) (9)

The composition of the maps in (9) is the classical Gysin map g;4 = g4 associated
to g;: I; = F,. In DeRham cohomology, g7, for T H* (f‘,-), is determined by the
condition

JF g*'r/\(r=J.f Trg¥o (10)

for an arbitrary class o € H*>~***(F,). Finally, by definition, pu* = g4+h™* where h*
is induced by the holomorphic map h f, - X.

Let 7€ H>(X) with p+q =k, and let 7 be a smooth closed (p, q) form on X
representing 7. We shall show that for any o € H™*(F),

j gxh*rAo=0 (11)
unless r=b;+d;—p and s=b,+d; —q. Let & be a closed (r, s)-form representing
o. Then by (10)

I g*h*7A0=I h*'r/\g*0'=‘[ h*FAg*e
F; I; T;

]

But, since h*7 has type (p, q) and g*& has type (r,s), (11) holds unless p+r=
q+s=b;+d;=dim I, It follows immediately that geh*re HP %9 %(F)), and
Theorem 2 is proved.

The following result was suggested to us by F. Connelly.

COROLLARY 4. Let C* act on X with fixed point components F,, ..., F,.
Then index (X)=Y.(—1)* index (F,) where d, = A,/2.

Proof. By the Hodge Index Theorem,
index (X)= ), (—1)’h*4(X)

p.q

=2 X (- 1Phe ()

=L (DAY (- YR(E)

=Y (=1D* index (F).
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Ile. Some applications

Let X be compact Kaehler and admit a C* action with source F,; (resp. sink
F,). We give two applications of the B-B decomposition and Theorem 1 to
compute two basic groups on X in terms of the source (or sink).

THEOREM 3. Let i:F,— X be the inclusion. Then (a) iy:m(F;, xo) —
(X, xo) is an isomorphism, and (b) There exists an exact sequence for Picard
varieties

0 — K — Pic (X) — Pic (F,) — 0,

where K is isomorphic to the Z-module of divisors generated by the X; where
x(F;)=rank N(F,)"=1.

Proof. For (a), recall that by the construction of IIb, X is bimeromorphic to a
V-manifold B via a meromorphic map ¢ : B — X such that there is a commuta-
tive diagram

b
B—->X

where r is a locally trivial holomorphic map. Now it is well known that ¢ induces

an isomorphism on fundamental groups. Since each fibre of 7 is a compactifica-

tion of an affine space, m also induces an isomorphism. Thus iy is an isomorphism.
To prove part (b), consider the commutative dlagram

H(X, 0x) > H'(X, 0%) — H*(X, Z) > H*(X, Ox)

NI

Hl(Fl’ 0F1) - Hl(Fls 0;:'1) - Hz(Fls Z) - H2(F1a OFI)

where the vertical maps are all induced by i: F; — X, and the rows are exact,
being induced by the exponential sequences 0 — Z — 0@ — 0* — 0 on X and F,.
By the argument of part (a), « and vy are isomorphisms. We will first show
exactness of Pic (X)— Pic (F,;)— 0 by showing B is onto. To do this, it will
suffice, by a standard argument, to show that i* is onto. Suppose veH?*(F,), and
let u € H,, ,(F,) be the Poincaré dual of v. Let u*€H,,_,(X) be the image of u
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and, finally, let TeH?*(X) be the Poincaré dual of p*. Then it is not hard to show,
by a diagram chase, that i*r=wv. To complete the proof of (b), note that, by
definition,

0 — Ker i* — Pic (X) — Pic (F))

is exact, so it remains to identify Ker i* = Ker (H*(X) — H?*(F,)). But if aeKer i*,
then the Poincaré dual of « in H,, ,(X) must come from
@, )=1 Hap, (F). In other words, the Poincaré dual of a class in Ker i* is a linear
combination over Z of the divisors X;, for which x(F,) = 1, as was to be shown.

Remark. Assertion (a) of Theorem 3 is true in much more generality than we
have stated. For example, it holds for X in the class # of IIla, so in particular for
compact algebraic varieties. The isomorphism H,(X)=H,(F,)=H,(F,) follows
directly from (a).

Note that Theorem 3(a) implies that the source and sink have isomorphic
fundamental groups.

IIla. Holomorphic vector felds and the class /(

In this section we will develop ideas needed for the proof of Theorem 5. In so
doing, we generalize the main theorems of [C-L,, CL,] to the class # consisting
of all compact complex manifolds M such that

M is bimeromorphic to a compact Kaehler manifold Y via a
holomorphicmapf: Y - M ’ (12)

Suppose M € M. Then it is well known that if V is a holomorphic vector field on
M and Y satisfies (12), then there exists a holomorphic vector field W on Y so
that f, W= V. This follows, essentially, from Hartog’s Lemma, since the set of
points where a meromorphic map is not defined has codimension at least two.

Lemma S. W has zeros if and only if V has zeros.

Proof. Clearly V has zeros if W does. Suppose that V has a zero. By [C-L,] or
[S,], a holomorphic vector field W on Y has zeros if and only if the contraction
operator i(W) annihilates H°(Y, £23). In our case, this follows from the fact that
H°(Y, 23) is a birational invariant. That is, given w € H(Y, 21), there exists an
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w' € H°(M, Q4 such that f*«’=w. Thus
i(We =i(W)f*e'=f*i(V)o'=0

since i(V)w' is a holomorphic function on M with a zero (since V has zeros) and
consequently is identically zero.

Associated to the contraction operator i(V): 0%, — 025! is a complex of
sheaves

0> Q-0 > >0 —>0,—0
and spectral sequences

'E;?= HY(M, &)

(13)
"E34= H"(M, %3,

where #7; denotes the cohomology sheaf
Ker i(V) | Q3/i(V)Q#* [C-L,]

The key fact is that if M is compact Kaehler and V has zeros, then all the
differentials d, in the 'E spectral sequence are 0. We shall show that this is also
true if Me M. Let f: Y— M satisfy (12), suppose f W=V, and assume V has
zeros. Then f induces a mapping of spectral sequences

f*YE;P—'E; P9, ie. f*d, =df*,

which is injective on the 'E, level by [W]. Since d,=0on Y (lemma 5), d, =0 on
M also. The degeneracy of the 'E spectral sequence for Me M follows im-
mediately by induction

Let Z denote the variety of zeros of V having sheaf of rings 0, = 0,/i(V)2x
as structure sheaf.

THEOREM 4. Let V be a holomorphic vector field on M € M with Z# ¢. Then

(@ H*M, 23)=0 if |p—q|>dim Z
(b) if dim,Z =0, then there exists a filtration

HO(Z’OZ)':F—n:F—vH-l:.”3F0=C, n=dimcM (15)
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such that FF, < F,,; with the property that

F_JF_ ,.,=HM, Q)

By the Chow Lemma, compact algebraic varieties lie in the class M. Conse-
quently,

COROLLARY 4. The conclusions of Theorem 4 hold if M is a compact
algebraic manifold.

IIIb. Proof of Theorem 5

We now consider a class of holomorphic vector fields which includes the vector
fields generated by C* actions. Suppose V is a holomorphic vector field on a
complex manifold M with zero set Z# ¢. Then say V is special if near any x € Z,

there exists a coordinate neighbourhood U, with coodinates (y;,..., 9V,
Z4, ..., 2) such that
(@ ZNU,={(y,2):y="-"=y,=0}

(b) X=YI_, a;0/dy;, where a,,...,a, are holomorphic functions on U,.
(©) |loa;/ay;||l has rank r on ZNU.,.

The special vector fields are always nondegenerate in the sense of Bott and the
variety Z is always nonsingular. A key fact about special vector fields is

LEMMA 6. (D. Lieberman). For every p, q the injection i: Z — M induces
isomorphisms H*(M, ¥, = H"(Z, 1%).

Proof. For each z=(z,,...,z,), let U(z)={(y, z): y arbitrary} be the slice
through z. Then

0— 04> 5= - = Quey— Ouey— 0 (16)

is a Koszul complex with differential i(V | U(2)).

Note that ¥%,,,=0 if k#0 and, because V| U(z) vanishes to first order at
(0, 2), #%y= Co..), the sheaf on U(z) supported at (0, z) with stalk C at (0, z).
Now the proof of (16), given say in [S], works with parameters. Consequently, if
0#° denotes the subsheaf of 2}, generated by differentials containing no dz
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terms, then

. 0 i+1.0_ )0, if j#O
Kerl(V)I'QU/l(V)ﬂU {Oznu, if j=0
The lemma now results from the fact that tensoring (16) by 2%, over 0.~y
yields the isomorphism ¥ = 2% .
We shall now prove Theorem 5. Consider the diagram of complexes

0> Q- Qyt—> - > 0}—>0,—0
00> > >50,—->0,—>0

with differentials i(V) and i(V | Z)=0 respectively, and with vertical mappings
given by i*. By the above lemma, these complexes have spectral sequences with
isomorphic "E5? terms. Let U be a Leray covering of M, and let %’ denote the
restrictions of the open sets of U to Z. U’ may be assumed to be a Leray cover of
Z. Form the double complexes {C? (U, 2%, i(V), 8§} {C°(U', 22), 0, 8}, where &
denotes Cech differential. The total complex K,,, where

Kuy= & C°(U, 03

p—a=r

with total differential D given on C?(%, 2%, by i(V)+(—1)8 gives rise to the
spectral sequences (13) and (14) of V. A similar remark is true for the analogous
total complex K. From the isomorphism of "E, terms, one concludes that
H'(Kz)=H"(Ky) for any r. But H'(Kz)=®,_,-, H°(Z, 2%) while, because of
the degeneration of E;”9=HM, Q},), if M is in the class #, one has
dim H (Kp) = Yp—q=, h”*(M). Theorem 5 follows from these considerations.

Remark. Hopefully Theorem 5 will give some information about the mysteri-
ous filtration (15) of Theorem 4. For some specific calculations of this filtration,

see [C], [C-L,].
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