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Sur le spectre des opérateurs elliptiques a bicaractéristiques toutes
périodiques

Yves Colin de Verdière

Introduction

Dans cet article, nous détaillons les démonstrations et résultats annoncés dans

[CV2]. Rappelons de quoi il s'agit: X est une variété C°° compacte de dimension
d munie d'une densité C°° dx; P est un opérateur pseudo-différentiel (OPD en
abrégé) elliptique autoadjoint positif d'ordre 1 opérant sur les fonctions sur X. On
note p e C°°(T*X\0, R+\0) le symbole principal de P et on suppose que le
symbole sous-principal de P est nul. Soit Hp le gradient symplectique de p par
rapport à la structure symplectique canonique de T*X\0, l'hypothèse principale
notée (C) est que les trajectoires du flot de Hp (les bicaractéristiques) sont 2tt
périodiques: <p27r Id; si 2tt est la plus petite période de chaque bicaractéristique,
on dira que P vérifie l'hypothèse (SC). L'opérateur P admet un spectre discret

À0<À1<---<Àn<..., chaque valeur propre étant répétée un nombre de fois
égal à sa multiplicité; on notera (<pn)nezv une base orthonormée de fonctions
propres (P<pn À^J de L2(X, dx). Duistermaat et Guillemin ([D-G)] ont obtenu
une information très intéressante sur ce spectre qui a été précisée dans certains
cas par Weinstein ([Wl]): si on note a (entier) l'indice de Maslov commun à

toutes ces bicaractéristiques 2tt-périodiques, les valeurs propres Àn s'accumulent
autour de la progression arithmétique fc + (a/4)(fceiV). Avant de préciser les

résultats obtenus dans notre article, donnons quelques exemples de la situation
décrite plus haut.

Exemple 1. X est une variété riemannienne à géodésiques toutes 2tt-
périodiques, dx est l'élément de volume riemannien et P A1/2 où A est le
laplacien associé à la métrique de X. Pour une étude détaillée de ces variétés, on
pourra consulter le livre [BE]. Comme exemples, signalons les espaces
symétriques compacts de rang 1 munis de leur métrique canonique, les quotients
de tels espaces par un groupe fini d'isométries (espaces lenticulaires); enfin, sur les

sphères, on sait construire des métriques non canoniques ayant cette propriété
(surfaces de Zoll).

Exemple 2. X est comme dans l'exemple 1, F est une fonction C00 réelle sur X
et cgR tel que V+c>0 partout; on pose alors P=(J+ F+c)1/2. Les valeurs
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propres de P sont alors reliées simplement à celles de l'opérateur de Schrôdinger
H A+ V (cf. [CV 1] et [W4]).

Décrivons maintenant le contenu de l'article: dans le paragraphe 1, on précise
le résultat de Duistermaat et Guillemin de la façon suivante: il existe un M>0 tel
que si

alors Spectre (P2) c U k=0 4 \ on Peu* alors définir la multiplicité approchée par
dk Cardinal {n|À2e/k} et le résultat principal est une description du comportement

de la suite dk: par exemple, sous l'hypothèse (SC), il existe fcoeN tel que,
pour k > k0, dk est une fonction polynômiale de fc. On donne ensuite quelques
exemples et propriétés de ces polynômes lorsque P2 est un opérateur différentiel.

Dans le paragraphe 2, on montre comment les résultats sur la multiplicité
permet de trouver certains théorèmes géométriques d'intégralité très proches de

ceux de Weinstein ([W2] et [W3]).
Dans le paragraphe 3, on étudie la dispersion des À2 autour des valeurs

(fc + (a/4)2; supposant qu'on ait écrit toutes les valeurs propres de P2 sous la
forme À2 (k + (a/4))2 + jmM avec l</<4 et -M<jULk4<- • -^^k,dk ^M, on
s'intéresse aux mesures ixk =£?=i 8(tikl) et à leur répartition limite lorsque
k -» +oo? on précise ainsi certains résultats de [W4].

Enfin dans le paragraphe 4, on étudie les relations entre les résultats

précédents et le développement asymptotique de Minakschisundaram-Pleijel pour
Z(f) Xn=o^ tÀ" lorsque f-»0+. Cela donne entre autres une preuve d'une
conjecture due à Chachère ([CH]) sur la valeur moyenne des pcfc lorsque k —> +°°
dans le cas d'une métrique de Zoll sur S2.

Remarque. Tous les opérateurs pseudo-différentiels (OPD) et opérateurs
intégraux de Fourier considérés dans cet article sont classiques.

Remerciements. Je tiens à remercier A. Hirschowitz pour des discussions sur la
propriété de transmission ainsi que pour la preuve de la proposition 1.9.; je
remercie aussi le référée qui m' a signalé façon plus élémentaire de finir la

preuve du théorème 1.4 et une incorrection dans l'énoncé 3.1.

1. Les multiplicités

On étudie le spectre de l'opérateur P en le perturbant de façon à obtenir un
opérateur ayant pour spectre une progression arithmétique, plus précisément, on
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a le

THEOREME 1.1. H existe un OPD Qx d'ordre -1 avant mêmes fonctions
propres que P (et donc commutant avec P), unique à opérateur régularisant de rang
fini près tel que Spectre (P + d) c {fc + (a/4)\k e N} où a e Nest Vindice de Maslov
commun aux bicaractéristiques 2it-périodiques de P.

COROLLAIRE 1.2. Il existe M>0 tel que, si

alors Spectre (P2)c U^04 (comparer avec [D-G] et [Wl])

Ces résultats ont été prouvés indépendamment par Weinstein ([W4]) et par V.
Guillemin ([G2]).

Preuve du corollaire 1.2. On a P2 (P+Q^-Q où Q est un OPD d'ordre 0,
donc borné dans L2(X, dx). Soit M la norme de cet opérateur; désignons par
jULo^fXi^- • •<jJLn<- • • les valeurs propres de (P + Qx)2, on a: jutn-M<Àn<
jutn + M d'après la caractérisation variationnelle de la n-ième valeur propre d'un
opérateur autoadjoint (minimax). On en déduit aisément 1.2.

Preuve du théorème 1.1. D'après [D-G], on a:

où C est un OPD d'ordre —1, de plus Gpn =cn<pn avec

cn=exp (-

comme C est un opéateur compact, cn -» 0 quand n —» +°°. Soit n0 tel que, si

n>n0, on ait |cn|<|, on définit un opéateur Q2 par

°2<Pn
2hr L°g ^ + Cn^n'

où l'on prend une détermination quelconque de Log pour n<n0 et la
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détermination principale pour n > n0. Alors si C C1 + C2 avec

¦{: :ncpn pour n < n0,
0 pour n ^ n0,

on a Q2 2ïtt Log (Id + Cx) + 2nrLog (Id + C2),

le premier opérateur étant régularisant de rang fini; le second étant un OPD
d'ordre -1 car défini par la série

qui converge normalement et au sens des OPD. Donc Q2 est un OPD d'ordre -1
et il est clair que

et donc

Spectre (P + Q2) c | fc + -|k e z|.

Comme le symbole principal p de P + O2 est>0, il n'y qu'un nombre fini de
valeurs propres fc + (a/4) telles que k<0: remplacer celles-ci par a/4, revient a

modifier Q2 par un opérateur régularisant de rang fini, pour obtenir un opérateur
Qx satisfaisant les propriétés requises. L'unicité est évidente: si Qx et Q[ sont
deux tels opérateurs, le spectre de Ch-Qi est formé d'entiers et comme cet

opérateur est compact, il n'a qu'un nombre fini de valeurs propres non nulles.
Pour étudier les multiplicités, on définit dk comme étant la multiplicité de

fc + (a/4) comme valeur propre de P+Qt; pour fc assez grand, on a évidemment
aussi dk= Cardinal {Spectre (P2)nik}; dk n'est pas très bien défini à cause de

l'ambiguité sur Qu mais est bien défini comme germe au voisinage de l'infini;
d'autre part, si Qx et Qi sont comme plus haut, on a: Yl=o (dk - dk) 0 (à cause
du minimax).

Avant d'énoncer le résultat fondamental de ce paragraphe, on doit faire
quelques remarques géométriques. Si p vérifie la condition (C) il peut y avoir des

bicaractéristiques ayant comme périodes (2ir/mJ), (m, eN,m,>2), j — 1, 2,..., N.

PROPOSITION 1.3. Uensemble des points de T*X\0 ayant (2ir/mJ) comme
période sous Vactrion du flot cpt de Hp est une sous-variété conique W} de T*X\Q de
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dimension paire 2dr Les W, sont des variétés de points fixes "clean" (au sens de

[D-G]) pour Vaction de 2nq/mj(qeZ).

En effet, comme (Pt+in^vA^ fl°t <Pt définit une action C°° de R/2ttZ sur la
variété compacte Z p~\{l}). Les W, correspondent à la stratification de Z suivant
les types d'orbites de cette action. La parité de la dimension est une conséquence
facile du fait que le sous-espace invariant par un sous-groupe compact du groupe
symplectique réel est de dimension paire, car à conjugaison près, il s'agit d'un
sous-groupe du groupe unitaire.

On peut maintenant énoncer le

THÉORÈME 1.4. Il existe un polynôme R(t) de la forme R(t)
b1ra~1 + d3fd"3 + b4fd"4+ • • • + bdetun entier k0 tel que pour k > k0, on ait:

où les suites u]k sont de la forme u]k =YaM1 (o>jBi)lcJRIj(fc) avec

et Rhi polynôme de degré d, —1; en particulier sous Vhypothèse (SC), dk

R(fc + o/4).

Remarque. Le polynôme JR vient d'être calculé par Boutet de Monvel et
Guillemin ([B-G]) à l'aide de la formule d'Atiyah-Singer (voir aussi [B]).

Preuve du théorème 1.4. Soit Z(r) Tr(exp(-ir(P+O1)), cette distribution
sur R peut aussi s'écrire Z(t) Zk=o dke~lt(k+(ot/4). Les dk sont donc les coefficients
de Fourier de la distribution elt(€X/4)Z(t); leur comportement quand fc—»+oo est
déterminé par les singularités de Z(t) qui sont analysées dans [H] et [D-G],
rappelons en particulier que

Supp Sing (Z(0) <= {—|I g Z, / 1,...,lm
{—|
lm}

et que la théorie de la clean intersection qui s'applique ici permet de savoir la
forme précise de la singularité en ces points: si peQR) est telle que
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p(f — 2irfc) 1 et que Support (p)<= ] -2tt, 2tt[, on a: d'une part

et d'autre part, d'après [D-G],

(pZ)(O=j e-ltT(b(r)+X ]
leZ\O

où b(r) JR(r) + 0(T-1) et bUj(r) !?[>¦) +OCr1) (R étant un polynôme de la
forme voulue par 1.4 et Rf, des polynômes de degré d, — 1). On en déduit
aisément:

4 j=i 1=1

avec ek —» 0 quand k —» oo. H suffit donc de montrer que €k est nul pour k assez

grand. Comme on le verra en détail au paragraphe 2, dk dk — ek vérifie une
équation de récurrence linéaire à coefficients entiers de la forme Aod'k + A1d'k+1 +
• • • + Andk+n 0. On en déduit facilement que limite,,.^ (A0Dk + • • • + Andk+n) 0

et comme c'est un entier, il est nul pour k > fc0. On en déduit que ek satisfait pour
fc > fc0 ladite relation de récurrence, ce qui n'est possible que si €k 0 pour k > fc0.

en effet, les racines de l'équation caractéristique de cette récurrence sont de

module 1. On a ainsi prouvé le théorème 1.4.

Il est intéressant de préciser la forme des polynômes R, Rhl sur des exemples:
Exemple 1.5. Le cas des espaces symétriques compacts de rang 1 simplement

connexes.

Ces exemples vérifient la propriété (SC), et on peut donner un procédé de
fabrication uniforme des polynômes R : R est de la forme

avec

et Hi est le polynôme de degré / défini par:
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/ est déterminé par la condition

On verra plus bas que

vol (X)_7 " vol (Sd)'

Rappelons dans un tableau les valeurs de d, a, j et des valeurs propres À2 du

laplacien pour ces espaces:

X

sn

PnC

PnH

P2Ca

d

n

2n

An

16

a

2n

An + 2

22

A?

fc(fc + n-l)
k(k + n)

i

1

2n-l!

4n-l!
2n-l!2n4-l!

39

On peut remarquer que ces polynômes R possède plusieurs propriétés
remarquables, notamment celle d'avoir tous leurs zéros dans Z/2, et celle d'être
de la parité de d +1. De plus, sur ces exemples, R est entièrement déterminé par
d et a et donc / aussi.

Exemple 1.6. L'espace lenticulaire S0(3)/Z2.

Pour cet espace muni de la métrique canonique qui donne aux géodésiques la

période 2tt (sauf une de période tt) on a d 3 et a 2, les valeurs propres du
laplacien sont de la forme fc(fc-fl) et la multipli-cité dk vaut dk

((2fc + l)2 + (-l)k).
Exemple 1.7. Un opérateur P sur S2 tel que P2 n'est pas un opérateur

ifférentieldifférentiel.

Soit

où Ao est le laplacien canonique sur S2 et (d/dB) le champ de vecteur des rotations
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infinitésimales autour de Oz. Toutes les bicaractéristiques sont 2tt-périodique,
sauf une qui se projette sur l'équateur et a la période 2tt/3. On a d 2 et a — 4,
les valeurs propres sont de la forme fc +1, k >0 et on a:

[2kl 2 1

y J +1 j(fe +1) + "k avec u3k - -u3k+1 et u3k+2 0.

Le cas où P2 est un opérateur différentiel. Dans ce case, on va prouver que la

propriété de parité du polynôme R est toujours satisfaite. La preuve utilise la
propriété de transmission telle qu'elle a été introduite par Boutet de Monvel et
étudiée en liaison avec la théorie des opérateurs intégraux de Fourier par
Hirschowitz et Piriou ([H-P]).

THÉORÈME 1.8. Si P2 est un opéateur différentiel, le polynôme R a la parité
ded + l.

Ce théorème se décompose en deux propositions:

PROPOSITION 1.9. Si P2 est un OPD de transmission (en particulier, si c'est
un opérateur différentiel), VOPD P21 P2+Q (P1 + Q)2 (cf. th. 1.1) est aussi de

transmission.

PROPOSITION 1.10. Si P\ est de transmission, la singularité à Vorigine de

Tr(e~ltPi) Zx(t) est telle que pour peC%, à support assez voisin de 0, on ait:
t) J e-ltTb(r) dr avec b(r) bxrd~x 4- b3rd~3 + b5Td"5 +

La proposition 1.10 est prouvée dans [D-G] sous l'hypothèse que P\ est un
opérateur différentiel, mais l'hypothèse qui intervient dans la démonstration est

que P2 est de transmission.
Preuve de la proposition 1.9. Il suffit de prouver que Q est de transmission,

c'est-à-dire que rQ Q, où t désigne la transformation qui au symbole
ir=o ûm-,(x, y, I) associe le symbole - l)mI7=o ~ 1)^-, (*, y, €)> La
démonstration se décompose en plusieurs lemmes:

LEMME 1.11. Les seules transmisssions globales sur les OPD sur une variété

connexe de dimension d > 2 sont +t et —t.

Cela résulte aisément du corollaire 1.19 de [H-P]: ici A N*(A)\0, où A est la
diagonale deXxX, est une variété connexe; les seules fonctions antisymétriques
localement constantes de A dans R/4Z sont constantes et donc égales à 0 et +2.
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LEMME 1.12. Q est caractérisé (modulo régularisant) par les propriétés:
cos47rVP2+Q ±Id, [P, Q] 0 et Q est un OPD d'ordre 0.

En effet, si (À2, <pn) est la décomposition spectrale de P2 et que l'on pose
Q<Pn l*n<Pn, M'n est bornée et cos 4ttVà2 + jl^ ±1 et donc À2 + jbin

(fc'/4)2(fc'eZ) et comme \îeIK, on voit que pour n assez grand i±n

(fcn+(a/4))2-Àn.

LEMME 1.13. cos4WP2 + TQ ±Id.

En effet, soit EQ le noyau de cos t\/P2 + Q, caractérisé par:

yQEQ Id

où 70= \ t=0 et y\ =d/dt \t=0. Soit <a la transmission introduite dans la proposition

9.5 de [H-P], on a EtO ±û>Eo, en effet: (d2 + P2 + rO)coE0

t °<D(d2 + P2 + Q)EQ 0 (théorème 5-6 de [H-P])yoû>Eq =($ °ù))y0Eo ±Idoù0
est la transmission telle que 0yo y0; en effet d°a) ±r d'après le lemme 1.11 et

r Id Id,

yxioEQ (So^y^Q 0.

On a maintenant si JR41T est l'opérateur de restriction à t 4rr,
cos 4ttVP2 + tQ R4^ °EtO — ±R47r °<oE0 et si £ est une transmission telle que
ÇR^ R4^ on a: cos 4WP2 + tQ ± (ê°o>) Id ±Id.

On conclut alors aisément que tQ vérifie les propriétés de lemme 1.12 et donc
tQ Q: Q est de transmission.

L'indice. D'après le théorème, dk est donné pour fc>fc0 par la formule

s on pose i=YZ=odk-d'k.

PROPOSITION ET DÉFINITION 1.14. Uindice i ne dépend pas du choix de

Qp en fait il ne dépend que du symbole p de P. On appelle i Vindice de P.

Remarque 1.15. i 0 dans tous les exemples précédents.

2. Théorèmes d'intégralité

Dans le cas (SC), on a le

THÉORÈME 2.1. Sous Vhypothèse (SC), le cofficient dominant bx de R(t)
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satisfait bx(d -1)! g Z et

MM)"-»- eZ

En particulier, si a + 2d n'est pas multiple de 4, bx{d — 1)! est un entier pair.

COROLLAIRE 2.2. Dans Je cas riemannien, bt(d -1)! (2 vol (X))/(vol (Sd))

est un entier et même un entier pair si a + 2d n'est pas multiple de 4.

Remarque 2.3. A. Weinstein a prouvé dans [W2] par des méthodes

géométriques directes que (vol (X))/(vol (Sd)) est un entier.

Preuve du théorème 2.1. C'est une conséquence du lemme bien connu suivant:

LEMME 2.4. Soit (d^)^^ une suite d'entiers qui soit une fonction polynomiale
de k de degré d — 1, alors dk est une combinaison à coefficients entiers des polynômes

De ce lemme, on déduit que:

Identifiant les termes en kd~x et kd~2, il vient: bt(d -1)! Ao et

d'où l'on déduit 2.1. Le corollaire 2.2 est une conséquence générale de l'expression

de bx donnée dans [H] et [D-G]: bx (27r)~d vol{p 1}, ce qui dans le cas

riemannien se traduit par bx (27r)~d vol (S**"1) vol (X), dont on déduit 2.2.

Dans le cas où Vhypothèse (C) seule est satisfaite, il faut faire appel à un

argument un peu plus compliqué sur les suites récurrentes d'entiers pour
obtenir le:

THÉORÈME 2.5. Sous Vhypothèse (C) et avec les notations du paragraphe 1,

soit N ppcm(mf')> alors bxNCd-l)! est un entier.
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Remarque 2.6. Ce théorème est à comparer à celui de A. Weinstein ([W3])
qui, dans le cas riemannien, affirme que si N^ppcn^mf'"1) (on a toujours, N
divise Nt), alors Nt • (vol (X))/(vol (Sd)) est un entier, ce qui équivaut à dire que
biN^d — iy. est un entier pair.

Ce théorème est une conséquence de 1.4 et du:

LEMME 2.7. Soit dk R(k) + Y?=i Y^1 (o)hl)kRul(k) (où <ohl exp 27ri(i/mJ),
R polynôme de degré d — 1 et Rhl polynôme de degré dl — 1) une suite d'entiers pour
fc>fc0, alors si R(t) b1td~1 + b2td~2-l \-bd et si N ppcm(mf')> on a
Nb^d-1)1 eZ.

Preuve de 2.7. A toute relation de récurrence sur les suites (uk)ka=ko de la
forme couk + ct wk+14- • • • H- cn_x uk+n_x 0, on associe son polynôme
caractéristique B(t) co + c1t + - • • + cn_1fn~1; il est classique que les solutions de
la relation de récurrence sont de la forme uk £, (aJ)kJRJ(k) où les a} sont zéros de

B et Rj est un polynôme dont le degré jui, est égal à l'ordre du zéro a7 diminué de
1. Soit

tmj - l\ai

on a B(i) Bx(t) • • • Br(t) avec Bk(f) 1 + • • • 4- r*"1 où vk ppcm {m, | d} > k}, en

particulier B(l) ppcm (mf>). Ce polynôme à coefficients entiers est le polynôme
caractéristique d'une relation de récurrence du type précédent dont dk-R(k) est
solution: en effet les œ.i sont des zéros d'ordre d, de B; soit T(uk)
Cotye + * * * + cn-ityc+n-i cette relation, on a: T(dk)= T(R(k)) vk est une suite
d'entiers, or T(R(k)) Q(k) est un polynôme de degré d — 1 de fc dont le
coefficient dominant est T(ï)bu c'est-à-dire B(l)b1, ce qui prouve le lemme 2.7

grâce à 2.4.

3. La dispersion

Si dk est la multiplicité de fc + (a/4) comme valeur propre de P1 P+Q1, on
peut écrire les valeurs propres de P2 sous la forme Akï (fc + (a/4))24-/xkI avec

-M<fxkI<- • • <jxk5dk<M, on introduit alors les mesures /xk à support dans

[~M,-I-M] définies par *i,k ==Xfài Ô(/uikI) et on s'intéresse au comportement
asymptotique des /utk lorsque k —> +<». Cette étude a été entreprise par A.
Weinstein dans [W4] dont nous allons préciser certains résultats:

THÉORÈME 3.1. Iî existe des symboles classiques 91 et 0lul (d'ordre d-1 et
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dj — 1 respectivement) à valeurs dans les distributions à support dans [ — M, + M] de

la forme &(t)~v1td-1 + v3td~3 + v4td~4+' • • tels que, si pGQR), on ait:

f f / a\ \r f fc

|pdjLLk= pd£%(k+— 1 + 2- Pd^j lykji^ui) •
J J \ 4/ J

Preuve. Elle est très proche de celle du théorème 1.4: on introduit Zp(t)
EkM'k(p)e"lt(k+(o£/4) Tr(p(O)e-ltP0, où P2 P?+Q. Les juik(p) sont donc les

coefficients de Fourier de elt(a/4)Zp(t), il reste donc à étudier les singularités de

Zp(0; il suffit alors de savoir que p(O) est un OPD d'ordre 0 de symbole sous

principal nul: l'analyse faite de la trace de e~ltPl dans [D-G] est basée sur le fait
que le noyau de cet opérateur est un opérateur intégral de Fourier d'un certain
ordre associé à une variété lagrangienne A, ce qui reste toujours vrai après

composition avec l'OPD p(O). L'assertion relative à la nullité de v2 peut s'obtenir
en adaptant les raisonnements du paragraphe 2 de [D-G] au problème

rldu
t— + P1u=0
l dt

(0) p(Q)f.

Un problème difficile et non résolu en général est d'identifier les distributions

vu i>3, etc- • • (voir cependant la réponse pour vx dans le cas où P2 Ao+ V, Ao

laplacien pour la métrique canonique sur un espace symétrique compact de rang 1

dans [W4]; une étude plus fine de la convergence de (l/fc*1"1)^ vers vx est

entreprise dans [CV1]).

Par analogie avec le théorème 1.8, on a le:

THÉORÈME 3.2. Si P2 est de transmission (en particulier si c'est un opérateur
différentiel, on a v2=v4=--- v2k=O (VfegN).

Preuve. On a vu (proposition 1.8) que P\ et Q sont de transmission. Les vk(p)
sont tels que, au voisinage de 0,

Tr (p(O)e-ltQ0 f+ e"1* £ vk(p)rd~k dr (modulo C°°);

ce sont aussi, d'après [D-G], à des coefficients universels près, les résidus aux

points (d + l-fc)/2 du prolongement B méromorphe de la fonction £p(s)

Tr (p(Q)Pr2s). Or, d'après Seeley ([S]), si B p(Q)(P2- A)"1 (calculée au sens de
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[S]), B a un symbole b(A, x, £) Z/To fr-2-j(*> L A), et on a:

Résidu
dp

II suffit donc de vérifier que b_(k+1)(x, -g, A) (- l)k+1b_(fc+1)(x, £ A), c'est-à-dire

que B est de transmission: c'est clair pour (Pf-A)"1 d'après les formules de [S]

p.290 et d'autre part p(Q) est de transmission comme limite de polynômes de Q.

4. Relations avec le développement de Minakschisundaram-Pleijel

Rappelons ([B-G-M]) que, si P2 A (ou A+ V) est un opérateur différentiel,
la fonction Z(t) £n=o e~tK* admet quand t -> 0+ un développement asymptotique
de la forme:

dont les coefficients a0, al9 a2 et même a3 ont été calculés.

Etudions d'abord le cas de S2

Soit g une (SC) métrique sur S2, on sait ([BE]) que a 2, vol (S2, g) 4ir et
donc dk 2fc + l pour fc>fc0. On note i l'indice de ce spectre et AkI
fc(fc 4-1) + fik i, l 1,..., dk les valeurs propres du laplacien. On a donc:

£ vu Cl(2fc +1) + c3(2k +1)-1 + O(fc"3)

f
1=1

où q Jf dv, et /, Jf2 dv,. D'autre part, on a le développement asymptotique de

Z(t): Ie~tX^=(47rO"1(vol X+|Jrt)g + - • •) où t est la courbure scalaire;
utilisant la formule de Gauss Bonnet, il vient:
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On a donc:

+00 dk

2, e L e tfA|cl

k=0 1=1

+00

+ 2L ^ (2k H-1
k=0

Donc, si Zo(0 I(2k +

+00

k=O

On a donc:

Z(0 Zo(0d-te1)4

D'où l'on déduit:

+00

1
k=0

¦i + c3

I2k + l

:(k+ l

+ 1)

Ho,

2

^t Wo(0 E(2k + ir1c-k(k+1),

t1 t2

It + O(t).

i-Bc1 0 et c3 0.

THÉORÈME 4.1. Sous les hypothèse précédentes,

En particulier dans le cas d'une métrique obtenue par déformation de la métrique
canonique g0, on obtient

j-I »*w O(k-4)
"kl l

(résultat conjecturé par Chachère ([CH])).

Dans /e cas général, la même méthode conduit à un résultat dans le cas de
déformations de métriques vérifiant (C):

THÉORÈME 4.2. Soit g(t) une famille de métriques riemanniennes à

géodésiques 2tt-périodiques sur une variété X de dimension d>2, on sait que
vol (X, g(0) est indépendant de t, soit a^t) le coefficient de développement de
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Minakschisundaram-Pleijel pour la métrique g(t) et c1(t) itdvl pour la métrique
g(0, on a: a^t)+vol (X, g(0))xct(t) constante.
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