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Comment. Math. Helvetici 54 (1979) 508-522 Birkhiduser Verlag, Basel

Sur le spectre des opérateurs elliptiques a bicaractéristiques toutes
periodiques

YVES COLIN DE VERDIERE

Introduction

Dans cet article, nous détaillons les démonstrations et résultats annoncés dans
[CV2]. Rappelons de quoi il s’agit: X est une variété C~ compacte de dimension
d munie d’une densité C* dx; P est un opérateur pseudo-différentiel (OPD en
abrégé) elliptique autoadjoint positif d’ordre 1 opérant sur les fonctions sur X. On
note pe C*(T*X\0, R"\0) le symbole principal de P et on suppose que le
symbole sous-principal de P est nul. Soit H, le gradient symplectique de p par
rapport a la structure symplectique canonique de T*X\0, I’hypothése principale
notée (C) est que les trajectoires du flot de H, (les bicaractéristiques) sont 2
périodiques: ¢,,. =1d; si 27 est la plus petite période de chaque bicaractéristique,
on dira que P vérifie I’hypothese (SC). L’opérateur P admet un spectre discret
Ag=A;=':-=),=..., chaque valeur propre étant répétée un nombre de fois
égal a sa multiplicité; on notera (¢,),.n une base orthonormée de fonctions
propres (Po, = A,¢,) de L?(X, dx). Duistermaat et Guillemin ([D-G)] ont obtenu
une information trés inteéressante sur ce spectre qui a été précisée dans certains
cas par Weinstein ([W1]): si on note a (entier) 'indice de Maslov commun 2
toutes ces bicaractéristiques 27r-périodiques, les valeurs propres A, s’accumulent
autour de la progression arithmétique k +(a/4)(k € N). Avant de préciser les
résultats obtenus dans notre article, donnons quelques exemples de la situation
décrite plus haut.

Exemple 1. X est une variété riemannienne a géodésiques toutes 27r-
périodiques, dx est ’élément de volume riemannien et P=A"? ol A est le
laplacien associé a la métrique de X. Pour une étude détaillée de ces variétés, on
pourra consulter le livre [BE]. Comme exemples, signalons les espaces
symétriques compacts de rang 1 munis de leur métrique canonique, les quotients
de tels espaces par un groupe fini d’isométries (espaces lenticulaires); enfin, sur les
spheéres, on sait construire des métriques non canoniques ayant cette propriété
(surfaces de Zoll).

Exemple 2. X est comme dans I’exemple 1, V est une fonction C* réelle sur X
et ceR tel que V+c¢>0 partout; on pose alors P=(4+ V+c)/2 Les valeurs
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propres de P sont alors reliées simplement a celles de 'opérateur de Schrodinger
H=A+V (cf. [CV 1] et [W4]).

Décrivons maintenant le contenu de I’article: dans le paragraphe 1, on précise
le résultat de Duistermaat et Guillemin de la fagon suivante: il existe un M >0 tel
que si

I = [(k +%)2—M, (k +f4"->2+M],

alors Spectre (P%)< Uy_o I.; on peut alors définir la multiplicité approchée par
d, = Cardinal {n|A2e L.} et le résultat principal est une description du comporte-
ment de la suite d, : par exemple, sous I’hypothese (SC), il existe ke N tel que,
pour k=k,, d. est une fonction polyndmiale de k. On donne ensuite quelques
exemples et propriétés de ces polyndmes lorsque P? est un opérateur différentiel.

Dans le paragraphe 2, on montre comment les résultats sur la multiplicité
permet de trouver certains théorémes géométriques d’intégralité trés proches de
ceux de Weinstein ((W2] et [W3]).

Dans le paragraphe 3, on étudie la dispersion des A2 autour des valeurs
(k + (a/4)?; supposant qu’on ait écrit toutes les valeurs propres de P? sous la
forme AL=(k+(a/4))*+m, avec 1=l=d, et —~M=p  =<---<p. 4 <=M, on
s’intéresse aux mesures . =24, 8(u;) et a leur répartition limite lorsque
k — +o, on précise ainsi certains résultats de [W4].

Enfin dans le paragraphe 4, on étudie les relations entre les résultats
précédents et le développement asymptotique de Minakschisundaram-Pleijel pour
Z)=Y 2,e ™% lorsque t— 0. Cela donne entre autres une preuve d’une
conjecture due a Chachere ((CH]) sur la valeur moyenne des w, lorsque k — +o
dans le cas d’'une métrique de Zoll sur S°.

Remarque. Tous les opérateurs pseudo-différentiels (OPD) et opérateurs
intégraux de Fourier considérés dans cet article sont classiques.

Remerciements. Je tiens a remercier A. Hirschowitz pour des discussions sur la
propriété de transmission ainsi que pour la preuve de la proposition 1.9.; je
remercie aussi le referee qui m’ a signalé facon plus €élémentaire de finir la
preuve du théoréme 1.4 et une incorrection dans I’énoncé 3.1.

1. Les multiplicités

On étudie le spectre de 'opérateur P en le perturbant de fagon a obtenir un
opérateur ayant pour spectre une progression arithmétique, plus précisément, on
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ale

THEOREME 1.1. Il existe un OPD Q, d’ordre —1 avant mémes fonctions
propres que P (et donc commutant avec P), unique a opérateur régularisant de rang
fini prés tel que Spectre (P+ Q,) < {k + (a/4)|k € N} ot @ € N est I’indice de Maslov
commun aux bicaractéristiques 2 -périodiques de P.

COROLLAIRE 1.2. Il existe M >0 tel que, si

I = [(k +§)2—M, (k +—§)2+M]

alors Spectre (P*) < U2, I, (comparer avec [D-G] et [W1])

Ces résultats ont été prouvés indépendamment par Weinstein ((W4]) et par V.
Guillemin ((G2]).

Preuve du corollaire 1.2. On a P>=(P+ Q,)*— Q ou Q est un OPD d’ordre 0,
donc borné dans L?(X, dx). Soit M la norme de cet opérateur; désignons par
Po=p=-:-=m,=--- les valeurs propres de (P+Q,)?* on a: w,—-M=A, =<
., + M d’apreés la caractérisation variationnelle de la n-ieme valeur propre d’un
opérateur autoadjoint (minimax). On en déduit aisément 1.2.

Preuve du théoreme 1.1. D’apres [D-G], on a:

exp (— 2m'(P—§)) =1d+C,

ou C est un OPD d’ordre —1, de plus Cop, = c,¢, avec

C, =€xp (—-2711(/\,1 —g)) -1

comme C est un opéateur compact, ¢, = 0 quand n — +. Soit n, tel que, si
n =n,, on ait |c,| <3, on définit un opéateur Q, par

1
QZ(pn = 2 . I-Dg (1 + Cn)(pna
m

ou l'on prend une détermination quelconque de Log pour n<n, et la



Sur le spectre des opérateurs elliptiques 511

détermination principale pour n=n,. Alors si C=C,+C, avec

C - CnPn pour n< No,
1% =0 pour n=n,,

on a Q,=2imw Log (Id + C,)+2iwLog (Id + C,),

le premier opérateur étant régularisant de rang fini; le second étant un OPD
d’ordre —1 car défini par la série

oo Cn
- -1 n+1>-2
2i1r,§1 (=1 n

qui converge normalement et au sens des OPD. Donc Q, est un OPD d’ordre —1
et il est clair que

exp (—2i7r(P+ Qz——Z—)) =1d

et donc
Spectre (P+Q,) < {k +%Ik € Z}.

Comme le symbole principal p de P+ Q, est>0, il n’y qu'un nombre fini de
valeurs propres k +(a/4) telles que k <0: remplacer celles-ci par a/4, revient &
modifier Q, par un opérateur régularisant de rang fini, pour obtenir un opérateur
Q, satisfaisant les propriétés requises. L’unicité est évidente: si Q, et Qj sont
deux tels opérateurs, le spectre de Q;— Q; est formé d’entiers et comme cet
opérateur est compact, il n’a qu’un nombre fini de valeurs propres non nulles.

Pour étudier les multiplicités, on définit d, comme étant la multiplicité de
k + (a/4) comme valeur propre de P+ Q;; pour k assez grand, on a évidemment
aussi d, =Cardinal {Spectre (P?)NI}; d. n’est pas trés bien défini & cause de
I’ambiguité sur Q,, mais est bien défini comme germe au voisinage de l'infini;
d’autre part, si Q, et Q} sont comme plus haut, on a: Y=, (d, —d}) =0 (a cause
du minimax).

Avant d’énoncer le résultat fondamental de ce paragraphe, on doit faire
quelques remarques géométriques. Si p vérifie la condition (C) il peut y avoir des
bicaractéristiques ayant comme périodes (2n/m;), (m;e N, m;=2),j=1,2,...,N.

PROPOSITION 1.3. L’ensemble des points de T*X\0 ayant (2w/m;) comme
période sous I’actrion du flot ¢, de H, est une sous-variété conique W, de T*X\0 de
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dimension paire 2d;. Les W, sont des variétés de points fixes “clean” (au sens de
[D-GY]) pour I’action de 27zq/mj(qu).

En effet, comme ¢,,,,=¢,le flot ¢, définit une action C* de R/2%Z sur la
variété compacte Z = p~'({1}). Les W, correspondent 4 la stratification de Z suivant
les types d’orbites de cette action. La parité de la dimension est une conséquence
facile du fait que le sous-espace invariant par un sous-groupe compact du groupe
symplectique réel est de dimension paire, car a conjugaison pres, il s’agit d’un
sous-groupe du groupe unitaire.

On peut maintenant énoncer le

THEOREME 1.4. Il -existe un polyndome R(t) de la forme R(t)=
bt? '+ dstt P+ byt + - - - + b, et un entier k,, tel que pour k =k, on ait:

« N
dk = R(k +"‘>+ Z u,-,k

ou les suites u;, sont de la forme u,, =Y 727" (w;,)“R;,(k) avec

l
;| =€Xp (27ri-}-;)

1

et R;; polynéme de degré d;,—1; en particulier sous I’hypothése (SC), d, =
R(k +a/4).

Remarque. Le polyndme R vient d’€tre calculé par Boutet de Monvel et
Guillemin ([B-G]) a I’'aide de la formule d’Atiyah-Singer (voir aussi [B]).

Preuve du théoreme 1.4. Soit Z(t)=Tr(exp (—it(P+ Q,)), cette distribution
sur R peut aussi s’écrire Z(t) =Yr=, die " ¥ Les d, sont donc les coefficients
de Fourier de la distribution e*“?Z(t); leur comportement quand k — + est
déterminé par les singularités de Z(t) qui sont analysées dans [H] et [D-G],
rappelons en particulier que

Supp Sing (Z(t)) {%"—ﬁl eZij=1,..., N}
i

et que la théorie de la clean intersection qui s’applique ici permet de savoir la
forme précise de la singularité en ces points: si pe C5(R) est telle que
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Yrez p(t—2mk) =1 et que Support (p)< ] —2, 27[, on a: d’une part

dk =_1_J (pZ)(t)eit(k+(a/4) dt
277 R

et d’autre part, d’aprés [D-G],

(pZ)(t) = J e " (b(r)+ i Y, e mUmp (7)) dr

j=11€Z\0

o b(r)=R(7)+0(r7") et b ;(7)=R}(7)+0(v"") (R étant un polynéme de la
forme voulue par 1.4 et Rj; des polynOmes de degré d;—1). On en déduit
aisément:

d, =R(k +%\)+ Y Z ()R (k) + &

i=1 1l=1

avec ¢ — 0 quand k — oo. Il suffit donc de montrer que ¢, est nul pour k assez
grand. Comme on le verra en détail au paragraphe 2, dj=d, — €, vérifie une
équation de récurrence linéaire a coefficients entiers de la forme A,dj+ A d} .1+
-+ 4+ A,dL.,.=0.0nendéduit facilement que limite, _,.. (AoDy + - - - + A, di 1) =0
et comme c’est un entier, il est nul pour k = k,. On en déduit que ¢, satisfait pour
k = k, ladite relation de récurrence, ce qui n’est possible que si €, =0 pour k =k,
en effet, les racines de I’équation caractéristique de cette récurrence sont de
module 1. On a ainsi prouvé le théoréme 1.4.

Il est intéressant de préciser la forme des polyndmes R, R;, sur des exemples:

Exemple 1.5. Le cas des espaces symétriques compacts de rang 1 simplement
connexes.

Ces exemples vérifient la propriété (SC), et on peut donner un procédé de
fabrication uniforme des polyndmes R: R est de la forme

2j
(d-1)!

R(t)= tH, (OH, () avec L+lL,=d—2, 11=-§—1

et H, est le polynOme de degré | défini par:

H,(1)= (t“%'l)(t—L—;—%) . (t+-l——;——1-);
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j est déterminé par la condition

On verra plus bas que

. vol(X)

RS TCOY

Rappelons dans un tableau les valeurs de d, a, j et des valeurs propres A2 du
laplacien pour ces espaces:

X d a A? i

sn f 2n—1) k(k+n—1) 1
2n—11

prC 2n 2n k(k +n) n
nin—11
4n-1!

P"H 4 4n+2 k(k+2n+1 o

" " (k+2n+1) ot
P2Ca 16 22 k(k+11) 39

On peut remarquer que ces polyndmes R possede plusieurs propriétés
remarquables, notamment celle d’avoir tous leurs zéros dans Z/2, et celle d’étre
de la parité de d + 1. De plus, sur ces exemples, R est entierement déterminé par
d et a et donc j aussi.

Exemple 1.6. L’espace lenticulaire SO(3)/Z,.

Pour cet espace muni de la métrique canonique qui donne aux géodésiques la
période 27 (sauf une de période 7) on a d =3 et a =2, les valeurs propres du
laplacien sont de la forme k(k+1) et la multipli-cit¢é d, vaut d, =
H(2k+1)*+(—1)).

Exemple 1.7. Un opérateur P sur S? tel que P? n’est pas un opérateur
différentiel.

Soit

, 1 19

ou 4, est le laplacien canonique sur S2 et (3/06) le champ de vecteur des rotations
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infinitésimales autour de Oz. Toutes les bicaractéristiques sont 2-périodique,
sauf une qui se projette sur ’équateur et a la période 27/3. Ona d=2 et a =4,
les valeurs propres sont de la forme k+1, k=0 et on a:

2k 1
dk [ 3 :|+1'——'(k+l)+uk aveC Uz =§=_u3k+1 et u3k+2=0.

Le cas ou P? est un opérateur différentiel. Dans ce case, on va prouver que la
propriété de parité du polynome R est toujours satisfaite. La preuve utilise la
propriété de transmission telle qu’elle a été introduite par Boutet de Monvel et
étudiée en liaison avec la théorie des opérateurs intégraux de Fourier par
Hirschowitz et Piriou ((H-P]).

THEOREME 1.8. Si P? est un opéateur différentiel, le polynéme R a la parité
de d+1.

Ce théoréme se décompose en deux propositions:

PROPOSITION 1.9. Si P? est un OPD de transmission (en particulier, si c’est
un opérateur différentiel), ’OPD P;= P>+ Q =(P,;+ Q) (cf. th. 1.1) est aussi de
transmission.

PROPOSITION 1.10. Si P3 est de transmission, la singularité a 1’origine de
Tr(e ™) = Z,(t) est telle que pour pe Cq, a support assez voisin de 0, on ait:
(pZ)(t)=[ e *"b(7) dT avec b(1)=b7* '+ byr? 2+ bsr? 5+ - - -

La proposition 1.10 est prouvée dans [D-G] sous I’hypothése que P% est un
opérateur différentiel, mais I’hypotheése qui intervient dans la démonstration est
que P3 est de transmission.

Preuve de la proposition 1.9. 11 suffit de prouver que Q est de transmission,
c’est-a-dire que 7Q=Q, ou 7 désigne la transformation qui au symbole
Y0 am_i(x,y, &) associe le symbole (—1)"Y7,(—1Va,_;(x,y,&. La
démonstration se décompose en plusieurs lemmes:

LEMME 1.11. Les seules transmisssions globales sur les OPD sur une variété
connexe de dimension d =2 sont +1 et —7.

Cela résulte aisément du corollaire 1.19 de [H-P]: ici A= N*(A)\0, ou A est la
diagonale de X X X, est une variété connexe; les seules fonctions antisymétriques

localement constantes de A dans R/4Z sont constantes et donc égales a 0 et +2.
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LEMME 1.12. Q est caractéris¢é (modulo régularisant) par les propriétés:
cos 47vVP*+ Q==Id, [P, Q]=0 et Q est un OPD d’ordre 0.

En effet, si (A2, ¢,) est la décomposition spectrale de P? et que 1’on pose
Qo¢, = Wn®n, M, €st bornée et cosd4mvAi+pu,=+x1 et donc AZ+p,=
(k'/14)*(k'e Z) et comme A2el,, on voit que pour n assez grand p,=

(ky +(/4))* — A,
LEMME 1.13. cos 47rvP?+7Q = +Id.

En effet, soit E, le noyau de cos tv P>+ Q, caractérisé par:

(2+P*+Q)E,=0
YoEo =1d
Y1Eq =0

ol yo= | ,—0€t Y1=9/dt |,_,. Soit w la transmission introduite dans la proposi-
tion 9.5 de [H-P], on a E,=xwE, en effet: (87+P>*+1Q)wE, =
7o w(0?+ P>+ Q)Eg = 0(théoréme 5-6 de [H—P]) yowEg = (0 °c w)y,Eq = £Idou @
est la transmission telle que 0y, = vy,; en effet Oow =+7 d’apres le lemme 1.11 et
7 Id=1d,

v10Eqg = (6°w)y,Eq =0.

On a maintenant si R,, est l'opérateur de restriction a =4,
cos 4mVP*+1Q=R,,.°E,o =+R,,.°wE, et si ¢ est une transmission telle que
éR,.=R,,., on a: cos 4mvVP*+71Q = = (éow) Id = £1d.

On conclut alors aisément que 7Q vérifie les propriétés de lemme 1.12 et donc
7Q = Q: Q est de transmission. '

L’indice. D’apres le théoréme, d, est donné pour k=k, par la formule
d.=R(k+(a/4)+---; on pose i =)r_, d —dL.

PROPOSITION ET DEFINITION 1.14. L’indice i ne dépend pas du choix de
Q,, en fait il ne dépend que du symbole p de P. On appelle i I’indice de P.

Remarque 1.15. i =0 dans tous les exemples précédents.
2. Théorémes d’integralité
Dans le cas (SC), on a le

THEOREME 2.1. Sous ’hypothése (SC), le cofficient dominant b, de R(t)
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satisfait b;(d—1)! e Z et

b,(%+g)(d—1)!ez

En particulier, si a+2d n’est pas multiple de 4, b,(d—1)! est un entier pair.
COROLLAIRE 2.2. Dans le cas riemannien, b,(d —1)! = (2 vol (X))/(vol (S,))

est un entier et méme un entier pair si a+2d n’est pas multiple de 4.

Remarque 2.3. A. Weinstein a prouvé dans [W2] par des méthodes
géométriques directes que (vol (X))/(vol (S,)) est un entier.

Preuve du théoreme 2.1. C’est une conséquence du lemme bien connu suivant:
LEMME 2.4. Soit (di )=, une suite d’entiers qui soit une fonction polynomiale
de k de degré d — 1, alors d, est une combinaison a coefficients entiers des polynomes

k(k—1)---(k—j+1)

Uj (k)= ,
]:

avec 0=j=d-—1.
De ce lemme, on déduit que:
a d—1 o d—-3
bu(k+5) +ba(k+5) = AU+ AU E)

Identifiant les termes en k%! et k%72, il vient: b,(d—1)! = A, et

d’ol I'on déduit 2.1. Le corollaire 2.2 est une conséquence générale de ’expres-
sion de b, donnée dans [H] et [D-G]: b, =(2%) ¢ vol {p =1}, ce qui dans le cas
riemannien se traduit par b; =(27)™® vol (§¢7!) vol (X), dont on déduit 2.2.

Dans le cas ou I’hypothése (C) seule est satisfaite, il faut faire appel a un
argument un peu plus compliqué sur les suites récurrentes d’entiers pour
obtenir le:

THEOREME 2.5. Sous I’hypothése (C) et avec les notations du paragraphe 1,
soit N =ppem(m$h), alors b;N(d—1)! est un entier.
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Remarque 2.6. Ce théoréme est a comparer a celui de A. Weinstein ([W3])
qui, dans le cas riemannien, affirme que si N; =ppcm(m{i~"') (on a toujours, N
divise N,), alors N, - (vol (X))/(vol (§%)) est un entier, ce qui équivaut a dire que
b,N,(d—1)! est un entier pair.

Ce théoreme est une conséquence de 1.4 et du:

LEMME 2.7. Soit di = R(k)+Y1L; Y77 (@) R, (k) (ot w;; = exp 2mi(lm,),
R polynome de degré d — 1 et R;; polynome de degré d; — 1) une suite d’entiers pour
k=ky, alors si R(t)=bt* "+byt*>+---+b;, et si N=ppem(m{), on a
Nb,(d—1)'eZ.

Preuve de 2.7. A toute relation de récurrence sur les suites (u ).~ de la
forme cou +citirtFHCUim1=0, on associe son polyndme
caractéristique B(t) =co+c t+- - -+c,_1t""; il est classique que les solutions de
la relation de récurrence sont de la forme u, =Y, (o;)*R;(k) ou les a; sont zéros de

B et R; est un polyndme dont le degré w; est égal a I’ordre du zéro «; diminué de
1. Soit

tmx‘ —1\4,
B =ppem (“—)’,
on a B(t)=B(t) - - - B,(t) avec B, (t)=1+---+t*"' ot v, =ppem {m,|d;, =k}, en
particulier B(1)=ppcm (m$). Ce polyndme a coefficients entiers est le polyndme
caractéristique d’une relation de récurrence du type précédent dont d, — R(k) est
solution: en effet les w;; sont des zéros d’ordre d; de B; soit T(w)=
Cole ++ * *+Cp_q1Up+n_y cette relation, on a: T(dy)= T(R(k))=v, est une suite
d’entiers, or T(R(k))= Q(k) est un polyndme de degré d—1 de k dont le
coefficient dominant est T(1)b,, c’est-a-dire B(1)b,, ce qui prouve le lemme 2.7
grice a 2.4.

3. La dispersion

Si di. est la multiplicité de k +(a/4) comme valeur propre de P,=P+ Q,, on
peut écrire les valeurs propres de P? sous la forme A%, = (k +(a/4))*+ py, avec
M=, =<---=wq4 =M, on introduit alors les mesures w, a support dans
[—M,+M] définies par w, =Yix, 8(uy,;) et on s’intéresse au comportement
asymptotique des u, lorsque k — +wo. Cette étude a été entreprise par A.
Weinstein dans [W4] dont nous allons préciser certains résultats:

THEOREME 3.1. Il existe des symboles classiques R et R;, (d’ordre d—1 et
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d; — 1 respectivement) a valeurs dans les distributions a support dans [ —M,+ M] de
la forme R(t)~ vt '+ vt P+ vt 7+ - - tels que, si pe C5(R), on ait:

IP dw, = IP d%(k +§) +2 J’P AR (k) (w;0)".

Preuve. Elle est tres proche de celle du théoréeme 1.4: on introduit Z,(t) =
Y i (p)e T ETAD =Tr (p(Q)e ™), ot P>’=P?+Q. Les w.(p) sont donc les
coefficients de Fourier de e*“*Z (), il reste donc & étudier les singularités de
Z,(t); il suffit alors de savoir que p(Q) est un OPD d’ordre 0 de symbole sous

principal nul: I’analyse faite de la trace de e *** dans [D-G] est basée sur le fait
que le noyau de cet opérateur est un opérateur intégral de Fourier d’un certain

ordre associé a une variété lagrangienne A, ce qui reste toujours vrai apres
composition avec I’OPD p(Q). L’assertion relative a la nullité de »-, peut s’obtenir
en adaptant les raisonnements du paragraphe 2 de [D-G] au probleme

10t

u(0) = p(Q)f.

Un probleme difficile et non résolu en général est d’identifier les distributions
vy, V3, €tc- - - (voir cependant la réponse pour v, dans le cas ou P>=A,+V, A,
laplacien pour la métrique canonique sur un espace symétrique compact de rang 1
dans [W4]; une étude plus fine de la convergence de (1/k ")u, vers v, est
entreprise dans [CV1]).

Par analogie avec le théoreme 1.8, on a le:

THEOREME 3.2. Si P? est de transmission (en particulier si ¢’est un opérateur
différentiel, on a v,=v,=---=v,, =0 (VkeN).

Preuve. On a vu (proposition 1.8) que P37 et Q sont de transmission. Les v, (p)
sont tels que, au voisinage de 0,

o

Tr (p(Q)e %) = L e Y y.(p)r* dr (modulo C*);

k=1

ce sont aussi, d’aprés [D-G], a des coeflicients universels pres, les résidus aux
points (d+1—k)/2 du prolongement B méromorphe de la fonction ¢, (s)=
Tr (p(Q)P7%). Or, d’apres Seeley ([S]), si B =p(Q)(P;—\)! (calculée au sens de
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[S]), B a un symbole b(A, x, &)=}, b_, ;(x,{,A), et on a:

d—k+1
2

dx dé¢
dp ~

Résidu ({,,, )‘_' CJ J; A@TITORh (X, & A) dA -
r Jp=1

I1 suffit donc de vérifier que b_y . 1y(x, =& A) = (—1)* 'b_g1y(x, & A), Cest-a-dire
que B est de transmission: c’est clair pour (P;—A)~" d’aprés les formules de [S]
p.290 et d’autre part p(Q) est de transmission comme limite de polyndmes de Q.

4. Relations avec le developpement de Minakschisundaram-Pleijel

Rappelons ((B-G-M)) que, si P>=A (ou A+ V) est un opérateur différentiel,
la fonction Z(t) = Y2, e < admet quand t — 0* un développement asymptotique
de la forme:

Z(t)=4mt) ?*(ap+at+a,t>+- - +),

dont les coefficients a,, a,, a, et méme a; ont été calculés.

Etudions d’abord le cas de S*

Soit g une (SC) métrique sur S?, on sait ((BE]) que a =2, vol (S?, g) =4 et
donc d,=2k+1 pour k=k, On note i l'indice de ce spectre et A;,=
k(k+1)+wm, I=1,...,d les valeurs propres du laplacien. On a donc:

2k+1

Y =ik +1)+c;2k+1) 1+ Ok )
=1

2k+1

Y wii=fik+1)+£2k+1) 1+ Ok ™)

=1
ou ¢ = [tdy; et f; = [t*> dv;. D’autre part, on a le développement asymptotique de

Z(t): Ye *'=(4mt)'(vol X+ifrv,+---) ou T est la courbure scalaire;
utilisant la formule de Gauss Bonnet, il vient:

1
) e“"‘ilzt‘1+§+a2t+- ‘-
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On a donc:
o0 dk +-co dk
Z e—tk(k+1)z e M = Z Z e tkk+Dri, )
k=0 =1 k=0 2k-+1

2
+ ) e DRk +1—1) +£2— PRTAREED)

k=0

Dong, si Zy(t) =Y 2k +1)e ***D et Wo(t1)=Y 2k +1)7! e7k&+D,

“+o0 t2 tz
Z(t)=Zt)+ Y. (d —(2k +1))— tCIZO+5f1Z0— tc3W0+5f3W0+- -9).

k=0
On a donc:
Z(t)=Zy(t)(1—tc,)+i+cstlogt+ O(1).
D’ou I'on déduit:
i—Bc;=0 et c¢;=0.

THEOREME 4.1. Sous les hypothese précédentes,

2k+1

Y e =Qk+1)i+O0k™).
1=1

En particulier dans le cas d’une métrique obtenue par déformation de la métrique
canonique g,, on obtient

1 &%
=L i =0(k™)
kl=1

(résultat conjecturé par Chachére ([CHJ)).

Dans le cas général, la méme méthode conduit & un résultat dans le cas de
déformations de métriques vérifiant (C):

THEOREME 4.2. Soit g(t) une famille de métriques riemanniennes a
géodésiques 2ir-périodiques sur une variété X de dimension d>2, on sait que
vol (X, g(t)) est indépendant de t, soit a,(t) le coefficient de développement de
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Minakschisundaram-Pleijel pour la métrique g(t) et c,(t)={t dv, pour la métrique
g(t), on a: a,(t)+vol (X, g(0)) X ¢,(t) = constante.
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