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Comment. Math. Helvetici 54 (1979) 477-493 Birkhauser Verlag, Basel

Ueber den ersten Eigenwert des Laplace-Operators auf kompakten
Flachen

PETER BUSER

1. Einleitung

Es sei A; der kleinste positive Eigenwert des Laplace-Beltramioperators A =
—div grad auf einer kompakten Flache M. Dabei verstehen wir unter einer Fldche
eine zweidimensionale unberandete Riemannsche Mannigfaltigkeit. Eine Prob-
lemstellung der Riemannschen Geometrie im Grossen ist die Frage, welchen
Einfluss geometrische Invarianten auf A; ausiiben. Man versucht deshalb A, mit
diesen Invarianten zu vergleichen. Abschitzungen nach unten sind schwieriger.
Ein allgemeingiiltiges Prinzip in dieser Richtung ist die Ungleichung von Cheeger

[6]

=D, (A)

wo h = h(M) eine isoperimetrische Konstante bedeutet, die folgendermassen
definiert ist:

[(6)
min {vol (M,), vol (M,)}

h(M) = inf J(€), J(€)=
€

Dabei durchlduft € die Menge X(M) aller Wegzyklen der Form 4=
Y1+ -+, mity, : S'—> M differenzierbar, welche M in zwei offene disjunkte
Gebiete M, und M, mit dem gemeinsamen Rand € = oM, = oM, zerlegen, [2] p.
196, [3] p. 11, [12] p. 489. Hier bedeuten 1(€) = I('y;)+- - -+ l(¥,,) die Ldnge von
% und vol (.) das zweidimensionale Lebesguemass beziiglich der Riemannschen
Metrik von M.

Die Konstante h lasst sich auch fiir hohere Dimension definieren, und (A)
bleibt richtig. Wahrend aber dort h schwer in den Griff zu bekommen ist, lasst
sich diese Grosse fiir Flichen direkt auf geometrischem Wege angehen. Als erstes
werden wir mit Hilfe von (A) zeigen, dass es fiir Flichen eine untere Schranke fiir
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478 PETER BUSER

A, gibt, die nur den Durchmesser d =sup {dist (p, q)|p, g M} und die untere
Schranke —«? fiir die Gaussche Kriimmung K explizit enthilt:

K
s/)\l?————?a-. (B)

47 sinh —
r sin )

Dabei ist k entweder reell mit k =0, oder « ist rein imaginér mit kv —1<0. Dazu
gilt die Konvention, dass k' sinh kx =x zu lesen ist, wenn k =0, und k! sinh
kx = |k|™* sin |k|x, wenn kv —1<0. Fir andere Resultate dieser Art vergleiche
man hierzu u.a. die Arbeiten von Aubin [1] Buser [5], Huber [8] und Yau [12].

Der Beweis von (B) ist wesentlich zweidimensional und benutzt, dass man den
Inhalt der r-Hiille

v :={peM|dist (p, y)<r}

eines Weges v : S'— M mit Hilfe der Weglinge in vielen Fillen (siche (2.8)) nach
oben abschitzen kann durch

inh
vol (v") <2ml(y) —=

©

K

Diese Ungleichung liefert etwas iiberraschend auch eine Abschitzung von A; mit
Hilfe der Konstanten h nach oben:

K

A =s——, | (D)

K
arsin dh

die sich fiir kleine Werte von h noch verscharfen lasst (siche (3.4)). Dabei gilt in
(D) ahnlich wie in (B) die Konvention, dass k' arsinh kx = x zu lesen ist, wenn
k =0, und ! arsinh kx =|k|™" arcsin |k|x, wenn k imagindr. Im Hinblick auf (A)
taucht natiirlich die Frage auf, ob man die Ungleichung (D) nicht unabhingig von
x machen kann. Dazu gibt es aber einfache Gegenbeispiele. Wir werden in
Abschnitt 4 anhand des Torus eine Schar von Fldchen herstellen mit

vol (M)=1, A—4m* und h(M)—0. (B)

Die untere Schranke fiir A, in (B) ist fiir grosse d von der Ordnung exp (—d),
wenn man als Kriimmungsnormierung « =1, dh. K= —1 annimmt. Vergleicht
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man diesen Wert etwa mit A, auf einem flachen Torus, so scheint es, dass die
Schranke weit von der Realitit entfernt liegt. Wir werden aber zum Schluss am
Beispiel einer geeigneten Riemannschen Fliche vom Geschlecht zwei (mit kon-
stanter Kriimmung K = —1) zeigen, dass eine untere Schranke fiir A, unter den
genannten Bedingungen sogar im Falle konstanter Kriimmung bestenfalls von der
Grossenordnung exp (—d/2) sein kann, (Vergleiche hierzu die Bemerkung in
Aubin [1] p. 368).

Die vorliegende Arbeit ist ein Teil meiner Dissertation, fiir deren Zustan-

dekommen ich Herrn Professor H. Huber meinen herzlichen Dank aussprechen
mochte.

2. Beweis von (B)

In der ganzen Arbeit machen wir von folgenden Bezeichnungen Gebrauch:
(M, g) bedeutet eine Mannigfaltigkeit M, versehen mit einem Riemannschen
Masstensor g. Statt (M, g) schreiben wir meist nur M. Vermoge g ist auf M eine
Lebesgue-Integration

fo | fam

erklart, dM ist das Volumenelement. Den Tangentialraum von M im Punkt p
bezeichnen wir mit M,. Fir einen Tangentialvektor AeM, ist durch
lA|l=+vg(A, A) eine Norm definiert; dadurch wird M, zu einem euklidischen
Raum. Fiir eine differenzierbare Funktion f auf M ist grad f das Gradienten-
vektorfeld. Geniigt f lediglich einer Lipschitzbedingung, so ist grad f- ifnmer
noch fast iiberall (dh. bis auf eine Ausnahmemenge vom Mass null) definiert, und
lgrad f| ist eine quadratisch integrierbare Funktion.

Es sei nun M eine kompakte Fliche mit Krimmung K= —«? und €=
Y1t +¥n€Z(M). Durch € wird M in die beiden Gebiete M, und M,
aufgeteilt. Wir definieren

r¢ = min max dist (p, 6). (2.1)

i=1,2 peM,

Unter diesen Voraussetzungen gilt

sinh «r

vol (") <2l (®) VreO,rd. 2.2)

K
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Dabei ist €" ={p e M | dist (p, €)<r}. Den Beweis von (2.2) fithren wir in drei
Schritten:

Zuerst sei y:[0,1]— M mit|ly||=1 ein beliebiger differenzierbarer, nach der
Bogenlinge parametrisierter Weg der Lange | auf M, und es sei bloss vor-
ausgesetzt, dass die Flaiche M vollstandig ist. Weiter sei r >0 vorgegeben mit der
Einschrankung, dass

|k|r<m/2,  falls k imaginir.

Weiter braucht die Ungleichung K = —k? nur auf y"*° zu gelten fiir ein € >0.
Wir zeigen, dass unter diesen Umstdnden die folgende Ungleichung besteht:

vol (y") <27l(y)

sinh Kr o L’ sinh kp d. 2.3)

Um dies einzusehen, wihlen wir eine natiirliche Zahl n so, dass I/n < ¢/2 und so,
dass |k|(r+2l/n)<m/2, falls k imaginidr. Wir betrachten die Punkte

p: = v(il/n), i=0,...,n
mit den Kreisbereichen
B;={qe M |dist (p, q)<r+1n}.
Wegen K = —«? liefert der Vergleichssatz von Rauch

sinh kp

r+l/n
vol (By) <2 L dp. 2.4)

K
Weiter ist wegen dist (p;, pi.1)<l/n

Y<B,U: - UB,_,. (2.5)

Nun sei G, die sternférmige Umgebung des Nullpunktes im Tangentialraum M,,
welche durch die Exponentialabbildung exp (eingeschrénkt auf M, ) diffeomorph
auf das Innere exp (G;) des Schnittortes C(p;) abgebildet wird. Es gibt einen Mass-

tensor g auf G, fiir den die Abbildung exp|G; zu einer Isometrie wird. Wir
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definieren fur i=0, ...,n—1
Vi={AeM, |r+in<|Al<r+2ln}NG,
und
K;=C(p;)U exp (V).

Mit dem Vergleichssatz von Rauch erhalten wir,.da der Schnittort C(p;)=
M —exp (G;) eine Nullmenge ist,

, 2
r+2l/n Slnh K(r +_I)
sinh kp 1, < 2w% il (2.6)

K

vol (K;) =vol (V,)<2mw I

r+l/n

Dabei bezieht sich vol (V;) auf die Metrik g. Wenn q € B;,, —(B; U C(p;)), so ist
gq=exp(A) mit AeG; und r+ln<dist(p,q)=||Al|l<r+2l/n, also ist qe¢
exp (V,). Das heisst, es gilt

B,.,<B, UK. (2.7)
Aus (2.7) und (2.5) folgt
'Yr gBoUKoU R U Kn—-l'

Mit n—x folgt jetzt die Ungleichung (2.3) aus (2.4) und (2.6).

In einem zweiten Schritt zeigen wir, dass man in vielen Fillen den zweiten
Summanden in (2.3) weglassen kann: Es sei jetzt M eine kompakte Fliche mit
negativer Charakteristik x. Darauf sei v :[0, []— M mit ||y|| =1 und y(0) = y(I) ein
nicht nullhomotoper geschlossener Weg der Linge I Die Ungleichung K = — «?
soll erfiillt sein auf y"** fiir ein £ >0, und wie oben soll |«|r < /2 gelten, falls k
imaginar ist. In diesem Falle gilt

sinh kr

vol (y") <2l (2.8)

Beweis. Es geniigt, die Behauptung fiir orientierbare Flichen zu beweisen:
Wenn M nicht orientierbar ist, so betrachte man die zweiblattrige Orientierungs-
iiberlagerung M* von M mit lingentrewer Ueberlagerungsabbildung ¢. Wenn y
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ein zweiufriger Weg ist, so gibt es in M™ einen geschlossenen Ueberlagerungsweg
v* der Linge | mit der Eigenschaft, dass ¢ © y*=1+. Der Ueberlagerungsweg y*
erfillt auf M* die Voraussetzungen fiir (2.8), und man erhilt die Behauptung fiir
v aus derjenigen fiir y* wegen y" < o(y*"). Wenn vy einufrig ist, so gibt es einen
Ueberlagerungsweg y* der Linge 21 und eine Deckisometrie T mit T(y*(t)) =
v*(t+1). Fiir diese gilt T(y*") =™, also ist vol (y*") =2 vol (y"), und wieder lasst
sich die Behauptung von y* auf y iibertragen. Wir kOnnen jetzt voraussetzen,
dass M orientierbar ist. Das heisst, M ist eine kompakte Fliche vom Geschlecht
g=2.

Es gibt nun eine differenzierbare Abbildung IT : R*>—> M und einen differen-
zierbaren Weg ¢ : (—», +)—R? mit den folgenden vier Eigenschaften:

IT ist Ueberlagerungsabbildung. (2.9)

Die Abbildung T : R*—>R? mit T(x, y)=(x+1, y) (2.10)
ist eine Decktransformation beziiglich I1.

c ist ein Ueberlagerungsweg von vy : Il o c =1y (2.11)
auf dem Intervall [0, 1].

Es gilt T(c(t))=c(t+1) fiir alle te (—o0, +x), (2.12)

Dies kann man folgendermassen einsehen: Wie man von der Theorie der
Riemannschen Flichen vom Geschlecht g =2 her weiss, ist M konform aequiva-
lent zu einer Fliche der konstanten Kriimmung —1, dh. wenn g der Masstensor
von M ist: Es gibt eine auf M differenzierbare Funktion f, sodass der abgeiinderte
Masstensor g’ : = fg die konstante Kriimmung —1 besitzt. Beziiglich g’ existiert
nach Preissmann [11] p. 181 genau eine zu <y frei homotope geschlossene
Geoditische o : [0, 1]>M. Ist ¥ : H— M beziiglich g’ lingentreue Ueberlager-
rungsabbildung der hyperbolischen Ebene H auf M, so gibt es eine
(orientierungserhaltende) Decktransformation T’ : H— H beziiglich ¥ und eine
gegeniiber T’ invariante Geoditische ¢ in H mit ¥ o 6=0 und T'(6(t) =
6(t+1). Indem wir notigenfalls die Metrik g’ mit einem geeigneten konstanten
Faktor multiplizieren, erreichen wir, dass ||| = 1. Die Homotopie y ~ o lasst sich
zu einer mit T’ vertauschbaren Homotopie ¥~3& auf H heben mit einem
geeigneten Ueberlagerungsweg ¥ von vy. Aus T'(6(t)) = a(t+1) folgt

T'(¥(1) = ¥(t+1).
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Fiihrt man auf H Fermikoordinaten
p—>®(p)=(x,y)eR?
mit & als x-Achse ein, so erfiillen
=%Yoo ci=@Poy und T:=PoT oPp!

die Bedingungen (2.9) bis (2.12). O.B.d.A. kdnnen wir noch

c(0)=(0, y)
annehmen.

Auf R? fithren wir nun einen solchen Masstensor g ein, dass IT:(R?, g)—
(M, g) langentreu wird. Die Menge

c'={peR? g)|dist (p, c([0, 1)) =<r}

ist kompakt, da (R?, &) vollstindig ist. Es gibt deshalb eine natiirliche Zahl m,
sodass fiir alle Punkte p=(x, y)ec’ gilt: —m <x<m. Wir setzen nun

cn=c|[—m, m+n], neN.
Dann gilt fiir die Streifen

S ={(x,y) | k=sx<k+1}
wegen (2.10) und (2.12):

c'NS,=c, NS, O<k=n-1. (2.13)
Wegen T(c') =c¢" gibt es zu jedem Punkt pevy" einen Punkt pec’' NS, mit
II(p) = p, also ist y" < II(c" N S,) fiir jedes k. Zusammen mit (2.13) erhalten wir

vy <Il(c) NS,), bzw.

vol (y")=<vol (¢, NS,), k

0,---,n—1.

Wegen S, NS; =D fiir k#j erhalten wir nun mit (2.3)

vol (y') < ™ +2msinh Kr+_2_1r_ " sinh kp dp

K n K
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fiir alle n. Mit n—o erhilt man hieraus die Behauptung (2.8). Fiir den dritten
und letzten Schritt benétigen wir noch einen Hilfssatz:

LEMMA. Vorassetzung: F < M eine abgeschlossene Teilmenge, p >0 und
D ={pe M|dist (p, F) = p}.
Behauptung: vol (D)=0.

Beweis. D ist abgeschlossen, also messbar. Deshalb ist fast jeder Punkt von D
ein sogenannter Dichtepunkt, dh. es gilt

vol (Us(p)ND)
o vol(Up(p)

fiir fast alle pe D [9] p. 184, dabei ist
Us(p)={q € M| dist (p q) < 8}.

Es geniigt demnach zu zeigen, dass D keine Dichtepunkte besitzt: Zu pe D
existiert p’' € F mit dist (p, p) = p. Auf der kiirzesten Geodatischen von p nach p’
wihlt man einen Punkt q so nahe bei p, dass sein Abstand r von p kleiner ist als
der Injektivitdtsradius von q. Jetzt gilt

ol (U@)NU(@) 1
ol (Up) 2

Aus U,(q)< U,(p") und aus U,(p")ND = J folgt

lim sup YL (U @)ND) 1
o vol(Up(p) 2

also ist p kein Dichtepunkt, womit das Lemma bewiesen ist.

Der dritte Schritt im Beweis von (2.2) ist nun leicht: Ist die Charakteristik von
M negativ und besteht der Schnittzyklus € € 3 (M) aus lauter nichtnullhomotopen
Wegen, so ist die Behauptung wegen (2.8) bereits bewiesen, sogar fiir beliebiges
r>0, denn nach dem Satz von Gauss—Bonnet ist in diesem Fall x > 0. Fiir den



Ueber den ersten Eigenwert des Laplace-Operators auf kompakten Fléichen 485

allgemeinen Fall schliessen wir folgendermassen:

Figur 1

Wir wihlen in jedem der Gebiete M,, M, je einen Punkt p, i=1,2, der von
% = oM, maximalen Abstand besitzt. Es ist dann mit (2.1)

re¢ = min {dist (p,, 6), dist (p,, €)}. (2.14)
Ferner gilt
l|re < w/2, wenn k imaginir, (2.15)

denn wenn die Schnittkriimmung K nach unten beschrinkt ist durch |«|*>0, so
ist nach dem Satz von Myers [7] p. 212

|| dist (p;, po)<|k| d <. (2.16)

Andererseits ist dist (p,, €)+dist (p,, €)=<dist (p, p,), woraus (2.15) folgt.

Nun sei 0<e<re Es gibt ein 8€(0,e) mit der Eigenschaft, dass die
Kreisumgebungen Us(p;), i =1, 2, einfachzusammenhingende Gebiete sind. Wir
entfernen diese Umgebungen von M und fiigen an deren Stelle mit den Methoden
der Differentialtopologie je einen Torus an (siche Figur 1). M geht dabei iiber in
eine neue Fliche M’ mit negativer Charakteristik. ¢ kann man als Zyklus in M’
mit € € 3(M') ansehen, und man sieht sofort, dass in M’ keine der Wegkom-
ponenten v; von € nullhomotop sein kann. Auf M’ gibt es einen Riemannschen
Masstensor g’, der auf dem Teilbereich M —(Us(p,)U Us(p,)) =M’ mit g
uibereinstimmt. Speziell ist

g=g auf @, (2.17)
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Ist nun re (0, re — €) beliebig vorgegeben, so sind wegen (2.15) die Vorausset-
zungen fiir (2.8) fiir jede der Komponenten von €4 erfiillt, also folgt

vol (€7) < 2ml(¢) b "', 0<r<re—¢,

zunichst auf M’, dann aber ebenso auf M selber wegen (2.17). Jetzt kann man ¢
gegen Null gehen lassen und gewinnt damit (2.2) fir alle r<r,. Schliesslich ist
(2.2) auch noch fiir r=r, richtig auf Grund des oben bewiesenen Lemmas, da
wegen der Totaladditivitit des Lebesguemasses auf M

vol (€™«) =vol ({pe M | dist (p, €) = re}) + lim vol (€%~™).

m-——>o0

Damit ist (2.2) vollstindig bewiesen. Die Ungleichung (2.2) liefert nun sofort
einen Beweis von (B):

Ist namlich € € 3 (M) mit M—% =M, UM,, M, "M, = J, so ist min {vol (M,),
vol (My)}<vol (€"<), da €"« mindestens eines der beiden Gebiete M,, M,
zudeckt. Wegen r, < d/2 folgt jetzt aus (2.2)

1(6) . K K

H#&)= vol (€'<) 2 sinh Kr<€

(2.18)

K
24r sinh —
w sinh

Mit (2.18) und mit (A) ist (B) bewiesen, q.e.d.

Wir bemerken noch, dass man im Falle, wo M nichtpositive Kriimmung besitzt,
den Faktor 7r in (2.8) und a fortiori ebenso im Nenner von (B) weglassen kann
(siehe [3] pp. 27, 28). Es ist anzunehmen, dass dies sogar allgemein gilt, doch liess
sich bis jetzt kein Beweis dafiir finden.

3. Abschatzung von A; durch h nach oben

Wir wiahlen € € 3(M) und eine Zahl 7€ (0, 1) fest aus und definieren

KT

2nwJ (€Y

1
=— arsmh

wobei fiir k =0 und fiir k =+ — 1 - || wieder die unter (D) getroffene Konvention
gilt. Fir den Fall, dass k =v —1-|«|, beachte man, dass nach (2.16) und (2.18)
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J(€) nicht kleiner als |«|/27 sein kann, sodass auch in diesem Fall r wohldefiniert
ist.

Fur die beiden Gebiete M, in die M-—9€ zerfillt, setzen wir r,=
max {dist (p, €) | pe M,} und betrachten wie in (2.1) den kleineren der beiden
Abstande: re =min{r,, r,}. Nach (2.2) ist, wenn wir vol (M;)<vol (M,) an-
nehmen,

vol (M) <vol (€"<) <2xl(%) sinh Kr(g’
K

also gilt
r<rg.
Daraus folgt wieder mit (2.2) wegen 7<1

sinh kr _ 71(6)

vol (€7)<27l(%6) =7 <vol (M,). (3.1)
Wir definieren fir i =1, 2:
0 fir qM,

fi(q)=<dist(q, €) fir gqeM, und dist(q, €)<r,

r fir qeM, und dist(q, €)=r.

Da die Funktionen f; einer Lipschitzbedingung geniigen, ist die Funktion ||grad f||
fast iiberall definiert und stellt eine auf M quadratisch integrierbare Funktion dar.
Dabei ist |lgrad f||<1, und auf M — %" gilt sogar ||grad f,|=0. Deshalb ist (siche
(3.1)

| lerad 1P am

= vol (cgr) - T K 2
\rz(vol (Ml)—VOI (cgr))\l__T( . T ). (3.2)
arsinh

JM fiaM 2wJ(€)

Es gibt eine Linearkombination F=f;+af,, aeR, mit f,, FAM=0. Wegen
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F?=f1+a?f2 und wegen
lgrad FI[* = |lgrad f1* + o *lgrad £
bleibt (3.2) richtig, wenn man dort f; durch F ersetzt. Da F einer Lipschitzbedin-

gung genugt, ist F fiir das Rayleighsche Extremalprinzip zugelassen [2] p. 186,
also gilt

T K 2

A<

1 1_Fr(arsinh a ) >
27wJ(6)

fir jeden Schnittzyklus € € 3(M) und fur alle 7<(0,1). Geht man nun zu
h = infy J(%) iiber und setzt speziell =3, so erhilt man daraus die Ungleichung
(D).

Fir den Fall, dass « >0, lasst sich (3,3) fur kleine Werte von h besser
auswerten. Dazu seien w und B definiert durch parsinh™p=
min,.., t-arsinh™ t: = B. Die numerischen Werte sind

p=3.3198..., B=0.9052....

Wir setzen T = k~'27mruh, wobei wir uns auf den Fall h < k/27u einschrinken. Aus
(3.3) erhalten wir dann die folgende Abschidtzung von A; nach oben: Fiir jede
kompakte Fliche mit K= —k? (k>0) und mit h <k/2mw gilt

2Bh ;
sk — .
A=k Kk —2mph (3-4)

4. Ein Gegenbeispiel

In diesem Abschnitt konstruieren wir auf dem Torus eine Schar von
Riemannschen Metriken, um zu zeigen, dass die isoperimetrische Konstante h
beliebig nah bei Null sein kann, ohne dass dabei A; klein sein muss. Auf Grund
von (D) muss dabei der Betrag der Krimmung grosse Werte annehmen. Die
Metriken normieren wir so, dass der Inhalt der Flichen gleich eins wird. Den
Torus stellen wir folgendermassen dar:

Es sei I' : R*—R? die Gruppe der Translationen (x, y)—>(x+m, y+n), mneZ,
und T sei der Torus T=R?/T', versehen mit der Standardmetrik dx*+dy>. In
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natiirlicher Weise identifizieren wir T mit dem Fundamentalbereich
{p=(y)eR?|0=<x<1, O0<y<l1}.

Ist x eine positive periodische Funktion, y € C*(R) mit der Periode 1, so ist
durch

ds® = x*(x)[dx*+ dy?] 4.1

eine zusatzliche Riemannsche Metrik auf T definiert. Wir wiahlen x geeignet. Zu
diesem Zwecke betrachten wir fiir jeden Parameterwert ¢ mit 0<e <} eine
periodische Funktion ¢ € C”(R), die auf den Intervallen [n/2+¢, (n+1)/2—¢],
n €Z, den konstanten Wert 1 annimmt, wihrend ¢ auf den Intervallen [n/2 —¢,
n/2+ €] zuerst von 1 monoton auf ¢(n/2) = ¢ absinken, und anschliessend wieder
so zunehmen soll, dass ¢(n/2—x)=¢(n/2+x) fur alle x. Jetzt definieren wir

1 ~1/2
xx)=ap(x) mit a=ale)= (L @2(x) dx) ) (4.2)
Es ist
Ixz(x) dx=1 und x(0)=x@3)=as. (4.3)

0

Vermoge (4.1) und (4.2) ist auf T eine von & abhiangige Riemannsche metrik
definiert. T versehen mit dieser Metrik bezeichnen wir mit T,. Volumenelement
und Norm des Gradienten lauten auf T..

1
dT,=x?>dT, |lgrad, flZ= N llgrad %, (4.4)
wobel
s et ()
dT = dx dy, \lgrad fl| (ax + 3y

die entsprechenden Grossen beziiglich der Standardmetrik auf T bezeichnen.
Es sei nun f mit A.f = A, f eine Eigenfunktion des Laplace-Operators 4, auf
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T, zum kleinsten positiven Eigenwert A, . und
T,={peT|f(p)>0}, T,={peT|f(p)<O}

Da die Funktion f auf beiden T, eine Losung des Randwertproblems A_f = Af,
f|oT, =0 ist, gilt zusammen mit (4.4)

| Mgrad. fzat. | lgraa P ar
Al,e = - > l = 13 2- (4.5)

T [ re o] par

Definieren wir deshalb eine Funktion F durch

(f(p) fir peT,

F(p)=4Bf(p) fir peT,,

0 sonst,

wobei B>0 so gewihlt ist, dass | FAT =0, dann ist F fiir das Rayleighsche
Extremalprinzip auf T zugelassen, und man erhilt aus (4.5), wenn A, den ersten
Eigenwert des Laplace-Operators beziiglich der Standardmetrik bezeichnet,

Ac=a A =47%a™> (4.6)

Andererseits liefert das Rayleighsche Extremalprinzip auf T,, angewendet auf die
Funktion g(x, y) := sin (27x) die Ungleichung

A< . ~ 4.7)

Mit den beiden Wegen
t—=>y(#)=(0,t) und t—>pt)=Gt), tel0,1],

ist € := y+u € 3(T,) mit J(€) = 4ae. Wegen lim,_,, a(e) =1 gilt deshalb zusam-
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men mit (4.3), (4.6) und (4.7), wenn € —0:
vol (T,)=1, A —472, h(T.)—0.

Das sind genau die in (E) gewiinschten Eigenschaften.

S. Flachen mit kleinen Eigenwerten

Wir stellen in diesem Abschnitt eine Schar von Riemannschen Flachen her,
deren Durchmesser d gegen Unendlich konvergiert, und deren Eigenwerte A, mit
der Ordnung exp (—d/2) klein werden. Dazu verwenden wir die in [4] be-
schriebene Methode der Y-Stiicke.

Wir konstruieren zuerst in der hyperbolischen Ebene ein rechtwinkliges
geoditisches Sechseck D, das aus sechs Spitzecken (das sind geodatische Vierecke
mit drei rechten und einem spitzen Winkel) zusammengesetzt ist, wie in Figur 2
dargestellt. Die Bezeichnungen seien durch die Figur festgelegt. Dabei soll gelten:

! ’

¢ = /6, s=s und r=r.

Nach den Formeln der hyperbolischen Trigonometrie (z.B. Perron [10] p. 76-79)
ist

cos @ =sinh r' - sinh r, sinh s =cosh s’ - sinh 7,
also
™ . iy
s = artanh \/cos—6—=1,66..., r = arsinh \/cos€=0,83.... (5.1)

R ist ein Parameter, den wir nachher nach Unendlich laufen lassen werden.

Es sei nun D' ein zu D kongruentes Sechseck mit den entsprechenden Seiten
a', b, ¢’ (sieche Figur 2). Indem wir uns D und D’ iibereinander liegend vorstellen
und die so zur Deckung gebrachten Seiten a mit a’, b mit b’, ¢ mit ¢’
identifizieren, nicht aber die verbleibenden drei Seiten, erhalten wir eine beran-
dete Fliche Y der Signatur (0, 3). Die Fliche Y trigt in natiirlicher Weise eine
Metrik der konstanten Kriimmung — 1, und die drei Randkomponenten vy,, v,, ¥3
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sind differenzierbar geschlossene Geoditische. Dabei gilt

1(y2) = 1(y3)>2r'; l(y)—0 (R—>x).

Figur 2

Von Y stellen wir noch ein zweites Exemplar Y* her mit den

Randgeoditischen y*, v* y% und verkleben vy, mit vy;, y5 mit y% und schliesslich
v, mit y¥. Auf diese Weise erhalten wir eine kompakte Fliche F vom Geschlecht
zwei mit der konstanten Kriimmung— 1. Fiir den Durchmesser d von F berechnet

man bei R — « bis auf Glieder hoherer Ordnung

d=2(R+s+logcoshr)<2R+3,95.

Um A; auf F nach oben abzuschiatzen, betrachten wir die Hilfsfunktion

Z dist (p; 71)}, wenn dist (p, ;) <3

sin {
W(p)= 6
1, wenn dist (p, ;) =3

und setzen

Y(p), wenn peY
fo)= {— Y(p), wenmn peY¥,

dann erfiillt f die Voraussetzungen fiir das Rayleighsche Extremalprinzip, und man
erhélt durch elementare Integration zusammen mit (5.1):

A(F)=<0,393e %2, (5.2)

Es wire interessant zu wissen, ob man zumindest auf Riemannschen Flachen mit
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anderen Methoden eine untere Schranke fiir A, finden kann, die von der Ordnung
exp (—dJ2) ist.

Schliesslich wollen wir noch bemerken, dass aus d — « fiir eine Schar von
Riemannschen Flichen nicht immer A, — 0 folgt. Verklebt man namlich die
Flichen Y und Y* anders herum, indem man A, mit A¥ nun aber A, mit A¥ und
A5 mit A¥ identifiziert, so entsteht eine Fliche F’ deren kiirzester nullhomologer
nicht trivialer Zyklus C aus geschlossenen Geoditischen gerade durch C=
v1+v.+vs gegeben ist, also die Linge [(C)>4r besitzt. Daraus folgert man
unschwer, dass h(F’)>2r/7w >4 (nach Gauss-Bonnet ist vol Y =2). Fiir diese
Fliachen gilt nun ebenfals d — %, aber auf Grund der Ungleichung von Cheeger
stets A, > .
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