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Extremal eigenvalue problems defined on conformai classes of
compact Riemannian manifolds

SHMUEL FRffiDLAND

1. Introduction

The aim of this paper is to extend our récent results on eigenvalue problems
for certain classes of membranes [3] to conformai classes of compact Riemannian
manifolds. We refer to [1] for the définitions and properties of Riemannian
manifolds needed hère. Let M be a compact smooth (C°°) n-dimensional man-
ifold. We shall assume that n >2. Dénote by x (x\ xn) the points of M, by
dV the volume élément and by G(x) (&,(*))? the metrie matrix. Consider a new
metric on M given by the matrix G (glJ(x))?. Assume that this metric is

conformai to the given metricî That is

&,(*) <P2(*)&,(x), î, j 1,..., n. (1.1)

Assume first that q> is a positive smooth function. Dénote by Â the corres-
ponding Laplacian to the matric G. Consider the eigenvalue problem.

0. (1.2)

Dénote by

••• (1.3)

the corresponding eigenvalues of A. The eigenvalues /mk(<p), fc 0, 1, are
characterized by the min-max principle applied to the Rayleigh ratio

d-4)

Hère G 1 (glj)ï. Using this characterization one can define {fik(ç)}o for any
non-negative bounded measurable function <p. The précise définition of fxk(<p) is
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given in the next section. Dénote by C the following set of functions

0^m(£)<<p(|)<M(£) (1.5)

i<pndV=W, (1.6)

where m and M are bounded measurable function. The corresponding set of
Riemannian manifolds has an obvious géométrie meaning. To see this meaning let
us consider the case where m and M are positive and constant and <p is a smooth
function. Then the condition (1.5) states that the metrics G and G are équivalent.
That is

md(x, y)^d(x, y)<Md(x, y), (1.7)

where d(x, y) and d(x, y) are the distances between the points x and y according
to the metrics G and G respectively. The condition (1.6) means that the manifold
M has a fixed volume W.

By C* we dénote the set of functions <p which belong to C and satisfy the
condition

(M(£)- <p(f))(<?(£)- m(f)) 0 (1.8)

almost everywhere. A set of corresponding Riemannian manifolds to C* is a set
of non-smooth conformai manifolds to M which hâve almost everywhere either
the minimal or the maximal distortion and a fixed volume W. The main resuit of
this paper is

THEOREM 1. Let M be a compact smooth manifold of dimension n>2. Let
C and C* be nonempty sets of functions defined by the conditions (1.5), (1.6) and
(1.8), (1.6) respectively. Let F(£l5..., £p) be a continuous function on R+ in-
creasing with respect to each of its arguments. Then

inf FW40,..., f*pW)- (1.9)
c*

The proof of this theorem is given in the next section. In the last section we
study in détail the problem min ^((p), <peC in the case where M is a two
dimensional sphère S2 and the functions m(£) and M(£) are constant. We show
that the minimum in question is achieved for a certain function <p*e C* which is
characterized almost completely. Finally if m 0 then this minimum is completely
determined.
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2. Proof of the main resuit

Let <pbea positive smooth fonction. Then according to the classical Courant
principle y^{<p) is characterized as follows:

max minf «>»-* £ gll^;^;dv/ f <p»u2 dV,

where u satisfies the orthogonality conditions

f (2 2)
<p7/dV 0 j=Opl * ;

However, to prove Theorem 1 one needs another characterization of julp(<p). It
was named by Pôlya and Schiffer as the convoy Principle [7] (see also [2] for the
version stated hère).

The Convoy Principle

Let <p be a positive smooth function. Let fo,...,fp be continuous and differenti-
able fonctions, satisfying the conditions

f ff,<PndV=ôip i,/ 0, 1, ...,p.
(23)

Let A(<p9 /o,..., /p) (a.X be the matrix

Dénote by /mo(<P, /0, /P),..., M<P> fo,"-JP) the eigenvalues of A(<p, f0,

fp) arrangea in the increasing order. Then

(2 5)
Hk(<p)= inf MicGp, /o,...,/P), fc 0,...,p.

fo, ,fP

The infimum is achieved for the eigenfunctions m0= 1> wl9..., Mp of (1.2).

For an arbitrary non-negative measurable function <p(#0) we let (2.5) be the
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définition of jllp(<p). It is easy to show that (2.5) holds for any fc <p for this choice
of <p.

Proof of Theorem 1. First we show that

Fd^fo, /o,.. •,/p),..., jutp(<p, /o, •.., /P))^inf Fdut^^),..., ^(1/,)) (2.6)
c*

for a function <p of the form

£ l. (2.7)

Let *s be a characteristic function of the set ScJ. Thus i^eC* can be

représentée

m) (2.8)

Clearly

ilfn mn + XsiM" - mn) (2.9)

So S satisfies the condition

I (Mn-mn)dV= W- [ mndV (2.10)

Let Sl9..., Sq be the sets corresponding to the functions i^,..., ifc,. Thus we can
find a partition Tl9..., TN of M such that the following condition holds

U Tt=M, TtnTs=4> for i* j, i,/ 1,... ,N, (2.11)

each T, is a measurable set and for a given positive e

dV<e, i l,...,N (2.12)

a,J(l-o,J) 0, i l,...,q,j l,...,N (2.13)

Furthermore

N
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Let

(2.14)

where c, is defined by the equality

(2.15)c,f (Mn-mn)dV=W~[ mndv)

Thus 0//n satisfies (1.6) and

N N
<pn £ aA m" + Z «j^Xt/AT1 - mn),

a, 2:0, j l,...,N, 1^ 1 (2.16)

The assumption that m < <p < M is équivalent to the inequalities

a,^c-\ ; 1,...,N (2.17)

L^t /0,..., /p be smooth functions satisfying the condition (2.3) Consider the
quadratic form

Jjl ^-k,l l OX \=0 / OX \j=o /J
Let

As 0<(n-2)/n<l from the concavity of £(n~2)/n we deduce

(n-2)/n

f-2 <p (2.20)
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Let

âIJ(<p,fo,...,/P)=f dt gfcl^5)dv' "=*>•-* <2-21>
•Uc Vi-i dx dx '

Then the inequality (2.20) implies

i,j=O i,j=O

Dénote by |&0<...<(ip the eigenvalues of the matrix Â(<p,/0,... ,/p)
(ô,,(<p,f0,...,/P))S, Now the inequality (2.22) implies [5, Ch. 10]

M<P,/o,...,/p)^£,, i 0,...,p. (2.23)

Consider (p + l)(p + 2) équations in unknowns /31;..., |3N

£ A f
e, 1 1 a* °

/P), i,/ 0,...,p (2.24)

Demand also Zf ft 1 and j3s < cs \ s 1, N. Note that we hâve an admissi -
ble solution al9..., aN. Suppose that the e in (2.12) is small enough. Then of
course N must be large. Assume that N>(p + l)(p + 2) + l. In that case there
exists a solution a*,..., a& such that at most (p + l)(p + 2) +1 coordinates a*, do
not satisfy a*(cJ1 - a*) 0.

Let

(i//*)n £ a*^*= X a*[mn"^"csX'Ts(^n — w")] (2.25)

Thus (M— i^*)(i^* — m) 5e 0 on a set S whose measure is less than [(p + l)(p + 2) +

Furthermore

(</,*)-V £ a?(mn-
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on a set S. Thus, given <p, /0,..., fp and et >0 fixed we can find e small enough
such that

^(<P,/o, • • • ,/P)^M**,/o, • •. ,/p)-^, i 0,..., p. (2.26)

Furthermore we can find <p* in the set C* such that <p* i/r* on J( - S. This
means that

^(<P,/o, • • • ,/p)^^(**,/o, • • • ,/p)-€!, i 0,..., p, (2.27)

which proves (2.6) for <p of the form (2.7). This in return implies (2.6) for any <p

and fixed /0,..., fp satisfying the conditions (2.3). From the characterization (2.5)
we deduce

This of course is équivalent to (1.9). The proof of the theorem is completed.

3. Compact surfaces confonnally équivalent to the two dimensional sphère

Let us consider two dimensional compact Riemannian manifolds, i.e. n 2. As
in the Rayleigh ratio <pn~~2=l we hâve that jLtp(<p) are the eigenvalues of the

équation

(3.1)

where A is the original Laplacian. Let M be the unit sphère S2.

(3.2)

Assume that 0<m<M are constants. In that case we demonstrate that
minc/Lt1(<p) is achieved for a certain function <p* which is characterized in the
sequel. This is done by using the symmetrization principle. See [8] and [4] for use
of the symmetrization method to establish bounds for the appropriated
eigenvalues. Let / be a measurable function on S2 with respect to the natural measure
dV on the unit sphère. The point (Schwarz) symmetrization of / with respect to a

given point O is defined as follows. Dénote by d(O, P) the spherical distance
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between the points O and P. Then the fonctions /+ and /_ are equimeasurable to
/, /+ and /_ dépends only on the distance d(O,P), and /+(/_) is increasing
(decreasing) functions of d(O, P). Recall, that / and g are called equimeasurable
if for any real a the sets f>a and g>a hâve the same (spherical) measure. We
hâve the classical inequalities (see for détails [4]).

f /+g_dV=[ /_g+dV<f /gdV<f f+g+dV=\ f-g-dV, (3.3)
Js2 Js2 Js2 Js2 Js2

f l^|2d]
I |v/_|2d

Hère by |V/| we mean the natural gradient on S2, i.e

Js2
dV. (3.4)

(,~i dxldxr

THEOREM 2. Let S2 be the unit sphère in R3 of the form (3-2). let M> m >O be

constants. Dénote by C a nonempty set of measurable functions on S2 satisfying the

conditions (1.5) and (1.6) Consider the problem min /Xi(<p) on C, where juii(<p) is the

first nontrival eigenvalue of (3.1) on S2. Then this minimum is achieved for a

function cp* <p*(x3) of the form

<P*(x3) M for — I<x3<h1? h2<x3<l,

cp*(x3) m for h1<x3<h2, (3.5)

The eigenvalue jxi(<p*) is the first nontrivial eigenvalue of the problem.

— ((1 - f2) — + tup*(t)2u 0, (3.6)
dt V dt/

Vl-r2u'(0 0 for (=±1. (3.7)

The différence h2—ht is determined by the équation (1.6).

2JI{m2(h2-h1) + M2t2-(h2-h1)]}= W. (3.8)

Furthermore, the corresponding solution u of (3.6) (fi (ii(<p*)) fias to satisfy either
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the condition

(21 (3.9)

if

-Kh1^h2<l, (3.10)

or the condition

0<u(-l)<-u0i2) (3.11)

if
ht=-l (3.12)

(Note that (p*(-x3) is also extremal thus if (3.10) does not hold we may assume

(3.12)).

Proof. We décompose the proof into 2 steps. (i) Let cpeC. Let v be the
eigenfunction of (3.1) corresponding to /uii(<p). As $S2V<p2 dV 0 the function v
changes its sign. Let It and I2 be the sets where u>0 and v<0 respectively.
Dénote by vl9 (px and i/2, <p2 the restrictions of v, <p to the sets It and I2 respectively.
We extend vl9 <pt and v2, <p2 to S2 by assuming vx <pt v2 <p2 0 outside the
domains l! and I2 respectively. Let t;*,<p*,t)2,<p2 dénote the decreasing symmet-
rization of vl9<pl9v2,—<p2 with respect to the point x3 1. Let £3 be the unique
number such that the measure of the x3>£3 is equal to the measure of It. So

vî(x3) <pî(x3) 0 for -I<x3<£3, i;f(x3) cp*(x3) 0 for &<x3<l.
According to (3.3) and (3.4) we hâve

f t,VdV<f («î)2(<pî)2dV,

(3.13)

f oVrfVsf (u|)2(<p!)2dV,

(3.14)

f |Fu|2<iV>[ \Vvï\2dV,

f |7u|2dV>f \Vvt\2dV
•!l2 J-l=sx3<43
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Let <p(x3, hl9 h2) <p(hl5 h2) be defined by (3.5). The numbers -1 < hx < £3< h2<
1 are uniquely déterminée! by the conditions

f (<p*)2dV=f <p(huh2)2dV,

[ (<p*)2dV=[ 9(hlth^dV. (3.15)
J-l^x3<€3 J-l<x3<€3

From the classical lemma of Neyman and Pearson we deduce

| (<p*)2(t>î)2dV<j <p(h1(H2)2(i>î)2dV,

} (<p!)2(t>*)2dV<J vihuh^ivîfdV.

Combining the inequalities (3.13), (3.14) and (3.16) we obtain

(3.16)

(3.17)

Now the convoy principle implies that /uL1((p)>/LL1(<p(fi1, h2)).

(ii) Introducing the parameter t x3 we easily deduce that f£i(<p(hl9 h2)) is ^e
first nontrivial eigenvalue of (3.6) with the free boundary conditions (3.7).
Furthermore in terms of the variable t the condition (1.6) for (p(hly h2) is

équivalent to (3.8). Thus minc fx1((p) min jut1(<p(h1, h2)). In view of (3.8) fi1(cp(fi1,
h2)) dépends only on one parameter, for example ht. Using the classical Sturm-
Liouville theory, one can show that min fAi(<p(hi, h2)) is achieved for some

Suppose first that — \<h%<h%<\ (the case h* hf is trivial). Let

-e,h*-e) (3.18)
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for an arbitrary small enough e. Choose a constant 8 such that

f <pî(n + 8)dt 0 (3.19)

Thus

2/J
fi=— e(M2-m2)[M(h*)-u(h*)] + o(€)€ (3.20)

Note as M>0 u is strictly monotonie in (-1, 1) and therefore u(h*)-u(h*)^0.
From the minimal characterization of tii(<pe) we hâve

(3.21)

Assume the normalization

(<p*)2u2df l, m(-1)>0. (3.22)

Then

- m2)[u2(h*) - M2(h*)]} + o(€)€ (3.23)

From the inequality jbti(<pe)^M<i(<p*) and the inequality above we conclude

0 < e^Af2 - m2)[u2(h?) - u2(hf)]+o(e)}. (3.24)

As e has arbirtary sign we conclude

M2(h*) u2(h*). (3.25)

Since in that case u is strictly monotonie, we deduce that u(h*)= —u(hf) which

proves (3.9).
Suppose now that -1 h* < h* < 1. According to the part (i) of the proof for

the extremal <p*, the function u must vanish in the interval [h*, h*], so w(hf)<0.
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We can use the function <pe for e<0. The formula (3.20) is valid as

u(h*)-u(h$)>0, so for a small négative e (3.24) holds. Thus

u2(-l)<u2(feî).

As u(-l)>0 and u(fif)<0 we deduce that m(-1)<-w(hf). The proof of the
theorem is completed.
We conjecture

Conjecture. Let the assumptions of Theorem 2 holà. Then the extremal function
<p* given by (3.5) is an even function of x3, i.e. h2= — hx. Note that if cp* is even
then the corresponding eigenfunction u is odd and the condition (3.9) trivially
holds. We prove the above conjecture in case that m 0.

THEOREM 3. Let the assumptions of Theorem 2 hold. Assume furthermore
that m 0. Then minc/x1(<p) pt1(<p*) where <p* is an even function of the form
(3.5).

Proof. We claim that -1< hl < h2< 1. Otherwise we may assume that <p*(f)
0 for -I h1<t<h2. As u satisfies (3.6) and (3.7) we deduce that u{i)
u(-l)>0 for -l<t<h2. This contradicts the condition (3.11). Thus (3.10)
holds. To avoid the trivial case assume that h1<h2. Suppose that <p*(f) is not
symmetric. As <p*(~0 is also extremal we may assume

h2<-ht. (3.26)

Let £ be the unique zéro of u. According to the proof of Theorem 2

(3.27)

We claim that

Let
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Then V and U satisfy the differential équations

^ ï^ (3-30)

with the initial conditions

V(-l)=l/(-l) 0. (3.31)

Furthermore

V(t)<«, -l^r<fc LT(r)<oo, -l<f<-£ V(£)= l/(-f) oo, (3.32)

and

(P*(t) <p*(-O,-l^t<h1,(p*(-O><P*W,H1<t<h2. (3.33)

Combining (3.27), (3.32) and the inequality above, we get — £<£ which proves
(3.28). Consider the équation (3.6) for hx < t < h2. Thus (1 - t2)u' a for hx < r <
h2. So

as htS^s^. Now (3.9) implies that

From (3.26) and the equality above we deduce that £<0. This contradicts (3.28).
The contradiction above establishes the theorem.

In conclusion, let us recall the resuit due to Hersch [6].

À^^SII/W (3.34)

for any non-negative bounded <p which satisfies the condition (1.6) with n 2.

This means maxcA1(<p) A1(<p**), where <p** is a constant function equal to
(W/4I7)1/2.
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