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Comment. Math. Helvetici 54 (1979) 523-561 Birkhduser Verlag, Basel

Exponential sums associated with algebraic number fields

by K. CHANDRASEKHARAN and RAGHAVAN NARASIMHAN

§1. Let {x(s) denote the Dedekind zeta-function of an algebraic number field K
of degree n. For Re s> 1, {x(s)=Yr-, a,k ™", where a, stands for the number of
integral ideals in K with norm k. If r, is the number of real conjugates of K, and
2r, the number of imaginary conjugates, and D the discriminant, {x(s) satisfies
the functional equation [1] £(s) = £(1—s), where

&(s)=TI"Gs) - I'"(s) - Bk (s),

with B =2"=7"?|D|™"?, r;+2r,=n. It is known that g, = O(k*®), for every £ >0,
and

Y a=Ax+O(xn VD) (1.1)

k=x

where A stands for the residue of {x(s) at s=1.
Qur purpose is to prove the following

THEOREM 1. If n is real, n#0, a>1/n, A, =B - k for integral k=1, then

. A ":‘ 1/(nx \1)
Y aexpQmimd=c; L a - Aeeel explig( )T
A =x A scox™ 1 2777]

+ O(xt—V/2lete) L O(x1), (1.2)
for n=3, and every ¢ >0, where a;=a if a<2/(n+1), while a;=a—e<a, if
a>2/(n+1); c;=cy(a,m,K) is a constant that can be explicitly determined,
co=(2mmna/h)", where h=n-2""", and q=(an—1)(2" - @ ")/~

If n=2, (1.2) holds with the error-term

O(x(a/2)+s) + O(xl—-a+c).
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524 K. CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN

The case a =2/n of Theorem 1 gives the approximate reciprocity formula,
which is stated as

THEOREM 2. Under the same conditions as in Theorem 1, we have, forn=2,

3 l)\2/n
Y a exp QuinA¥Y=c5 ). a- exp{ ? x }+ O(x'~mre), (1.3)
A =x Ap=céx ™

for every € > 0. Here c}, c5, and q' denote respectively the values of c,, c,, and q, for
a=2/n.

Theorem 2 yields as a special case the approximate reciprocity formula for
quadratic fields previously obtained by us by a different method [3], though the
error-term here is somewhat less sharp, in that we have x° instead of log x.

If we choose 47 = h in Theorem 2, so that c{=1, we get the

COROLLARY.

Z a, exp (imn - |D|—1/n k2/n) = ¢iml(1/2)~(r /)] Z a; exp (—imn lDl_lln k2/n)

k=x k=x

4 O(xl—-(lln)+e)’ (14)

for n=2. This can also be written as

Y. a sin{mn [D|~V" k" +4m(r, — 2)/4} = O(x1~W/m+e), (1.5)

k=x
Theorem 1, combined with the known estimate (1.1), also yields the following

THEOREM 3. If 1/n<a<2/n, then

Y a, - exp 2minAY) = 0"+ O0x'™™), for n=2. (1.6)
Ay =x

In particular, if n=3, and we take a =1/(n—1), we obtain the result:

2 @ - exp (2minAi/ V)=
Ay =X

Y —1.
{O(x ), if n=3; (1.7

ox""Y"=Dy  if n=4.
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This is sharper than the estimate recently obtained by us [4], namely
O(x*V2~Dy10g (1+x), for all n=3.
If 1/n<a=<2/(n+2), Theorem 3 implies that

Y. a - exp Q@inAd) =O0(x'"*), for n=3. (1.8)
A =x

The case 0<a=<1/n is covered by the next two theorems.

THEOREM 4. If n=3, and 0<a=<1/n, then

Y o - exp QminAd) = O(x' ™). (1.9)

A =x

THEOREM 5. If n=2, and 0<a <3, then

Y. a - exp QminAY) = O(x'™*). (1.10)
A =x

If n=2, a =31, then

Y. a, - exp Qu@inAt?) = O(x'?), (1.11)
A =x

provided that n# hAY? for all k, while

Y. a, - exp Qmin - AY?) = Ci, * i, " X4+ O(x13), &, #0, (1.12)

A'k =X

if n="hA? for some k.

The general method of attack is similar to that of [4], though a number of
additional difficulties caused by the introduction of the parameter a have to be
overcome. The estimates for the wider class of exponential sums considered here
should find their use in the study of the critical zeros of the Dedekind zeta-
function of an ideal class in K, in case n=3.
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§2. The basic lemmas
An indispensable tool in the following analysis is the identity:

1 o — S g =l=p
Tp+1) Mz‘xak(x_’\k) = Qp(x)+k§1ak A L (Aex), (2.1)

which holds for x>0, p>3i(n—1), p integral, and which is implied by the
functional equation of {x(s) [1]. Here A, = B k, where B is defined as in §1, and

1 [ B™(s)-I'(s)

Q)= 2mi I's+p+1)

x**P ds, (2.2)

where € is a curve which encloses all the singularities of the integrand, and

L(x)=

1 L [A=9AE) 1voms g (2.3)

2mi kg T'(p+2—5)A(1—5)

where A(s)=I"(35)I""(s), and 6, denotes the path of integration extending from
¢, —i%® to ¢, —iR, thence to ¢, +r—iR, c,+r+iR, c,+iR, and c, +i%, with r and
R chosen suitably large, and with ¢, =3+ (p/n)—¢, 0<e <(1/2n).

The following asymptotic formula [2] is crucial to the proof of our main
theorem:

L(x)= Y, elx® ™" cos (hx'" +m,) + O(x*~+0In), (2.4)

v=0

where w, =3—(1/2n)+p(1—1/n), h=n-2"" m, =, (p)=m{(n/2)+
(p/2)+5(r1 + 3)—(v/2)}, for all integers p, positive or negative. [It may be noted that
in (2.3) of [4], the exponent (m + 1/n) should be (m +1)/n, and in the expression
for h one should have 2r, in place of r,].

We define, as usual, a;,=0=21y, A(X)=2,, <x & for x>0, A(x)=0 for
0=<x<A,, and A" '(x)=(d/dx)(A"(x)), almost everywhere, for r=1.

Let “

X>Aq, x,=x+x'", a>-}1-, 2.5

and let u(f) be an infinitely differentiable function in (—%<t <o), such that
u(t)=0, for t=<c<3A,;; u(t)=1, in a neighbourhood of A, <t=<x; u(t)=0, for
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t=x;; O<u(t)<1, for —o<t<oo; and
u®@)|<c 1+, for t=0, k=0, (.6

where u™® denotes the k™ derivative of u, and ¢, is a constant depending only on
k.

Further let
u(t), for t=<x,
w(®={ @.7)
1, for t=x.
Let f(t) =exp (2mint™), where n>0, t=0, a>1/n; let 0<y<1, and
F@®)=t"-u(®)-f(). (2.8)
If F™ denotes the r™ derivative of F, we have
F(r+1)(t) & (1 + t)(r+1)(a-l)—'v, (29)
since fO(H)< 1+ )P, and u® ()« (1+t)“"P, We have
Y aF\)= ) akF(Ak)+O{ Y ak)L;"}. (2.10)
A =x; A <x X <Ay Xy
Since a, = O(k®), for every £ >0, we have
-y ., O l1—-a+te , 'f sl;
Y ari'=x" Y & ={"_ T, A a 2.11)
X <Ay &Xy X <A =X, x Y- O(x‘), f a>1.
Because of (1.1) we have also
Y @A« x TV (x1T 4 x 1D, .11y

X <A =Xy

We shall express the first sum on the right-hand side of (2.10) as an integral,
and estimate it in different ranges of A,. Clearly

o0

Y aF(\)= [:”F(t) dA (1) = (—1)'+‘J:A'(t) - F+O(g) dy, (2.12)

k=0
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[It may be noted that in (3.3) of [4] we should have (—1)"*" in place of (—1)" with
the consequent changes in sign.] We choose the integer r so large that the infinite
series in (2.1) converges absolutely, and uniformly, for x =c¢ and p=r>0, so that
we may substitute for A"(t) the corresponding series in (2.1) plus Q,(t). We then
seek to estimate, for a suitably chosen vy,

Y ac At [ R0 - Lo
0

Ay

which equals

Y - Az’"'rf‘"“’(t)-- L) dt

A >y (]
Xy
& Z a, A;l_r . Ag_/.Z)—(llzn)+r(1—lln)J' (1+t)(r+1)(a—1)+(1/2)—(1/2n)+'(1—1/n)——'y dt
A=y c
& Z a, - A;(l/Z)-—(l/2n)-—(r/n) . xr(a—1/n)+a+(1/2)—(1/2n)—-y. (2.13)
A >y

If we choose
y=co"* x°, d=na—1+¢,>0, £0>0, co>0, (2.14)

then (2.13) is

& x&[(1/2)—(1/2n)—(r/n)]+r(a —1/n)+a+(1/2)—(1/2n)—y

& xr[a(lln)—(aln)]+(8+1)[(1I2)——(1/2n)]+a—:v

< x4, (2.15)
for any given q >0, provided that r is large enough.
Next we have the section
=1 Y a - A;“'I FOO>t) - L) dt= ). akj F(t) - I_;(At) dt
A=<y 0 A=y 0
(2.16)

as well as the term

x‘}F(t) L Q_y(0) dt.
(2.17)

o [ P 0o de= | Fo-oama={[ +

0 X
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Since Q_,(t) is a constant (see [4, p. 82]), we have

JxlF(t)Q_l(t) dt<x7e, (2.18)

X

while
c L F()Q_,(1t) dt=a_1L u, (1) « fA-V/e=1. exp (2mrint) dt
=a ! L v(t) - exp 2wint) dt, v(t) = uy (tV>) - AVl

= 2mina)™! (v(x"‘) - exp (2minx*)— anv'(t) - exp (2mint) dt),

since v(t) e C*(—o<t <), with v(0)=0, and v(x*)=x'"""* Hence

xo

Lx F)Q_,() dt=c,x* ™™ - exp 2minx*)— ¢, L v'(t) - exp Rmint) dt

k xo
= ) ¢ x'7"™ -exp Qminx®)— ck[) v®(t) - exp mint) dt.
=1

v

Since v®(t) = O((1+ )@= ~%1) for large t, we see that

j v®(¢) - exp Rmint) dt

0

converges. Therefore

Ixcv(")(t) - exp (2mint) dt = (Lm— fv )v“‘)(t) - exp (2mint) dt
o «

=C+O(x'77 ),

Hence

IxF(t) - Q_(1)dt=C+O®x'"™). (2.19)
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Now (2.19), (2.18), and (2.17) lead to the estimate
L F(t) - Q_y(t) dt = C+ O(x*). (2.20)

This, together with (2.16), (2.15), (2.12), (2.10), (2.11), and (2.11)’, lead to the
estimate

Y aFA)= Y aF(\)+ o{ Y ak)\;*}

A =x A =xy X <Ap =X,

) ak[fF(r)-I.I(A.ct)dt+0(x1—°‘r~+xe), (2.21)

M‘Coxm‘l*‘o

where a;=a if a<2/(n+1), and a; =a—¢e<a, if a>2/(n+1). Now let

Co= (szm)", (2.22)

where h is defined as in (2.4). Then the last sum in (2.21) equals

Y  a fp(t) Iy (At) dt

M‘coxm—l*--o

= Z akfu(t)-t‘"-exp(2¢rint“)-1_1(/\kt) dt

M<coxm~1+l

= Z akL u(t) - t7 - exp QRrimt*) - I_;(At) dt

Ay ®|coXx

+ Z akf{u(t)—ul(t)}t“”-exp Qarimt®) - I_y(At) dt

M‘C()xm—l

+ Z a; Lxl u(t) - t7™ - exp Qmint™) - I_;(A2) dt. (2.23)

caxm—l<k‘coxm—l*-“

Now define

[ po

j t™ -exp Qmimt®) - L (A ) dt, if A <cox™7!,
H(x, A\) =3 (2.24)

x

u) -t - exp Qmint*) - L, (At) dt, if A >cox™ Y

-J0
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and

J {u;(O—u(@®)}- 7 - exp Qmimt*) - I_,(At) dt, if
H,(x, Ay) = 9 A< cox™ !

j 1u(t) <t - exp Qmint™) - I (At) dt, if A >cox™

0

.

(2.25)

provided that the integrals converge (see Lemma 3). If we combine (2.25), (2.24),
(2.23), and (2.21), we get the following

LEMMA 1. We have

Y aFA)= X akful(t)-t‘”~exp(21rint"‘)'I_1(/\kt) dt

A =X Ap=cox™™~
- Z a . Hi(x, )+ Z a Hy(x, Ay)
A=cox"*! Cox™ Tl mcox "0

+Ofx" Y +x),

where F is defined as in (2.8), u, as in (2.7), H, as in (2.25), a>1/n,
1+(12n)—a<y<1, y=0, in which case the integral {5 converges (as proved in
Lemma 3). Here a; =a if a<2/(n+1), and a;=a—e<aifa>2/(n+1).

LEMMA 2. We have, for x>0,

Hl(xa Ak)<< Sup |H(ts Ak)|9

xst=x,

where, as before, x,=x+x'"*, a>1/n.
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Proof. If A, <cox™ !, then

H,(x, A) = f)t"" -exp mint™) -+ I_;(At) dt + rl u(t) - {g; H(t, /\k)} - dt
=H(x, A\)+[H(t, A) - u(@®)]iZ5 — fl u'(t) - H(t, A) dt
=H(x, A\,)—H(x, A\p)— fl u'(t) - H(t, A,) dt

=_I W) - Ht A de< sup [H(t A,

X=t=x;
If A, >cox™ 1, then

x5

H,(x, \) = J:l u(t) -t - exp QRmimt™) - I_;(At) dt = LX+I .

Since

J u(t) -t - exp Qmint*) - I_;(At) dt< sup |H(t, A,

X =<t=<x,
as before, the result follows.

LEMMA 3. If n>0, then the integral

L t7Y -exp (int*) - I_,(¢) dt

converges for all a, such that 3+(1/2n)—a<y<1 and a>1/n.

Proof. We have, from (2.4),

m
I_.l(t) = Z evtw-r(u/n) cos (htlln + ,n,v) + O(tm_1~(m+1)/n)’

v=0

for t>0, where w_; =(1/2n)—1%, so that w_, — (v/n) <0, for »=0. This leads us to
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consider integrals of the form
J' t___y_(l/z)+(1/2n)—(vln) - exXp {i(nta F htl/n)} dt
1
— a_1 J l.—('~/'/¢:t)+(1/m)‘“1 : exp {l(’nt + htl/m)} dt’
1

with —y'=—y—3)+(1/2n)—(/n). If w(t)=(ntFht'™), then |dw/dt|=3m, for
t ={2h/(nan)}"™*P. Hence the above integral converges if —y’'+(1/a)—1<0,
that is if 1 —y' <a, or 3)+(1/2n) —a <+y. (The reasoning is the same as in Lemma
2 of [4).

The integral arising from the error-term in I_; is

—y—w_,~(m+1)/
I YOO gy,
1

which converges, if m is chosen sufficiently large.
Next let us consider

1
L t7Y - exp (int*) - I_,(¢) dt,

where

1 A(s)
L= L Ad-s) ' %

with 0<Res=c'<1 on €'

+K+i c'+i
*K—i ¢’ +i

|t—s| = t—Res - (1/t)Res < t—~c’,

If 0<t<1, then
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so that I_,(t)=O(t™), for all ¢’ such that 0<c’'<1. Hence

1
L t7Y - exp (int™) - I_,(t) dt

converges absolutely, provided that y<1.

§3. Some asymptotic expansions

LEMMA 4. We have, for a>1/n, and 0<vy <1, the asymptotic expansion

L Y - exp mint*) - L‘l()\kt) dt

m

— (i)(l—'y——a)/a . (Zw,n)('v-l)/a catem Z mg—v/(m—l)
v=0

x{C, cos (gmy™ P+ k, m)—iD, sin (gmy ™ V+k )}

A(l—vy+ap) ] (2min)? ] 1

A llc—-‘v+ap

+
O=p={a(n+2m)—2(1—y){2(na—1)} A (‘Y - ap) p!

+ O(mﬁ“"‘“”‘“"“”),
where

_2(1-vy)—an

> =\ =
n 0’ n, Ak/(z'"m"')a 0 ' 2a(na—1) s

q=(an—1)- Qra™)*"b,
k, = +1v, o' =in+{1-v)2a}-1, p integral,

C0= D0= w”l(an — 1)~112 . a1+{n(2'v~1)}l{2(m-°1)} s 2{?,(1—21)}1{2(M~1)}.

The first term in the expansion is given by

c'v/(vwz-*l) . m—W{2(ma—-1)} A{~'v/(na-l)}+{2~an}/(2(na—1)} . piml(1/2)—(r /0]
) k 4

n
X (277) DY L (g — 1)~ V2 . o W2na—D) | orA2na=D} , g iamliee=D

where c,= 2mnna/h)*, h=n - 2™
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Proof. Let
J= L t7 - exp Qmimt®) - I_;(At) dt =AY L t7Y - exp (it*miY) - I_,(¢) dt.
As in Lemma 3 of [4], we have, for £>0,

" - exp (&%) - _aTl[ A (l-s—y) (£\CTVe
Lt exp (&™) I_l(t)dt_Zm' L A3 r( ” ) (f) ds.

The path of integration €' is as shown in the diagram, with Res<1—vy—¢<
1—4, and « is sufficiently large and negative. Putting £ =(m, )", we obtain

JI=a -1 A'y 1, L A(S) . 1—8‘—‘y) ] ( 1 )(S+v—1)/a ds.
2mi A(l_s) o mi

T""’i . c'+i <€" K+r+i

= 1-v N N+1
Tx—i . c'—i ” k+r—i

Now deform the path of integration 4’ into €”, by choosing N to be a sufficiently
large integer, and N<k+r<N+1, as indicated in the diagram. We then have

1 A(s) (1-—s—y) ( 1 )“**-Wﬂ
= 1,371, . .
J=a N o L 20-9 '\ My s

+2A(1 y+al) Q@min) 1
=0 A(y—al) I AL

(3.1)

[We may note here that the residual term in Lemma 4 of [4] should carry the sign
+ instead of —].



536 K. CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN

We seek an expansion for

i 1 A(s) (1 —5— 'Y) ( 1 )(S+’y—l)/a
(R U At I . F . d
J'=a A} i L A1—s) a -~ s

(A—v)/e e
( 1 ) v — 1. A(s) -F(l s y)m;”“-(—i)“"‘ ds
2mn 2mi g A(1—5) a

( i )(l—‘v)la . 1 L A(S) .I-.(l_s—'Y)
27 * T 2mi ke A(l-s) a

_ ms ., . 7S
X mks’“(cos ——i sin ——) ds.

I

2a 2a
Now
cos (ﬁ) = T sin (ZT—S) = =
2a (s 1) (1 s)’ 2a—(s) ( s)'
_+_ . i, o, i — . —_——
F2a2r22a F2a F12a
Therefore
i (1—v)/a 1
y=(__) TP L {Vo(s) = iV,(s)hmic™> ds, (3.2)
27 20 kgr
where
1—y~s)
Vi(s) = A(s) ] F( o
° A(1-s) F(.§_+l).r(l_i)’
20 2 2 2«
1—y—s
r(=r=)
Vi(s) = A(s) . a .
) ()
2a 2a
Now choose
b~r(S)

Uo(s) =

I (-3S-w") - r1+3S+o)’
b~ I'(S)
FA-J5-a) rG+35+a)’

Ui(s)=
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1 n (1—7) , T (1—-7)
. (" a)s o) 9Tt G )Y

1\ (Ve
b= (n——) 2NV
a

Then we have

p—s b—s
Uy(s)=— - r(s) sinw{iS+w’, U,(s)=—"-T(S) - cos {3S+w'}.
T
By choosing
1)\ {n+1/2——v)/2}
a= (n __) . 2r1/2 . al/2—(1-—‘y)/a’
a

and comparing the expansions of V,, U,, on the one hand, and of V,, U, on the
other, we get, as before,

vie)=aUyo) {1+ ¥ Z+ods ),
v=1

m

Vo(s) = aUy(s) {1 + ) %+ O(|s|_"“1)}.

v=1

Now if we follow the same procedure as in the asymptotic expansion of I, [2], we
get

L4143

1
2—_i_ L Vl(s)x—s dS — Cvxae-—[av/(mx—l)] cos {qxa/(m—l)+ k,,’lT}
W ”

v=0
+ O(x*0~{latm+ /(a1 (3.3)
while

Dvxae——[av/(na—l)] Sin {qxa/(m—l)+ kv’ﬂ'}
=0

v=

1
e L Vo(s)x S ds =—
27l Jgr

+ O (x>0 tm+ D/tna—Dl) (3.4)
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where q =b*"*"Y and k, = »'+1v, provided that

N>m+%n~(1~7)/a_2ma+na—2(1——-y)
- n—1/a 2(na—1)

We find by calculation that

a

% . g evdIa-veD
w(n—1/a)

C() = DO =
From (3.1) and (3.2) we have

~ 1
J=@ T Quy) e o L {Vi(s)+iVo(s)kmi"* ds

S A(l—vy+al) . (2171.7])!. 1

+ :
=0 A(y—al) I AT

Now (3.3) and (3.4) lead to the lemma.

LEMMA 5. If £>0, a>0, 0<sy<1, and
3
J'(¢)= L t7Y - exp mint®) - I_,(Ad) dt,

then J'(¢) has the asymptotic expansion

rg=y 20200, 3 Lo i o0,

pmo (&P T AT

uniformly for 0<g,<&<§, <o, where the coefficients a,(£) are continuous in §,
and

_Q@min)* A(l—vy+ap)
p! A(y—ap)

b

p

Proof. For x>0, we have

1 A(s)x*
Lix) =52 L 20—
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where €’ is the same as in Lemma 4, so that Res<l—-y—¢<1-y on €.
Therefore

¢ 1 A
J'(§)= L t7Y -exp Rmint*) - dt - = L AC l(i)s) - (A ) ds,

and the repeated integral remains finite, if we replace the integrands by their
absolute values. Hence

oo L[ AG
1@ =5 | 3ao A i O ds 65)

where
£
j(s, &)= L 7Y - exp (2mint*) - dt.

By a change of variable, we have

L

i(s,&)=a™! L {a=v=sVe}-1. exp (2rimt) dt.

An integration by parts gives

grs 2in £

i(s, &)= A=v=5) exp (2miné”) “d=v=y) YV exp 2mint) dt,

since Re s <1—1, and a >0. Repeating this process, we obtain

L e ab(®) a3(8)
(s, §)=¢ {(1_,},_8)-{-(1_7—3)(1—74—0[—S)
ai(é)
+(1—-y—s)'°'(1—'Y+la’S)}

c(a) *
+(1—'y—s)(1—'y+a—s) s (1-—'y+la—s)L ‘

X exp (2wint) dt. (3.6)

{(1—vy—s)/a}+l
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We may write

1
A1=y-s)l—y+a—s) - (1—y+va—s)

L
CP

p—0(1—8)2=5):--(p+1—5s)

+ ‘Pv,b

where ¢,; = O(Js|™*™"), in any vertical strip, and has simple poles at the points
s=1,2,...,1+1,aswellas 1—y, 1—y+a, 1—y+2a,...,1—y+av, and the ‘O’
depends on £ Further the integral

L Ayt oxp 2mint) dt

converges absolutely, and is holomorphic for Re s <a(l+1)+1-1, and bounded
in the half-plane

Re {(—1—:—1—_—8—)+l}>—1+e >-1.

a
Hence
a, (&)
s, &)=¢" Z oI vesyc L (G 3] (3.7)
where

_ c(a, )
1-y-8)---(1-y+la—s)

Di(s, )= L dp(E)0pu(s)+
X L at{(l""_”/"‘}“ exp (2minmt) dt

and &,(s, £) is meromorphic for Res<a(l+1)+1—+, with simple poles at
s=1,2,...,1+1, as well'as 1-vy, 1-y+a,...,1—vy+la. Further & (s, &)=
O(|s|™*™"), in any closed vertical strip contained in that half-plane, uniformly in &
for £ in any compact set.

Now j(s, £) can also be written as

iGs, §)=L s Z (Zmn)". v dt+f Y 3F() dt,
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say, where f,(1)= O(***?), so that the second integral is holomorphic in s for
Re (—y—s)>—a(l+1)—1, or for Res<1—vy+a(l+1), for any integer [>0. It
follows that j(s, £) is a meromorphic function, whose only poles are at s=
l1-y+arv, v=0,1,2,..., with the corresponding residues —(2in)*/(v!).

Now if €" is the path obtained by deforming €’ so as to have the corners at
k—i, ¢+ N—i, ¢’+N+i, k+i (the infinite half-lines being left as they are), with
N sufficiently large, then we have, from (3.5),

| A(s) ., .
F©=5- | Fa A i 6 ds

L 2min)® A(l1—y+ap) 1
+ Z ) 'Y 1—v+ap *
p=0 p! A(y—ap) A TP

(3.8

(This requires that ¢'+ N<1—vy+a(l+1), and ¢'+ N>1—vy+al)
The integral here can be considered as a sum of two integrals J” and J",
because of the expression for j(s, £) given in (3.7), where

- a,(§) A(s)  I'(-s)
p=0 2w Jg» A(1—s) I'l+p+1-y5s)

_ ¢ 0,8 L
L

J"(€) = * (M) ds

(3.9)

provided that ¢'+ N>1+1, while

oo L[ A
O3 | 5o O A7 ds

If €7 is the path obtained by deforming €", so that the two infinite half-lines in
%" are moved to the right, then

" —_ 1 A(S) . L )—S
G BT er R CORRES

and this integral converges absolutely for n(oc—3)—1—-1<-1, or o <(l/n)+3,
where o =Res. Note that &,(s) has no poles off the real axis. If we take
o=ln+i— ¢, with 0<e <}, then

J"'(g) i O(A;(l/n)—(1/2)+e) — O(/\;U"). (310)

Now (3.8)-(3.10) give the required result.
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LEMMA 6. Let a be a real number, a#0, a>1/n, p=(h/2m) - A", n>0,
and h defined as in (2.4).

Let o(t)=o(t, p)=t*—ut'™, Fy()=Fyt, u)=1%¢'(t), Fa(®)=F..(tpn)=
1/¢'(t) - (d/dt)Fi(t), for 1=0,1,2,.... Then

( N tm.-a)"

))

F(t)=———" ,
l (‘p (t))l+1 p,q=0;qspcp’q’l (1 —i . tlln—a)p
na

where the c,,,; are suitable constants.
Analogously, let y()=y(t, p)=1"+ut'™, Go(t)=Gy(t, p)=t*/¢'(t), and
Gi1(t) = Gy (t, w) = 1/¢'(t) - (d/d1) Gy (1), for 1=0,1,2,.... Then

® . $l/n—a 9
a—l 1 t
t na

GO~ G e, d"’q’l(

-
1+_"_L__. tl/n—-a)
noa

The proof follows by induction on [

LEMMA 7. For a fixed &, such that 0<§,< &< ¢, <o, we have as p—>x, the
following asymptotic expansion in decreasing powers of w.:

_ 1 (S,
F, (& "")-“m+1 (lz ! +o(u ))

=0

For the proof we have only to use the expression for F,, (£, i) given by Lemma
6 together with the Binomial Theorem.

In what follows we shall frequently use the notation F,,(t)=F(t), and
Gy, ()= G(1), with a=a(¥)—y=w_;—(W/n)—y=(1/2n)—@)—(w/n)—v, for I=
0,1,2,...,»=0,1,2,..., and O0sy<1.

LEMMA 8. Let a(v)=w_;—v/n=(1/2n)—3)—(v/n), for v=0,1,2,..., 0<
v<1. Let 8> 0, sufficiently small, and 0<mno<m, a>1/n. Let A\, <(c,—8)x™ .
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Then we have

I t7Y - exp Qmint®) - I_;(At) dt

nim+1)

- Z /\:(v)

v=0 o=l={(m+1)/a}+1

x{exp (2mine(x)) - b F, +exp 2ming(x)) - b, Gy, (x)}+ O(x*->"™).

Proof. The asymptotic expansion of I_;(A.t) leads us to consider integrals of
the form

J 2 - exp Qmine()) dt,  @(f) =t —ut'™

As in Lemma 6 of [4], we prove that

E (t) - O(ta(v)-—‘y+1——(l+1)a)

for t=x, A, <(co,—8)x™ !, where the ‘O’ depends on a(v), I, and 8, but not on
t, x, or u. Repeated integration by parts then gives

had L (_1\l+1
[ (2 . exp Qming (1)) dt = e2minew ¥ D Tin ()

- +O xa(v)—‘y+1—(L+1)a ,
1=0 (2’"'171)”1 ( )

and analogously

o 3 ) L __1)!+IG (x)
27 . exp Rminyg(t)) dt = e2™m® ( Y
j; xp (2mwing(1)) Eo P

+ O(xa(V)—-y+1—(L+1)a)

These expansions together with the asymptotic expansion of I_,(A.t) therefore
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yield

J t7 - exp mimt®) - I_;(Act) dt

oo

m oo
= Z A‘,:(") (bv[ ta(v)“‘ye2‘"'i'ﬂ¢(‘) dt+ b:’[ ta(V)*‘Yez"‘fiTl‘l'(t) dt)
vr=0

Y Om (A ZI(A kx)a(rn+1)—-y+1)

m L 1+1 L 1+1
- -1D)™'F,,(x) ; —1)"Gy,(x)
== Aa(v) {b 2mine (x) iLv +b’ 2minP(x) LV
LA (e P s oL L mmy

+ O(xa(v)""Y'(L*'l)u)} +Om (xa(m+1)-‘y+1).
If L=[(m+1)/na], then L +1>(m+1)/na, and we have

I t7 - exp Qmint*) - I_1(Act) dt

(-1'"'F,,(x)
o=l<(m+1)/na (27Ti71)l+1
(— 1)l+1Gl,v (x)

o=<ls(m+1)/na (27"'1"'I)H1

m
= Z A2 {b,,ez“"‘“’(")

v=0

+b’ 627rimb(x)
v

}+O (xa(m+1)—-y+1)

The lemma follows upon replacing m by n(m +1).

LEMMA 9. Leta(v)=w_,—v/n=(1/2n)—3—(v/n), v=0,1,2,...,0<y<1,
8>0, & sufficiently small, 0<2e <a, a>1/n. Then we have for (c,—8)x™'<

'\k < Coxna—l - xm—l—e,

j t- €Xp (27Tl'nta) : I;,l(Akt) dt

n(im+1)

— Z A;:(v) (b eZ-rrimp(x) Z (_1)l+1E,v(x, ’-L)

. 1+1
o=sl<(m+1)/(na—2ne) (27”71)

v=0

. =1 l+1G J(x,
+be?mm® ) D G4 M))-I—O(x‘”-l”*“"‘).
O=l=<(m+1)/(no—2ne) (2 l-n)
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Proof. The pattern of proof is similar to that of Lemmas 11 and 12 in [4]. We
first prove that

oo L 1+1
_ . ; 1" F,(x)
a(v)—y , — p2mine(x) ,v
L t exp mine(t)) dt=e z=zo 2arim)

+ OL (xa(v)—-'y —al+(1—a)+(L+ 1)28)

An analogous expansion is valid with ¢ in place of ¢, and G;, in place of F;,. As
in Lemma 8, we then have

J t™Y - exp Qmint™) - I_1(At) dt

- i AS®) (b p2mMe ) i D™ F,(x )

v=0 1=0 (27Ti?])l+l
L 1+1
+ bre2'n'iﬂ¢(x,u) (_l) GL" (x’ ““))_*__ o) (xa(m+1)—v+1)
L 1= (27Ti1])l+1 m ’

provided that L =[(m +1)/(na —2ne)], 0<2e <a. The lemma follows upon re-
placing m by n(m +1).

LEMMA 10. If §>0, and sufficiently small, and 0<mny<mn, and a > 1/n, then
for A, =(co+8)x™ !, we have the asymptotic expansion

f u(t) - £ - exp 2mint®) - I;(\t) dt

L l
. ; (-1)'F,(x, w)

= A2 (bve21ﬂ-ncp(x) .,V =
vgo « 1§0 (2’“’”])l !

L l
, —1)'G(x, 1)
+b’ 2arinds(x) v
v lgo 2w i’"l)l)r1

)+ O(u""1)+ O(AT™).

If L=m, the term O(n."""") can be dropped.

Proof. Choose ¢ such that A, <&<x, and consider the given integral as the
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sum of [§ and [;. We then have

x
I u(t) : ta(V)—'v . e2‘l‘l’i'n(p(t) dt
3

— e21ri~mp(x) i (_1)IE,v(xa “’)_ezqﬁnw(f) < (_1)11:1,1:(&’ “’)

+ —~L—-1
1=0 (2771'7])“1 = (2,m-,n)l+1 O(ﬂ' ),

where the ‘O’ does not depend on & An analogous expansion is valid with ¢ in
place of ¢, and G,,, in place of F,, (see the proof of Lemma 10 in [4]). It follows
that

x

u(t) -t - exp Qamimt*) - I_(A.t) dt

r——

D'F, (x, 1)

)l+1

m L
) (-
= ) AW (bﬁ exp 2mine(x, 1)) - -
EO k% p 2mine(x, w)) EO Qmin

— " . < (_1)1E,v(€’ “’)
b, exp (2mine(§, u))lgo Qin) )

m L l
: =1)'G(x, 1)
+ Aa(v) (bm 2 ] . =
vgo @ | b exp (2ming(x, p)) Z,O B

(_ 1)1Gl,v (ga l"’)
(2min)'™*!

L
— b exp Qming(€, u) Y. )+ 0+ 00z ). 311
=0

On the other hand, if F(t)=u(t) -t - exp (2mwint*), as in the proof of Lemma
1, we have '

i (CDPFP(E) - I, ()

1+p
p=0 Ak

f F@)I_i(At) dt=

&
+(-1)F*- A;L“*L FED(t) - I (A1) dt, (3.12)

and the last term is O(A”™). Since I, has the asymptotic expansion (2.4), we can
combine (3.12) and (3.11), and apply Lemma 9 of [4] to obtain the stated result.

LEMMA 11. If cox™ ' +x"717* <A <(co+8)x™ 7', §>0, and sufficiently
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small, and 0<2e<a, a>1/n, then

L u(®) - t7Y - exp Qmint*) - I_;(At) dt

a(v) 27wine(x) ( l)lFlv(x) 2 . 2arin(x) ( l)lle(x)
= 3 13 (e 3 CE preomes z————(z,,,m)m)

+ O(xa(m+1)-'v+1) + O(/\;m/"),
provided that L =[(m + 1)/(na —2ne)]. As before a(v)=w_,—(v/n).

Proof. Choose A such that 0<A <1, and consider the given integral as the
sum of the integrals {3 and %_,,. Following the same pattern of proof as in
Lemma 13 of [4], we obtain

x

J u(t) - t*@7 - exp Lwine(t)) dt = I t*@7 . exp 2mine(t)) dt

x(1—A) x(1—A)

— e2m’~n¢(x) L (-1)‘“F,,,(x, "L)_ezﬁn‘p(x(l_k)) i (_1)[E,v(x(1 —‘I\), “’)
1=0 (27rin)'“ 1=0 (2’""."7)l+1

e O (xa(v)—'y—aL+(1-—a)+(L+ 1)2e)
>

as well as the analogue with ¢ in place of ¢, and G, in place of F;,. It follows
that

I u(t) - t7 - exp Qmimt™) - I_,(At) dt

x(1—A)

L 1 L
< ; (-1)'F,(x, n) (-1)'Gy, (x, u))
- a(v) 2mine(x) » + b’ 2™ (x)
Z A (b,,e Z’o (2"”"71)l+1 be zgo (27717!)“1

v=0

_ D'F,(x(1-1), w)
_ Aa(v) ( 2aine(x(1—A)) v
23 (be Zo Q2min)

v=0

| L (=1)'G,,(x(1-1), o
+b;e2mmb(x(1*—:\))l§0( ) (;ﬂ(-rrf)“_l ) “'))+O(xd(m D ‘Y), (313)

provided that L =[(m +1)/(na —2ne)].
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On the other hand, by Lemma 10, (since A, > (co+ 8,){x(1—A)}"*" 1), we have

x(1—A)
L u() -t - exp Qmint*) - I_;(A.t) dt

- \Z Az(v) (bve21ri-n¢(x(1——k)) i ("1)1F1,v(x(1“A), P«)
l

v=0 =0 (277'i7l)l+1

. _ & (-D'GL(x(1—=A), w) e _
+b:,€2mmh(x(1 A),M)IZO( (;‘m.,’f)lﬂ ) w )+O()~‘£(m 1) y)+o(Akm/n).

(3.14)

Combining (3.14) with (3.13), and applying Lemma 9 of [4], we obtain the
stated result. ’

LEMMA 12. If cox™ '—x™ 1t <A <cox™ !, €>0, a>1/n, and, as
hitherto, a(v) = w_,—v/n, then

J’ t7Y - exp Qamint™) « I_;(Act) dt

ni\l Nil e2win<p(x)
_ )—vy+1 a(v)
- Uym * x* - Ak : 1
e g’y mx*n)™
nN N-1 e21rinx°P(v0)
+ u - xa(V)—v+1 . )‘:(V) .
v§0 m=0 v (27Txa7l)m+(u2)
nN N-1 eZ'm'-nx"'P(vo) T
+ Z u],’,’mxa(v)—‘v""l s A:(P) § e L s——1/2 . e2-rnx°‘-r|s ds
v=0m=0 (2mx>n)
nN N-1,/_ 1\ym+1 . p2mimdr(x)
D™ Gy (x) - e a() a(w)—y+1—a(N+1)
+ < ym-+1 ) ’\k -+ O(x ),
v=0 m=0 (27rin)

where P(v)=v"™—Bv, B=uxV"™ r=P(1)—v,, vo=(B/na)’™ P and where
the coefficients u,, ,,,, u., .., u!,, are continuous functions of B for fixed v and m, while

L s V2 exp 2minx=s) ds = O(x~*/?),

uniformly in 7.

Proof. The pattern of proof here is the same as in Lemmas 16, 17 and 18 of
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[4], with the difference that P(v) is no longer a polynomial, but holomorphic in v
for Re v>0, and v, is a zero of P'(v).

If 0<p<1, then w/{x(1+p)}* ¥ <na/(1+p)* Y™ <na-§,, say, so that, as
in the proof of Lemma 8, we get

) L I+1
_ : : D)"F,(x(1+p))
ta(V) Ye ari (t)) dt = e2mmp(x(1+p)) -"
J;(1+p) P ( e Igo (2‘7""])[+1

+ O(xa(v)—-y+1——(L+1)q), (3'15)

and a similar result holds with ¢ in place of ¢, and G;, in place of F, for the
entire integral .
The integral [**® is then dealt with as in Lemma 17 of [4], and gives

x(1+p)
j 2™ exp 2wine(t)) dt

1. a@)y—yt1 { i A,(1+p) exp 2mine(x(1+p))— B, (1) exp 2wine(x))
- 2nx a p+1
p=0 (27Tx 71)

Noal exp Qmux*nP(vy) a T .
+ m c — o -m —1/2  2minxes }
L T ey L G L $ e ds

+ O(xa(v)—-y+1—u(N+1))’ (316)

where A, B,, a},, a,, depend on B, and, for fixed p, m, are continuous functions
of B in a neighbourhood of the point B = na.

We now combine (3.15) and (3.16), and apply Lemma 9 of [4] to get rid of the
p from the expansions.

LEMMA 13. If cox™ <A  <cox™ '+ x™717%, £>0, then

ru(t) 7Y - exp mint®™) - I_(At) dt

0

has the same expansion as in Lemma 12.

Proof. We consider the integrals f5"® and [%,_,, separately, where 0<p <1.



550 K. CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN

The first integral is dealt with as in Lemma 10, while the second is handled as in
Lemma 12, and Lemma 9 of [4] is then called into play.

LEMMA 14. For a>1/n, and 0<vy<1, the integral
L u(t) - t7 - exp Ruint™) - I_;(At) dt
has the asymptotic expansion

ci(e, v, m, K) ), m = =YC, cos (qmy ™"V +k,m)
v=0

—iD, sin (gmY™ "V + k, m}+ O(m 8- (m+Ditra—1))

where c, is a constant determined by Lemma 4, and 0=[2(1—-vy)—an]/
[2a(na—1)].

Proof. We have

L u(t) - t7 - exp Qaimt*) - I_;(At) dt
= L t7Y - exp mint®) - I_,(At) dt

+ L l(ul(t)—- 1)-t7 - exp Qaint*) - I_(At) dt

The first integral on the right has an asymptotic expansion given by Lemma 4.
If we choose a p, such that p<c (defined along with the function u at the
beginning), then

j Ny =1) - £ - exp Qmint®) - y(Aet) dt

0

) |
- L £ - exp 2mint®) - I (Af) dt

+ r'(ulm— 1) 7 - exp (2mint®) - Ly(At) dt

Lemma 5 gives an asymptotic expansion of the first integral on the right-hand
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side:

. a, (p) - Ip()\kp) l bp —Un;
p;o (/\kp)0+1 +p§0 Allc-'y+ap+o(hk )a
where b, = 2#in)?/p!- A(1—v+ap)/A(y—ap). For the second integral, we apply
repeated integration by parts, together with the fact that u,—1 (and all its
derivatives) vanish at t=A;, to get an asymptotic expansion as in (3.12). By
proper choice of [, the term Y, _o b, - A" *® cancels out with the residual term
given by Lemma 4, and the application of Lemma 9 of [4] leads to the stated
result.

§4. Proofs of the theorems

Proof of Theorem 1. From Lemma 1 we have

Y aFA)= Y a A" u(h) - exp 2minAd)
A =x A =x

= Z i ful(t) <t - exp Rmint™) - I_;(At) dt

Ay ==cox">1
— Z a H,(x, A )+ Z a H,(x, Ay)
KkGC()xm—l cox"“_’<kk<cox"““+‘o
+ Of{x' ™Y +x°}, (4.1)

for a>1/n, 3+(1/2n)—a<y<1, y=0, co=2mmna/h)", h=n-2"'". We shall
estimate the first three terms on the right-hand side of (4.1). By Lemma 14, we
have

j u(t) - t7 - exp Qmint™) - I_1(A.t) dt
0
= cu(@, %, 1, K) - A2® exp {—igmi/®=~D} + O(m{-o=-D),

where 0 ={2(1—v)—an}/{2a(na—1)}. If y<3jna, then a@>—1, and we obtain

Z akL u(t) - t7" - exp mimt*) - I_;(At) dt

Ay &=CoX

=ci(a, v, mK) ) a-AL-exp{—igmy™V}+ O VY) (4.2)

kk‘coxwu—l
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For a 6 >0, chosen sufficiently small, we then write

Z a H,(x, Ay)

)\kscox""_l

- P Y
Ae=(co—8)x™"1  (co—8)x"™ 1A mcox™ l-x"aTlme coxte iy TITe o) mcn™ !

=V,+V,+V;, say.
In V, we use Lemma 8, and note that A, <(c,—8)t™ ! for 0<x<t<x,, SO
that

H(t M) <A™+ [Foolt, M|« Ag ™ - g7,

hence

V= Z a Hy(x, \p) < x4 Z

A =<(co—8)x™ !

QA

A <cox™ !

&< xw_l—-y+1—oz . x(na—l)(w_1+1)

& x[("—‘l)/zla""Y.

(4.3)
(cf. the estimate of W, in [4]).
In V, we observe that (c,—28)t™ 1< A, <cot™ '—t™ % and use Lemma
8, so that

Aw
HtA)<—~——— for 0<x<t=<x,.
lo’(0)] ,

—1 . $917Y

We have ¢'(f) = at* (1 —cy /"A"t/™®), and in the given range
|1 _ C(—)—l/nhllc/nx(lln)—al »>x"E,
However,

1 _ C(;l/nkllc/nt(lln)—a _— 1 _ (Callnl\,lcln)x(lln)—a+ O(x-~a),

so that

1 __Calln . Ai’“t(lln)—a 1
— e—a 1
1— C—I/n . Allc/nx(lln)-—a =1+ O(x )’ (8 <2“)'
0
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Hence

A x
H,(x, A )«
’ [1= cg Vmp Vny = >

o_,—vy+l-a

so that

V2<< xm_l—'y+1—a Z ak . A‘,:’—l
( _8) m~l<h = noae—1__ noa—1—e ) — .
Co x Kk =CoX x |1“‘C0 UnAllc/n . x(l/n) al

The last sum is estimated in the same way as W, in [4], so as to yield
V,« xln—D/2la—y log (1+x). 4.9

In V, we observe that cot™ '—2t" 1t < A, <cot™ !, for 0<x<t=<x,, so
that Lemma 12 applies, and we get

H,(x, \y) K A1 - x @Y 1@

so that
Vi« x@t1mymel2 ) AL, g <@
cox™I—xme1e <), <coxnl
&« xm_1+1—‘Y—°l/2 . x“’—l("a‘—l) Z a, a, = O(ka'), say.

&« xe’+(na—l—a)+m_1+1—-y—(a/2)+w_1(na—-1)
&« x(w_1+1)na—-y—(a/2)—e+e’
& x[(rux)/zl—v—el, (4.5)

where e, = € —¢’, for any positive &, such that e <ja, e <na—1, and all £’ >0, so
that (4.5) holds for any &,<a/2, ¢,<na—1. From (4.3), (4.4), and (4.5) we
obtain

Y aHi(x, M) < x[02Fvmes x[n=D2ka—v g0 (1 4 i), (4.6)

A =cox1
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Next we consider

Z a H,(x, A)

cox"“"<)tk=5cox""'—‘_‘o

- y +

Cox™ Tl =cox™ T Ihx" T cox T lx e 1Tt o), <(cp+8)x™ !

+

(co+8)x™ 1l =xn—1%e
=V,+Vs+ Vg, say.
In Vg we note that " 1*®o= A, =(co+8,)t" !, for 1 <x <t=<x,, with §, =15,

say, so that H(t, A,) can be estimated with the help of Lemma 10, leading to an
estimate of H,(x, A, ), and thence

V6<< x[(m)/zl—v—el’ £, <%a’ g, <na— 1. (4.7)

In V5 we note that cot™ '=cox™ '+ O(x™ 1), for 1<x<t=<x,, so that
Cot™ T+t lme <A <(cp+8)t™ !, and Lemma 11 can be used. We further
note that, as in the case of V,, we can replace ¢'(t) by ¢'(x), and obtain in the
same way

Vs« xlm=D2le=v 160 (1 + x). (4.8)

In V, we consider the integral for H(t) as the sum fg'™®+fi,_,, for a
sufficiently small p, such that 0 <p <1. In the first integral, we have, for x =t =<x,,

cot™ (1= p) T S co(x1(1—p))™* 7 = co(x™ (1 +O™)) - (1—p)™ 77

« Coxm_l < /\'k’
so that Lemma 10 can be applied to yield
H(t, Ak)<< A‘,:—l . t"’_l"'l“'v\—-a,

while in the second integral, we have

A A A A -
= , = <1+ 0O(x7®).
Cotna-—l Coxm—1(1+ O(x—a)) Cotna—l Coxm—l (x )
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Here Lemma 12 can be applied to obtain (as in V)
H(t, \) < Ap-ige-t 1y,
Altogether, we therefore have

Hy(x, Ay ) K AP+ x @t 1my (@2,

and
V4 &« x[(na)/2]“‘v—€,. (49)
Combining (4.7), (4.8), and (4.9), we obtain
Y a H (x, Ay) < x[e/21my=es 4 o [(n=D/2e=y . o0 (1+x).
Cox™ Tl <cox™ 1%
(4.10)
If we use (4.10), (4.6), and (4.2) in (4.1), we obtain:
Y a - ALY - exp (2minhg)
Al =x
=ci(a %, m,K) Y @ AP exp {—igmi/"* "V} + O (L)
A =<cox™~1!
+ O(x[(n—l)/zla—v log (1 + x)) + o(x[(na)/2]-v—e1) e O(xl—al—v) + O(xe).
(4.11)

Since £,<3a, the exponent }(na)—y—¢£,>0, if 3(na)—y—3a>0, that is, if
v <3(n—1)a, in which case the term x° can be dropped. Such a choice of vy can
indeed be made. If a>1+(1/2n), we choose y=0. Otherwise 3+(1/2n)—a <
i(n—-1)a for @ > 1/n, so that if vy is greater than 3+ (1/2n) — a and close enough to
it, we have i(n—1)a >1v. Clearly the only O-terms that remain in (4.11) are:

O™ Jog (1+ x)) + O(L"2HY21) + O(x1 7). (4.12)
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Thus (4.11) can be rewritten as

Y a - ALY exp minAY)

Ak =X

=c, Z a - A Z['y/(na—1)]+[(2—an)/2(mx—1)] exp {—igm ,1(/(na -1)}

kkscoxna-—l

+ O(x[2l-v=e:) 4 O(x[V2e=v]og (1 + x)+ O(x*">7). (4.13)

Since v <i(na), the exponent of A, is greater than —1, and we can apply partial
summation, and obtain

Y. a. - exp (2minAf)

Xk =x

—c2 T a AED. exp {—igmiiee )

A =cgx"™!

+ O (xlm/2le) | O(x[n—D/2kte) L O(x 1), (4.14)

where ¢,=c; - cg”™ V is independent of v, for all £,>0, such that &, <3a,
g, <na —1. These conditions on &, imply that

w2 e, o ([—D/2Ja+e | 1-(na/2)+e

Hence (4.14) leads to

Y a - exp 2minAY)
A=x

=c, Z a, - A§(2—an)/2(na—1éxp {_ iqull(na—l)}

Ay =cox™ 1

+ O(x[(n~1)12]a+e) 4 O(xl—(na/2)+e) N O(xl—“l). (415)

If n=3, then i(na)>a=a,, so that the term O(x' "“?**) may be dropped. If

n =2, the only O-terms in (4.15) are O(x®®*®)+ O(x'~=**), and that completes
the proof of Theorem 1.

Proof of Theorem 2. If a=2/n, (4.15) gives the approximate reciprocity
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formula:
. l\2/n
Y a exp QmimAZ=c, ¥ a, exp( i )+0(x1*<1’">+e), (4.16)
Ae=x A =<cox 2777]

for every £ >0.
In this special case, we have

4177' " r./n h’ 2 i —(r h2
o= () = () e, g =T

while, in general, A, =B - k, B =2=7"?|D|"V?>=Qan/h)"* - |D|""2
If we choose 47n =h, then co=1, ¢; =™~/ Getting Y=x-B™!, we
get:

Z a - eim™ DIk il (1/2)=(r /4)] z a - e i IDIFVn kA O(Yl—(lln)+5)’
k<Y k<Y

which is (1.4).

Similarly if we choose 47n =h |D|™"" - m, where m is an integer, m# 0, then
we get a formula which, in the case n =2, gives the Corollary to Theorem 1 in [3]
with Y*® in place of log Y.

If we take n =2 in (4.16), so that a« = 1, and r, =2 (this is the case when K is a
real quadratic field), then co=(m)? cs;=(m) ', q=4;if n=2, a=1, r; =0 (the
case of an imaginary quadratic field), then co=(2m)% c;=i2m) !, q=1.
Formula (4.16) then reduces to the one which we proved sometime ago [3] by a
different method, but with log x taking the place of x° in the error-term.

Proof of Theorem 3. The sum on the right-hand side of (4.15) is O(x™?), for
a <2/n. We can therefore conclude that if 1/n<a <2/n, and n=3, then

Y a, exp QminAd) = O(x"2) + O(x' ™), (4.17)

Ak =x

with a;=a if a<2/(n+1), and a;=a—e<a, if a>2/(n+1). If n=2, and
i<a <1, the sum is O(x®), since 1—a <a. If n=3, and we take a =1/(n—1) in



558 K. CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN

(4.17), we get

Z a, exp (Zwinl\llc/(n—-l)) - O(xn/2(n—-1))+ O(xl—ll(n~1))
A =x

(4.18)

o(x*%, if n=3;
O™ V=Y §f n=4.

We note that if n=3, (4.18) gives a stronger result than the one we obtained
before [4].

Proof of Theorems 4 and 5. If 0<a <1/n, the proof is much simpler than if
a >1/n. Proceeding as in Lemma 1, we consider here the infinite series

Y el [0 Lo, y=0,  FO=u(@)

k=1 'c

& Z a - A;(l/Z)-—(l/Zn)—(r/n)___0(1)’
k=1

if r is chosen sufficiently large. On the other hand,
L F™ (1) - Q,(1) dt=0O(x'"), (4.18)
as before, while Y, .\ <., & = O(x'™). Hence
s 11— 1
Z a, exp QminAp)=0(x""), for 0<a <;l— .

A =x

If «a =1/n, and € >0, we first obtain the estimate

) Y a- A:“'JXIF"""(t) - L(A) dt

A >x" c

— O(xe[(1/2)——(1/2n)—(r/n)]+(1/2)+(1/2n)) =0(x™9) (4.19)
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for any q >0, provided that r is chosen sufficiently large. We next consider

): akJ'xiF(t)-I_l(,\kt) dt, F(t) = u(t) - exp Qmint*)

A =x* c

= Z akrlu(tde(t,Ak), H(t,Ak)=Jtexp(2ftrint°‘)-l_1()kkt) dt

Akﬂx‘

== ) a rlH(t, A) - u'(e) dt,

A<=x*®

since H(t, A,) vanishes for t = ¢, while u(t) vanishes for t = x,. Now

le(t, Au'(t) de = (J':l+ r) H(t, A)u'(d) dt,

A1

and the first integral on the right-hand side is < A= O(1), since I_;(A ) < Ay,
for c st=<\A,, while

[ CH(E Mw'(0) di < sup |[H(E M.

XE=t=X,

We shall estimate the order of magnitude of H(t, A,) by using the full asymptotic
expansion of I_,(At), (cf. Lemma 3). We then have to consider integrals of the
form

y
I t—(1/2)+(1/2n)-(v/n) exp {Zﬂitlln(n "'Allc/" . h)} dt, y= 0, 1’ 2’ e,
c

together with an O-term of the order O(A;Y/ 2+A2nTE+D/MN 5 (1/2)+(1/2n) —
[(v+1)/n]<—1. It is sufficient to consider the case v =0. If n =A;/"- h for some
ko=1, we have

H(y, Ako) = A;’:" {Cko Jw t—(1/2)+(1/2n) dt + O (J‘y t—[(1/2)+(1/2n)] dt)}
= Cfcoy("+l)’2"+ O(y("—l)lz"),
while

H(y, A\ ) K AR-1y®— V28 for  k# ke,
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(which follows by replacing t'/" by t and integrating by parts). Hence, if n=3,

— Z akj H(t, Ak) ¥ u’(t) dt & x(n+1)12n+ Z ak . )(‘,’:—lx("_l)/z“
C

A=<x"® Ar=x*k¥*kg

& x DR ¢ 1-(/m). (4.20)

If n=2, and n=h - A}/?, we have

I IH(t, A Ju'(t) dt = CM'&;’J 1t3’4u’(t) dt+ O(x"*)

(]

A j (e di+ O (x )

== A {x3’4+%[ u(t) -t dt}+ O(x'%)
= —C A x4+ O(x1*),

Hence, in this case,

- Z akj IH(t, A) - u(@)dt=c¢ - ap, - A X+ O(x Ve, (4.21)
Ap=x* c

while, if n# hAy?, for all k=1, the sum is O(x"?). The result follows from

this and (4.18)".

Remark. The method of proof adopted here makes it possible to prove
corresponding results for the coefficient-sums of Dirichlet series satisfying a
functional equation of the type studied in [1, 2]. Particular cases are the zeta-
function of an ideal class and Hecke’s zeta-function with Grossencharacters.
Since no new ideas are required, we do not go into the details.

Our estimates prove that the sequence {n(NA)*}, for 0<a<2/n, m real,
n#0, and or an integral ideal in K with norm N%, when arranged in order of
increasing norms, is uniformly. distributed modulo 1. It is likely that this is true for
0<a<l.
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