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Comment. Math. Helvetici 54 (1979) 523-561 Birkhâuser Verlag, Basel

Exponential sums associated with algebraîc number fields

by K. Chandrasekharan and Raghavan Narasimhan

§1. Let Ck(s) dénote the Dedekind zeta-function of an algebraic number field K
of degree n. For Re s > 1, £K(s) Sk-i %&"*> where ak stands for the number of
intégral ideals in K with norm k. If rx is the number of real conjugates of JC, and

2r2 the number of imaginary conjugates, and D the discriminant, £K(s) satisfies

the functional équation [1] £(s) f(l-s), where

with B 2r27rn/2 |D|~1/2, ri + 2r2= n. It is known that ak O(fce), for every e >0,
and

X ak Kx + O(x(n"1)/(n+1)), (1.1)

where A stands for the residue of £K(s) at s 1.

Our purpose is to prove the following

THEOREM 1. If tj is real, r\* 0, a > 1/n, Ak B • fc for intégral k ^ 1, tfien

X akexp(2,m,ÀîD c2 Z ak • a?—**»-1» • exp -iqt^-)

+ O(xC(n-1)/23a+e) + OU1"^), (1.2)

for n^3, and euery e>0, where at a i/a^2/(n4-1), whik ax a-e<a, if
a>2/(n + l); c2 c2(a, tj, X) is a constant that can be explicitly determined,

c0 (27rr)na/h)n, where h n • 2r^/n, and q (an - l)(2r* • a-»)«/<-«-i>.

If n 2, (1.2) holds with the error-term

O(x(ot/2)+e)-fO(x1-a+e).

523



524 K. CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN

The case a 2/n of Theorem 1 gives the approximate reciprocity formula,
which is stated as

THEOREM 2. Under the same conditions as in Theorem 1, we hâve, for n ^ 2,

ak • exp\^f^}+O(x>-™+% (1.3)

for every e >0. Here Cq, C2, and q' dénote respectively the values ofco, c2, and q, for
a 2/n.

Theorem 2 yields as a spécial case the approximate reciprocity formula for
quadratic fields previously obtained by us by a différent method [3], though the
error-term here is somewhat less sharp, in that we hâve xe instead of log x.

If we choose ATrr\ h in Theorem 2, so that c'0= 1, we get the

COROLLARY.

X ak exp {iim • |D|~1/n fc2/n) ei^[(1/2)-(r1/4)] X <*k exp (-17m |D|"1/n k2/n)

u/n>+e), (14)

for n ^ 2. This can also be written as

X oksin{7rn|D|-1/nfc2/n+|Tr(r1-2)/4}=O(x1-(1/n)+e). (1.5)

Theorem 1, combined with the known estimate (1.1), also yields the following

THEOREM 3. // l/n<cr<2/n, then

(1.6)
Afc«;x

In particular, if n ^3, and we (afce a l/(n — 1), we obtain the resuit:

B.7)



Exponential sums associated with algebraic number fields 525

This is sharper than the estimate recently obtained by us [4], namely
ii/2(n-i))log(1 + Jc)) for aU n^3

If l/n<a^2/(n + 2), Theorem 3 implies that

X ak • exp (2mr\kt) OCx1""), for n ^ 3. (1.8)

The case 0 < a ^ 1/n is covered by the next two theorems.

THEOREM 4. I/n^3, and 0<a^l/n, ihen

X otk • exp (2iriî|AÏ) OU1""). (1.9)

THEOREM 5. Ifn 2, and 0<a<|, tfien

X ak • exp (2irit|Àg) OU1""). (1.10)

If n 2, a =2, tfien

X ak • exp (27riT,A1/2) O(x1/2), (1.11)

provided that tj# hAj/2 /or ail fc, while

X ak • exp (27TÎT, • Ai/2) Cko • a^ • x3/4+O(x1/2), Cko ^ 0, (1.12)

(f î) hAfc^2 for some k0.

The gênerai method of attack is similar to that of [4], though a number of
additional difficulties caused by the introduction of the parameter a hâve to be

overcome. The estimâtes for the wider class of exponential sums considered hère
should find their use in the study of the critical zéros of the Dedekind zeta-
function of an idéal class in K, in case
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§2. The basic lemmas

An indispensable tool in the following analysis is the identity:

* I ak(x-kky Qp(x) + £ % • A^I^x), (2.1)

which holds for x>0, p>|(n-l), p intégral and which is implied by the
functional équation of ÇK(s) [1]. Hère Ak B • fc, where B is defined as in §1, and

r(s+p+i)

where % is a curve which encloses ail the singularities of the integrand, and

2in

(2-2)

where il (s) r^ds)/^), and %'9 dénotes the path of intégration extending from
cp - i°° to cp - i'jR, thence to cp + r - iR, cp + r + iVR, cp + iK, and cp + î», with r and
R chosen suitably large, and with cp=5+(p/n)-e, 0<e<(l/2n).

The following asymptotic fonnula [2] is crucial to the proof of our main
theorem:

v/n cos (hx1/n + irv) + O(x^-(m+1)/n), (2.4)

where aip=i
(p/2) 4- |(rx + 3) — (v/2)}, for ail integers p, positive or négative. [It may be noted that
in (2.3) of [4], the exponent (m + 1/n) should be (m + l)/n, and in the expression
for h one should hâve 2r2 in place of rj.

We define, as usual, ao 0 Ào, A(x) Y,kkmixak, for x>0, A(x) O for
0^x<À!, and Ar"1(x) (4/dx)(Ar(x)), almost everywhere, for r^l.

Let

x>kl9 x1 x + x1~a, a>-, (2.5)
n

and let u(t) be an infinitely differentiable function in (~oo<r<oo), such that
0, for f^c<|A1; m(0 1, in a neighbourhood of At<r<x; u(f) 0, for
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for -oo<r<oo; and

kd + O^-"^, for f^O, fc^O, (2.6)

where w(k) dénotes the k**1 derivative of u, and ck is a constant depending only on
fc.

Further let

u(t), for ._
for f^x.

Let /(0 exp (2iriT}r), where tj>0, l»0, a>l/n; let 0^7<l, and

F(0 r^-u(0-f(0. (2.8)

If J*r) dénotes the r* derivative of F, we hâve

F(r+1)(0« (1 + t)(r+1)(<-1)-\ (2.9)

since fk\t)«{l + t)kla'l\ and u(k)(0«(l + 0k(""1). We hâve

\ (2.10)

Since ak O(fce), for every e >0, we hâve

x<Ak«Kx1 x<xk-Cx1 U7-O(xe), if a>l.

Because of (1.1) we hâve also

X (2.11)'

We shall express the first sum on the right-hand side of (2.10) as an intégral,
and estimate it in différent ranges of Àk. Clearly

£ akF(kk) fF(t) dA(t) (-1)"+1 f Ar(0 • F<'+1)(0 df. (2.12)
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[It may be noted that in (3.3) of [4] we should hâve (-l)r+1 in place of (~l)r with
the conséquent changes in sign.] We choose the integer r so large that the infinité
séries in (2.1) converges absolutely, and uniformly, for x 2*c and p^ r >0, so that
we may substitute for Ar(t) the correspondu^ séries in (2.1) plus Qr(t). We then
seek to estimate, for a suitably chosen y,

Xk>y

which equals

/•Xj
<<c V a \-l~r ^(l/2)-(l/2n)+r(l-l/n) I Q _|_ j\(r+l)(«-l

kk>y Je

<< V a ^-(l/2)-(l/2n)-(r/n) JCr(a-l/n)+a+(l/2)-(l/2n)--y Q 13)
A*>y

If we choose

y co-xô, ô na-l + eo>0, eo>0, co>0, (2.14)

then (2.13) is

«x"q, (2.15)

for any given q > 0, provided that r is large enough.
Next we hâve the section

(-Dr+1 I ak • Akw f°°f<r+1)(t) • Ir(Afct) &= I ûk [~F(0 • L^Akt) dt
Xk«y ^O A.k«cy ^O

(2.16)
as well as the term

Or(0 dt |f(0 • CM*) dt [£+p}F(0 • Q_x(t) dt.

(2.17)
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Since O_i(0 is a constant (see [4, p. 82]), we hâve

(0 dt« x1^-, (2.18)

^CO dt a"1 f Ui(t1/a) • f^1-^^1. exp (2iritjf) df

a'1 f i;(0 • exp (2iriî|r) dr, v(t) Ml(r1/a) • ^1"^>"1

1 (t)(xa) • exp {2mi\xa)-1 d'(0 • exp (2ttîtîO dM,

since u(r)eC00(-oo<r<oo), with u(0) 0, and u(xot) x1^-°t. Hence

[ F(0Q-i(0 dr ClxH"a • exp (2m7]Xa) -cA v'(t) • exp (2wîîi0 df

Z c^1-^-1^ • exp (27riT|Xa) - ck u(k)(0 • exp (2mt\t) dt
v l Jo

Since u(k)(0 O((l + t)(1~T)/°~k"1), for large t, we see that

[ t)(k)(t) • exp (2iriijO dt

converges. Therefore

f u(k)(0-exp(2mTj0df=([ -f \ v(k\t) • exp (2ottjO df

Hence

f F(t)-Q_ (2.19)
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Now (2.19), (2.18), and (2.17) lead to the estimate

o

F(t) • Q_i(0 dt C+O(x1-^-"). (2.20)

This, together with (2.16), (2.15), (2.12), (2.10), (2.11), and (2.11)', lead to the
estimate

afcF(Àk)= I afcF(Ak)

I aj F(0-/-1(Afc0dr + O(x1---+xe), (2.21)

and a1 a-e<a, if a>2/(n + l). Now letwhere <*! <* if

(2-22)

where h is defined as in (2.4). Then the last sum in (2.21) equals

X aA F(t) ¦ I^(kkt) dt

I flkf u(0-r1'-exp(2mT,r)-7_l(Ak0dt
1+ J

\k-lcox

+

ak[ {u(0 - M»)}*-* • exp

I ak [ "(0 • fy

dt

(2.23)

Now define

J rT • exp (2mr)ta) • I-^Kt) dt, if

f u(r)-r
(2.24)

if
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and

H1(x,kk)

X^t) dt, iff {Ul(0- u(t)}
Jx

J

X

u(t) • r^ • exp (2iririr) • I_i(AkO df, if Ak > Cox"""1;

(2.25)

provided that the intégrais converge (see Lemma 3). If we combine (2.25), (2.24),
(2.23), and (2.21), we get the following

LEMMA 1. We hâve

akF(kk) I Ok f ux{t) -1-* • exp (2irir|r") • I_1(Àlcf) dt

akH1(x,Ak)+

where F is defined as in (2.8), U! as in (2.7), Hx as in (2.25), a>l/n,
5+(l/2n) — a<7<l, 7^0, in which case the intégral fà converges (as proved in
Lemma 3). Hère ax a if a ^ 2/(n +1), and ax a — e < a if a> 2/(n +1).

LEMMA 2. We haue, /or x>0,

H1(x,Ak)« sup |H(f,Ak)|,

where, as before, x1 x + x1
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Proof. If Àk^Cox""-1, then

HiOc Ak) f r* • exp (2im,r) • L^t) dt + J"' h(0 • {^

H(x, Ak)+[H(t, Àk) • m(*)I:ï— pu\t) ¦ H(t, A,,) dr

Ak) -H(x, Afc)- p u'(O • H((, À*) dt

u'(O-H(f,A(c)df« sup \H(t,K)l

If Ak>c0xnot-1, then

H^x, Ak) H u(t) • r^ • exp (27m,r • I,^^) A f +

Since

fX
X

u(t) • f"^ • exp (2im|r) • I-^ÀfcO dr« sup |H(f, Ak)|,

as before, the resuit follows.

LEMMA 3. 1/ t)>0, then the intégral

r*- exp (it,r)-1^(0 dt

converges for ail a, such fhar |+ (l/2n) — a<7<l and <x>l/n.

Proof. We hâve, from (2.4),

m

*-i(0= Z e.r-^^cosChr^ + TrJ + OCr--^-'1^),
v=O

for t>0, where û>_1 (l/2n)-|, so that û>_1-(v/n)<0, for v^O. This leads us to
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consider intégrais of the form

r r.(imv2nWWB) m exp{i^ T htl/n)} dt
h

a"1 f r-(^7a)+(1/ot)-1 • exp {i{r\t =F hf1/m*)} dt,

533

with -7f -7-(|) + (l/2n)-(v/n). H w(t) (7]tTht1/na), then \dw/dt\^7], for
f^{2h/(naii)}not/(riO£~1). Hence the above intégral converges if -y'+ (l/a)-l<0,
that is if 1 — y' < a, or (§) + (1/2m) — a < 7. (The reasoning is the same as in Lemma
2 of [4]).

The intégral arising from the error-term in I_x is

f —y—a_x—(m+ l)/n ^j

which converges, if m is chosen sufficiently large.
Next let us consider

-exp n^odr,

where

A (s)
~lW 2m J,. A(l-s)'

with 0<Res«c'<l on <ë'.

rs ds,

K+l C +1

1

If 0<(<l, then
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so that JL^f O(rc')> for ail c' such that 0<c'<l. Hence

converges absolutely, provided that ?<1.

§3. Some asymptotic expansions

LEMMA 4. We hâve, for a > 1/n, and O^y < 1, the asymptotic expansion

f I_1(AkO dt

x{Cv cos (qmï7^-1^ fcv7r)- iDv sin (rf1"-1^ kv7r)}

k

where

A 2(1-7)-«nr,>0, 2a(na-l)

fcv ci'+èi/, o>' |r1+{(l-7)/2a}~l, p intégral,

C D ir~1(an —1)~1/2 • an-<n(2-/-i»/{2(n«-i)}.

The first term in the expansion is given by

ylinoL-V) -n/{2(ru*-l)} x {-V(not-l)K(2-«n>/{2(n«-l)}

x (27r)~n/{2(not~1)} • (an —1)~1/2 • a

co (2mina/h)n, h n- 2r*/n.
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Proof. Let

fJ f t~y - exp ^iKt) dt kl'1 [ t~y • exp (if" r_!(0 dt.

As in Lemma 3 of [4], we hâve, for

ds.

The path of intégration %' is as shown in the diagram, with Res^l-y-
1 —7, and k is sufficiently large and négative. Putting ^ (mk)~1, we obtain

7riJL.
f r27riJL. A(l-s) rl a

(s+-y-D/ot
ds.

K+l C

<-v

' + t <€"

1-7 N

K+r + i

N+1

Now deform the path of intégration ^' into ^", by choosing N to be a sufficiently
large integer, and N<K + r<N+l, as indicated in the diagram. We then hâve

a \mki)

My-al) H
(3.1)

[We may note hère that the residual term in Lemma 4 of [4] should carry the sign
-f instead of — ].
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We seek an expansion for

2iri V

27rn/ 2m V 4(l-s) Va
/_J_\(1^)/<X -! J_ f Ms) (l-s-y\
V27ttî/ '" '2m V 21(1-s) V a /

x mfcs/a cos i sm —- ds.
\ 2a 2a/

Now

cosl ¦ " ¦ '"^

Therefore

where

V0(s)= — ' U

+Vr(
a 2/ \2 2a

rA{s) \ a

Now choose

U0(s) -
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where

(1n-i (n—l/ot)

.2'.

Then we hâve

Uo(s) -— r(S) • sin tt{|S + û>'}, I/^s) — • r(S) • cos tt{|S + a/}-

By choosing

and comparing the expansions of Vo, l/0, on the one hand, and of Vl9 Ut on the
other, we get, as before,

1(s) aL71(s){l+ I ^

v=l

Now if we follow the same procédure as in the asymptotic expansion of Ip [2], we
get

I V\(s)x~s ds= Y QpCote~Cou'/(rMX~1)-1 cos {axa/(na~
2m Jg» v=o

while

-^-7 f V0(s)x-s ds - X Dvx"e-Co£v/(m*-1)3 sin {qx^""-^ + fcvir}

e-Cot(m+1)/(no£-1)]), (3.4)
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where q bcUina~1\ and k» *>'+&, provided that

m +|n - (1 - y)/a
__

2ma + na - 2(1 - 7)^ n-l/a ~ 2(na-l)
*

We find by calculation that

From (3.1) and (3.2) we hâve

(2^)' i
te0 A(Y-ctf) ï!

Now (3.3) and (3.4) lead to the lemma.

LEMMA 5. I/£>0, a>0, 0^7<l, and

J'(0 I ^~y ' exp (2^^) • I_i(ÀkO dt,

then J'(l) ^ûs the asymptotic expansion

uniformly for 0<^o^^^^1<oo) where tfie coefficients ap{0 are continuous in
and

6 ^p p!

Proof. For x>0, we hâve
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where <%' is the same as in Lemma 4, so that Res^l-7-e<l~7 on %'.

Therefore

¦ exP

and the repeated intégral remains finite, if we replace the integrands by their
absolute values. Hence

(3.5)
L-s)

where

«»e-f

By a change of variable, we hâve

/(s, |) a M r{(1 * s)/a} 1
• exp (2mr\t) dt.

An intégration by parts gives

^-ys 2<7riT) f€Œ n_ _ vj(s, £) r • exp (2irir|fot)— I t y s ' exp (2iri7jt) af,
v-l 7 ^/ \ Y ^/ *o

since Re s < 1 - 7, and a > 0. Repeating this process, we obtain

^}(1 — 7 — s) • • • (1 — 7 + la - s)

(l-7-s)(l-7 + a-s)- • -(1-7 + Za-j

x exp (2iriî|0 dr. (3.6)
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We may write

(l-7-s)(l-7 + a-s)- • -(1-7 + va -s)

where <pvl Odsl"1"1), in any vertical strip, and has simple pôles at the points
s 1,2,..., 1 + 1, aswellas I-7, l-7 + a, l~7 + 2a,..., l-7 + ai/, and the 'O'
dépends on £ Further the intégral

r
converges absolutely, and is holomorphic for Res<a(i + 1) + 1 — 7, and bounded
in the half-plane

Hence

I jz77zttttr+«kU €), (3.7)
p=o(l-s)(2-s)- • -(1 + ps)

where

xff

and ^(s, |) is meromorphic for Res<a(l + 1) + 1 — 7, with simple pôles at
s 1,2,..., 1 + 1, as well as I-7, I-74 a,..., 1 —7 + ia. Further ^(s, ^)
O(|s|~I—1), in any closed vertical strip contained in thaï half-plane, uniformly in £

for £ in any compact set.

Now /(s, £) can also be written as
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say, where fi(t) O(tctil+1\ so that the second intégral is holomorphic in s for
Re(-Y-s)>-a(J + l)-l, or for Res<l-7 + a(f + l), for any integer !>0. It
follows that j(s, £) is a meromorphic function, whose only pôles are at s

1 — y + av, v 0,1,2,..., with the corresponding residues — (2iriri)vl(v\).
Now if %'" is the path obtained by deforming <8' so as to hâve the corners at

K — i, c' + N—i, c' + JV+i, K + i (the infinité half-lines being left as they are), with
N sufficiently large, then we hâve, from (3.5),

A(y-ap)

(This requires that c' + 2V<l-7 + a(i + l), and c'
The intégral hère can be considered as a sum of two intégrais /" and /'",

because of the expression for /(s, £) given in (3.7), where

f

provided that c' + 2V> 1 + 1, while

If ^o is the path obtained by deforming <<?'", so that the two infinité half-lines in
<ë'" are moved to the right, then

¦Ttf) ^r f -r^-7 • ^(s, |) • Ar ds,
2tti X 4(1-s)

and this intégral converges absolutely for n(a—|)-i —1<—1, or
where o- Res. Note that <Pi(s) has no pôles ofï the real axis. If we take

cr l/n +|- e, with 0< e <|, then

O(Ak(l/n)-(1/2Ke) O(Akl/n). (3.10)

Now (3.8)-(3.10) give the required resuit.
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LEMMA 6. Letabe a real number, a* 0, a > 1/n, fi (h/2mj) • A£/n, tj >0,
and h defined as in (2.4).

Let <p(t)^<p(t,tL) r-tit1/n, F0(t)=F0(t,v) tal<p'(t), Fl+1(t)-Fl+1(t,n)
W(t) • (d/dt)Ft(t), for 1 0,1,2,.... Then

(JL. ,i/"
\na

(î—£-.t«»-y'
V na /

where ffic Cp>qi are suitable constants.

Analogously, let ^(0 «fr(t, **) t°" + jxf1/n, G0(t) Go(f, jul) fa/^'(0, and
GI+1(0 G1+1(f, |i) W(0 • (dfdt)G,(t), for 1 0,1,2,.... Then

K f1M-Y

na

The proof follows by induction on l

LEMMA 7. For a /ixed f, such thaï 0<|0^^^^1<°o? wc hauc as /ut~^°°, the

following asymptotic expansion in decreasing powers of /ut:

For the proof we hâve only to use the expression for Fm(£ /ut) given by Lemma
6 together with the Binomial Theorem.

In what follows we shall frequently use the notation FIv(t) Fl(f), and

Gu(0 G,(r), wirh a a(i/)~7 û)-i-(Wn)-7 (l/2n)-(|)-(Wn)-7, for 1

0,1,2,..., i/ 0,1,2,...,

LEMMA 8. Let a(v) o>_1-v/n (l/2n)-(|)-(i//n), /or ï/ 0, 1,2,
7<1. Let Ô>0, sufficiently small, and 0<t|o<t|, a>l/n. Let Ak^Cco-
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Then we hâve

dt

x{exp (2mri<p(x)) • b^, + exp

Proof. The asymptotic expansion of H^À^) leads us to consider intégrais of
the form

a(v^ • exp (27riT,<p(t)) dr, <p(r) r -

As in Lemma 6 of [4], we prove that

for t**x9 kk^(c0-ô)xrux \ where the 'O' dépends on a(v), I, and S, but nof on
t, x, or /x. Repeated intégration by parts then gives

exp Qmrwit)) dt e2—(x) I
and analogously

• exp (2irôtf(0) dt
1=0 (2im|)

Thèse expansions together with the asymptotic expansion of I_i(Àkt) therefore
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yield

f ry • exp (2imjr) • /_x(Akf) dt

(-1) +1F,,v

Om(xa(m+1)-'Y+1)

If L [(m + l)/na], then L +1 > (m + l)/na, and we hâve

[ t~y • exp (2m7)ta) • I-iCAkO df

(27riT,)'+1

+ CL

The lemma follows upon replacing m by n(m + l).

LEMMA9. Let a(v) o).1-v/n (l/2n)-^~(vln\ v 0,1, 2,

Ô>0, ô sufficiently small, 0<2e<a, a>l/n. Then we fiave for (co-Ô)xrux~1<

dr

"l KM(bve2mrwM Iv-0 ^ O«l«(m+1)/ n«-2ite)
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Proof. The pattern of proof is similar to that of Lemmas 11 and 12 in [4]. We
first prove that

An analogous expansion is valid with t/r in place of <p, and Glv in place of Flv. As
in Lemma 8, we then hâve

t~y - exp (2irir]ta) • I_i(Akf) dt

m

Z *£(

provided that L [(m + l)/(na—2ne)], 0<2e<a. The lemma follows upon re-
placing m by n(m + l).

LEMMA 10. I/ô>0, and sufficiently small, and 0<tïo=^t|, and a > l/n, then

for Àk^(c0 + ô)xnot~1, we hâve the asymptotic expansion

exp (2>rrir)ta)

1=0 (2inT|)

If L m, the term O^ll"1^"1) can 6e dropped.

Proof. Choose g such that Àt<£<x, and consider the given intégral as the
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sum of Jo and J|. We then hâve

f u(f) • taM~y ¦ e2mrw(0 dt

y 2 yè0 (27rir?) '+1

where the 'O' does nof dépend on £ An analogous expansion is valid with $ in
place of <p, and Glv in place of FUv (see the proof of Lemma 10 in [4]). It follows
that

f u(t) • t-> • exp (27rii<) • L^AkO df

I KM (K exp (2,riW(x, n)) • t
,,=0 \ i=o

\ i=o (27nrî)

I ^^!^^ g(m+1)^). (3.11)

On the other hand, if F(f) u(t) • rY • exp (27n'TjrO£), as in the proof of Lemma
1, we hâve

p=0

^VL+1)(t) ¦ IL(Akt) dt, (3.12)

and the last term is OiX^*1). Since Ip has the asymptotic expansion (2.4), we can
combine (3.12) and (3.11), and apply Lemma 9 of [4] to obtain the stated resuit.

LEMMA 11. If coxrux~1-\-xrux'1~e^kk^(co+S)xna~1, Ô>0, and sufficiently
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small, and 0<2e<a, a> 1/n, then

u(t) • r*

4- O(xa(m+1)-'Y+1) + O(Ak'n/n),

provided that L [(m 4- ï)/(na -2ne)]. As before a(v) ù>-t -(v/n).

Proof. Choose A such that O<A<1, and consider the given intégral as the

sum of the intégrais JS(1"X) and Jx(i-x)- Following the same pattern of proof as in
Lemma 13 of [4], we obtain

(2m7\<p(t)) dtu(t) • taiv)~y • exp (27mî<p(0) dt | ta(v)~y • exp
-X) 4(1-X)

as well as the analogue with i/r in place of q>, and Glv in place of Flv. It follows
that

f u(
4(1-X)

(t) • r"^ • exp (27nîîra) • I_!(Akr) dt

«à (2im,y h

1=0

(~"1) G

provided that L [(m + l)l(na - 2ne)].
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On the other hand, by Lemma 10, (since Ak > (c0 + ôi){x(l -A)}"""1), we hâve

r u(t) • ry • exp (2mr\f*) • /^(M) df

+ bC 1+1

(3.14)

Combining (3.14) with (3.13), and applying Lemma 9 of [4], we obtain the
stated resuit.

LEMMA 12. If c0xmx~1-Jcnoi-1-e<Ak^c0xnot-1, e>0, <*>l/n, and, as

hitherto, a(v) co_1 —v/n, then

f t y • exp {liri^t") • I_i(Akt) dt

ïYu.
v=0 m=o

nN N-l
+ 1 Iv=0 m=0

nN N-l

v =0 m =0

nN N-l

v=0 m=0

/, a(v)-Y+l

(—l)m+1GmvO

(2iTÎTî)

^2iri'n<p(x)
Àfc

(27TXo'T})m + 1

1 Ào(v) '
e

k (27TXaT,)m

Aa(v)
^

\2>7TX Tj)

r\ 2trvn%l/(x)

m+1 k

+(t

f
/2)

s-l/2 e2mx^ ^

¦ O(xa(v)~~y+1-CL(s

where P(v) vna~pv, p ^xa/n)-a, t
fhe coefficients ^m, wj, m, Mi'm are continuous fonctions of |8 /or /îxed i^ and m, while

s~in

uniformly in t.

Ptoof. The pattern of proof hère is the same as in Lemmas 16, 17 and 18 of
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[4], with the différence that P(v) is no longer a polynomial, but holomorphic in v
for Re v>0, and v0 is a zéro of P'(v).

If 0 < p < 1, then ii/{x(l + p)}a-(1/n)^ na/(l + p)°-(1/n)^ na - 8l9 say, so that, as

in the proof of Lemma 8, we get

f f<->"* exp (2,riw(0) dt
(l+p)

(3.15)

and a similar resuit holds with if* in place of cp, and Glv in place of FUv for the
entire intégral £.

The intégral Jï(1+p) is then dealt with as in Lemma 17 of [4], and gives

f P

_i vû(vH+if y Ap(l + p)exp(27riT)<p(x(l-hp))-Bp(l)exp(27rÎT)<p(x))

f ajajte»p(2ir^nP(va)) f

where Ap, Bp, a^, a^ dépend on p, and, for fixed p, m, are continuous functions
of p in a neighbourhood of the point p na.

We now combine (3.15) and (3.16), and apply Lemma 9 of [4] to get rid of the

p from the expansions.

LEMMA 13. J/coX^-^À^CoX^-' + x^-1-6, e>0, then

u(t) • t'y • exp (2iriT|r) • I_i(Akf) dt[

fias the same expansion as in Lemma 12.

Proof. We consider the intégrais JS(1~p) and Jxu-P) separately, where 0<p< 1.
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The first intégral is dealt with as in Lemma 10, while the second is handled as in
Lemma 12, and Lemma 9 of [4] is then called into play.

LEMMA 14. Fora>l/n, and 0=^y<1, the intégral

[ Wi(r) • t~y • exp (2-7rir)r) • I_!(Ak0 dt

has the asymptotic expansion

Cl(a, 7, t,, K) t mrCv/(n""1)]{Q cos (qmt/<—1)

- iDv sin (qm^"""1^ M>+ OCm^"1"1"1^11"1"1^

where c^ is a constant determined by Lemma 4, and 0 [2(1 — 7) — an]/
[2a(na-l)].

We hâve

[ t^ • exp (2mrïta) • I_!(Ak0 df

+ f "(iixW-1) • r^ • exp (2mVn • /.^AfcO dr

The first intégral on the right has an asymptotic expansion given by Lemma 4.

If we choose a p, such that p<c (defined along with the function u at the

beginning), then

J Wr)-1) • r* • exp (2irfi|la) • JL^ÀkO df

- [ ry • exp (2iriî|fl) • I-iCAfcO dr

+ f '(iiiW-1) • r* • exp (2irit|i«) • J-xCAfct) dr

Lemma 5 gives an asymptotic expansion of the first intégral on the right-hand
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side:

where bp (2iriTî)p/p! • 4(l-7 + ap)/4(7-ap). For the second intégral, we apply
repeated intégration by parts, together with the fact that ux-\ (and ail its
derivatives) vanish at f À1, to get an asymptotic expansion as in (3.12). By
proper choice of /, the tenu Zp=o bp • Àfc1+Y~otp cancels out with the residual term
given by Lemma 4, and the application of Lemma 9 of [4] leads to the stated
resuit.

§4. Proofs of the theorems

Proof of Theorem 1. From Lemma 1 we hâve

X akF(kk) =Iak-Àr« u(Ak)

flk «i(0 * t~y • exp (27rir)ta) • J_1(AkO dt

akHi(x,Ak)+ X

H-Oix^^-^ + x6}, (4.1)

for <*>l/n, |+(l/2n)-a<7<l, 7^0, c0 (27rr|na/h)n, h n-2r^/n. We shall
estimate the first three terms on the right-hand side of (4.1). By Lemma 14, we
hâve

J ut(t) • ry • exp (2imîr • I-^Afct) dt

Cl(o, 7, îî, *0 • Af exp {-iqmi/(—1)}+ O(mr1/(n""1)),

where 0 {2(l-7)-cm}/{2a(na--l)}. If y<^na, then c*0>-l, and we obtain

I ak f M^r) • r^ • exp (2im,r • I_1(Akt) dr

I t]). (4.2)
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For a 8 > 0, chosen sufficiently small, we then write

X akHiUAk)

Xk^(co—S)x™* (co—ô)xnŒ <X|t^CoXrw* —x"" e CqX —x <X|c^C(>x

— ViT V2^ V3, !>dy.

In Vi we use Lemma 8, and note that Ak^(c0 — S)*"*"1 for 0<x^f^xx, so

that

hence

(43)

(cf. the estimate of W5A in [4]).
In V2 we observe that (co-2Ô)fmK"1<Ak^c0fÏWX"1-tnot"1~e, and use Lemma

8, so that

for
\<P 1

We hâve <p'(r) af°t-1(l-cô1/nAi/nr(1/n)-°t), and in the given range

|l-cô1/nAi/nx(1/n)-°t|»x-e.

However,

so that

l-cô1/n* Ai/ni
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Hence

Hl(*, Ak)« -i/nvi/» <

so that

ak -

-1-xna-1-1 N -1/nvl/n v(|1~CO Ak • X

The last sum is estimated in the same way as W5>2 in [4], so as to yield

V2« xK"-1)/2*-'y • log (1 + x). (4.4)

In V3 we observe that Cofno£"1-2rmx"1~e<Ak^c0rm>t~1, for 0<x^t^xu so

that Lemma 12 applies, and we get

Hi(x, Ak)«

so that

1—/2

say.

where e1 e — e', for any positive e, such that e <|a, e < na — 1, and ail e'>0, so
that (4.5) holds for any ex<al2, e1<na-l. From (4.3), (4.4), and (4.5) we
obtain

^x, Ak) « xu™w-y-*i + xk»-iv2]«-v iog (i + x). (4.6)
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Next we consider

V4+V5+V6, say.

In V6 we note that r*"1^^ Ak ^ (c0 + ô^r*"1, for 1< x =^ t ^ xl9 with Ô! §8,

say, so that H(t, Àk) can be estimated with the help of Lemma 10, leading to an
estimate of Ha(x, Ak), and thence

V6« x[(na)/23^-es e1<\a9 ex<na-l. (4.7)

In V5 we note that Cofno£~1 c0xnot~1 + O(xnot"1~0£), for l<x^^x1} so that
c0fnot~1+|tru)t~1"e<Ak^(co+ô)fmî£~1, and Lemma 11 can be used. We further
note that, as in the case of V2, we can replace <p'(t) by <p'(x), and obtain in the
same way

V5 « s""-1*2*-* log (1 + x). (4.8)

In V4 we consider the intégral for H(t) as the sum JÔ(1~p)+lî(i-p), for a

sufficiently small p, such that 0 < p < 1. In the first intégral, we hâve, for x < t < xl9

Cof-W - p)—1 ^ co(Xl(l - p))—1 co(x~-\

so that Lemma 10 can be applied to yield

while in the second intégral, we hâve

^! + O(x~<*))9
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Hère Lemma 12 can be applied to obtain (as in V3)

Ak)« x^r^+1-

Altogether, we therefore hâve

Hi(x, Ak)« À?-* • x«-

and

V4«x[(not)/2]^"ei. (4.9)

Combining (4.7), (4.8), and (4.9), we obtain

x, A,,)« xUna)m-y~e*+ x^-^^-y • log (1 + x).
Xk <coxna~1+'o

(4.10)

If we use (4.10), (4.6), and (4.2) in (4.1), we obtain:

£ ak • \Zy • exp (2mt|A£)
Xk«x

Ci(a, 7, îj, K) X % • Ke • exp {-iqmi/(mit-1)}+ O(xC(mx)/2]-'Y-ot)

log (1 + x)) + O(xC(Mtt)/2]^-e0 + O(x1~a^) + O(xe).
(4.11)

Since £i<|a, the exponent j(na)-y-s1>0, if \{na)-y-\a>0, that is, if
y <2(w ~ 1)«> in which case the term xe can be dropped. Such a choice of 7 can
indeed be made. If a>|+(l/2n), we choose 7 0. Otherwise |+(l/2n)-a<
|(n — l)a for a > 1/n, so that if 7 is greater than |+(l/2n) — a and close enough to
it, we hâve |(n-l)a>7. Clearly the only O-terms that remain in (4.11) are:
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Thus (4.11) can be rewritten as

I ak • Ap

Cl I ak ¦ Att^«»-»WG-«W2(«-i)] exp {_iq

+ O(xC(not)/23"T"e0 + O(xlina)/21oi-y log (1 + x) 4- OCx1"0^). (4.13)

Since 7<|(na), the exponent of Àk is greater than —1, and we can apply partial
summation, and obtain

X ak •

c2 X ak • A<k2-")/2(—1} • exp {-îq

tt)/2]~e0 + O(xC(n"1)/2]ot+e) 4- OU'^O, (4.14)

where c2 c1 • cô'v/(llot~1) is independent of 7, for ail ei>0, such that ex<\a,
ex<na-l. Thèse conditions on ex imply that

Hence (4.14) leads to

c2 I ak- A?—>«—Map {-iqmfc1/(—«}

+ O(x[(n~1)/2]ot+e) + O(x1~(not/2He) + Oix1-"*). (4.15)

If n^3, then |(na)>a^a!, so that the term o(x1~(Fla/2)+e) may be dropped. If
n 2, the only O-terms in (4.15) are O(x(ot/2)+e) + O(x1~ot+e), and that complètes
the proof of Theorem 1.

Proof of Theorem 2. If a 2/n, (4.15) gives the approximate reciprocity
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formula:

ak exp (2mv\l<») c3 I ak exp (=^) + O{x^lM+% (4.16)

for every e>0.
In this spécial case, we hâve

Co \ h ' H ' 3\ h ' H ' 3 Uttt,/ ^ ' q 4 '

while, in gênerai, Ak fî • k, B 2r*irn/2 |D|~1/2 dim/h)^2 • |D|~1/2.

If we choose 4tttî fi, then co= 1, c3 6l7rC(1/2)-(r^/4)]. Setting Y x • B\ we

get:

a (ri/4)] V a

whiçh is (1.4).
Similarly if we choose Attj\ h |D|"1/n • m, where m is an integer, m^ 0, then

we get a formula which, in the case n 2, gives the Corollary to Theorem 1 in [3]
with Ye in place of log Y.

If we take n 2 in (4.16), so that a 1, and rx 2 (this is the case when K is a

real quadratic field), then c0 (tttï)2, c3 (irr])"1, q 4; if n 2, a 1, rx 0 (the
case of an imaginary quadratic field), then c0 (2tttî)2, c3 i(2'7rn)~1, q l.
Formula (4.16) then reduces to the one which we proved sometime ago [3] by a

différent method, but with log x taking the place of xe in the error-term.

Proof of Theorem 3. The sum on the right-hand side of (4.15) is O(x(not)/2), for
a<2/n. We can therefore conclude that if l/n<a<2/n, and n^3, then

ak exp (27riT)À£) O(x(not)/2) + O(x1~ot0, (4.17)

with €*! <* if a^2/(n + l), and al a-e<a, if a>2/(n + l). If n 2, and

|<a< 1, the sum is CKx"), since 1 — a<a. If n^3, and we take a l/(n — 1) in
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(4.17), we get

ak exp (ÎOTTjÀi""-") O(xnl2ln-l))

if n 3:
(4.18){O(x

if n —- 3;

We note that if n^3, (4.18) gives a stronger resuit than the one we obtained
before [4].

Proof of Theorems 4 and 5. If 0<a < 1/n, the proof is much simpler than if
a > 1/n. Proceeding as in Lemma 1, we consider hère the infinité séries

(-Dr+1 I ak • Ai1"" rV+1)(f) • Ir(Akt) df, 7 0, F(f) u(t) • e2™1"
k=i 4

k=i

if r is chosen sufficiently large. On the other hand,

Qr(0 dt OU1""), (4.18)'

as before, while Zx<xk*sx1«k ©(x1"01). Hence

X akexp(2mTïA^) O(x1-ct), for 0<a<-.
Xk*£x n

If a - 1/n, and e > 0, we first obtain the estimate

(-Dr+1 I ak • A^ fXV^^f) ¦ Ir(Akr) dt
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for any q > 0, provided that r is chosen sufficiently large. We next consider

I ak \F(t) • I^iKt) dt, F{t) u(t) • exp
Xk*ïxe Je

Z afc fX' u(t) • dH(t, Ak), H(t, Ak) f
'
exp (2im,l«) • I-^t) dt

- I afcr'H(Ufc)-»'(0dt,
Xk<x8 Je

since H(t, Àfc) vanishes for f c, while u(0 vanishes for t^x^ Now

t, Ak)u'(t) dr,

and the first intégral on the right-hand side is « A^1 O(l), since I_1(Afcr)« À£s
for c^t^Ai, while

sup |H(t,Ak)|.

We shall estimate the order of magnitude of H(f, Ak) by using the full asymptotic
expansion of I_1(Akr), (cf. Lemma 3). We then hâve to consider intégrais of the

form

çy
ra/2)+a/2n)-(v/n)exp [2mtlln{i\ - A£/n • h)} dt, v 0,1, 2,...,

together with an O-term of the order o(Ak(1/2)+(1/2n)-[(v+1)/n]), if -(l/2) + (l/2n)-
[(v + l)/n]<—1. It is sufficient to consider the case v 0. If 17 A^n • fe for some

fco^l, we hâve

H(y, A^ A?r [Cko J"r(1/2>+(1/2w> dr+O (|V ^«^^n dt) }

ck y(n+1)/2n+O(y(n~1)/2n)

while

y("-1)/2w, for
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(which follows by replacing t1/n by t and integrating by parts). Hence, if n^3,

k) • u'(t) dt« x(n+1)/2n+ X ûk • A^-x(n-1)/2n
\k^x*,k¥=k0

« x<»+i»2» « x1~(1/n). (4.20)

If n 2, and r\ h • À^2, we hâve

[Xl H(f, Àju'W df Ckokfr r t3l4u\t) dt + O(x1/4)

«(0

Hence, in this case,

(4.21)

while, if tî# hAkff, for ail fc^l, the sum is O(x1/2). The resuit follows from
this and (4.18)'.

Remark. The method of proof adopted hère makes it possible to prove
corresponding results for the coefïicient-sums of Dirichlet séries satisfying a
functional équation of the type studied in [1, 2]. Particular cases are the zeta-
function of an idéal class and Hecke's zeta-function with Grôssencharacters.
Since no new ideas are required, we do not go into the détails.

Our estimâtes prove that the séquence {r](N%)ot}, for 0<a<2/n, tj real,
t) 7e 0, and or an intégral idéal in K with norm N9t, when arranged in order of
increasing norms, is uniformly distributed modulo 1. It is likely that this is true for
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