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Comment. Math. Helvetici 54 (1979) 477-493 Birkhàuser Veriag, Basel

Ueber den ersten Eigenwert des Laplace-Operators auf kompakten
Flàchen

PETER BUSER

1. Einleitung

Es sei Àx der kleinste positive Eigenwert des Laplace-Beltramioperators A
— div grad auf einer kompakten Flâche M. Dabei verstehen wir unter einer Flàche
eine zweidimensionale unberandete Riemannsche Mannigfaltigkeit. Eine Prob-
lemstellung der Riemannschen Géométrie im Grossen ist die Frage, welchen
Einfluss geometrische Invarianten auf Àx ausùben. Man versucht deshalb kx mit
diesen Invarianten zu vergleichen. Abschâtzungen nach unten sind schwieriger.
Ein allgemeingûltiges Prinzip in dieser Richtung ist die Ungleichung von Cheeger

[6]

(A)

wo h h(M) eine isoperimetrische Konstante bedeutet, die folgendermassen
definiert ist:

min {vol (MO, vol (MJV

Dabei durchlâuft <8 die Menge S(M) aller Wegzyklen der Forai <#

7x + - • * + ym mit 7, : S1-* M difïerenzierbar, welche M in zwei ofïene disjunkte
Gebiete Mx und M2 mit dem gemeinsamen Rand ^ dMt 3M2 zerlegen, [2] p.
196, [3] p. 11, [12] p. 489. Hier bedeuten I(«) l(yt) + • • • + l(ym) die Lange von
% und vol das zweidimensionale Lebesguemass bezùglich der Riemannschen
Metrik von M.

Die Konstante h lâsst sich auch fur hôhere Dimension definieren, und (A)
bleibt richtig. Wâhrend aber dort h schwer in den Griff zu bekommen ist, làsst
sich dièse Grosse fur Flâchen direkt auf geometrischem Wege angehen. Als erstes

werden wir mit Hilfe von (A) zeigen, dass es fur Flâchen eine untere Schranke fur
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478 PETER BUSER

Ax gibt, die nur den Durchmesser d=sup {dist (p, q)\p, qeM} und die untere
Schranke — k2 fur die Gaussche Krûmmung K explizit enthâlt:

4tt smh —
(B)

Dabei ist k entweder reell mit k ^ 0, oder k ist rein imaginâr mit kV- 1< 0. Dazu
gilt die Konvention, dass k"1 sinh kx x zu lesen ist, wenn k 0, und k"1 sinh
KX |K|~1sin|K|x, wenn kV-KO. Fur andere Resultate dieser Art vergleiche
man hierzu u.a. die Arbeiten von Aubin [1] Buser [5], Huber [8] und Yau [12].

Der Beweis von (B) ist wesentlich zweidimensional und benutzt, dass man den
Inhalt der r-Hùlle

eines Weges 7 : S1—»M mit Hilfe der Weglânge in vielen Fàllen (siehe (2.8)) nach
oben abschâtzen kann durch

(Q

Dièse Ungleichung liefert etwas ùberraschend auch eine Abschâtzung von kx mit
Hilfe der Konstanten h nach oben:

(D)
arsinh

4rrh

die sich fiir kleine Werte von h noch verschàrfen lâsst (siehe (3.4)). Dabei gilt in
(D) âhnlich wie in (B) die Konvention, dass k"1 arsinh kx x zu lesen ist, wenn
k 0, und k"1 arsinh kx |k|-1 arcsin \k\x, wenn k imaginâr. Im Hinblick auf (A)
taucht natûrlich die Frage auf, ob man die Ungleichung (D) nicht unabhângig von
k machen kann. Dazu gibt es aber einfache Gegenbeispiele. Wir werden in
Abschnitt 4 anhand des Torus eine Schar von Flàchen herstellen mit

vol(M) l, Ài-Mir2 und h(Af)->0. (E)

Die untere Schranke fur Ax in (B) ist fur grosse d von der Ordnung exp(-d),
wenn man als Krûmmungsnormierung k 1, dh. K** — 1 annimmt. Vergleicht
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man diesen Wert etwa mit \t auf einem flachen Torus, so scheint es, dass die
Schranke weit von der Realitât entfernt liegt. Wir werden aber zum Schluss am
Beispiel einer geeigneten Riemannschen Flâche vom GescMecht zwei (mit kon-
stanter Krûmmung K — 1) zeigen, dass eine untere Schranke fur kt unter den

genannten Bedingungen sogar im Falle konstanter Krummung bestenfails von der
Grôssenordnung exp(-d/2) sein kann, (Vergleiche hierzu die Bemerkung in
Aubin [1] p. 368).

Die vorliegende Arbeit ist ein Teil meiner Dissertation, fur deren Zustan-
dekommen ich Herrn Professor H. Huber meinen herzlichen Dank aussprechen
môchte.

2. Beweis von (B)

In der ganzen Arbeit machen wir von folgenden Bezeichnungen Gebrauch:

(M, g) bedeutet eine Mannigfaltigkeit M, versehen mit einem Riemannschen
Masstensor g. Statt (M, g) schreiben wir meist nur M. Vermôge g ist auf M eine

Lebesgue -Intégration

1 fdM

erklârt, dM ist das Volumenelement. Den Tangentialraum von M im Punkt p
bezeichnen wir mit Mp. Fur einen Tangentialvektor A e Mp ist durch
||A|| Vg(A, A) eine Norm definiert; dadurch wird Mp zu einem euklidischen
Raum. Fur eine differenzierbare Funktion / auf M ist grad / das Gradienten-
vektorfeld. Genùgt / lediglich einer Lipschitzbedingung, so ist grad f iînmer
noch fast ûberall (dh. bis auf eine Ausnahmemenge vom Mass null) definiert, und
||grad /|| ist eine quadratisch integrierbare Funktion.

Es sei nun M eine kompakte Flâche mit Krummung K^—k2 und %

7! + - • - + 7mGX(M). Durch % wird M in die beiden Gebiete Mt und M2
aufgeteilt. Wir definieren

r^ min max dist (p, (ë). (2.1)

Unter diesen Voraussetzungen gilt

kl (2.2)
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Dabei ist %>r {p e M | dist (p, cë)^r}. Den Beweis von (2.2) fùhren wir in drei
Schritten:

Zuerst sei y : [0, l] —» M mit || y|| 1 ein beliebiger difïerenzierbarer, nach der
Bogenlânge parametrisierter Weg der Lange l auf M, und es sei bloss vor-
ausgesetzt, dass die Flâche M vollstândig ist. Weiter sei r > 0 vorgegeben mit der
Einschrànkung, dass

|i<|r<7r/2, falls k imaginàr.

Weiter braucht die Ungleichung K^—k1 nur auf yr+e zu gelten fur ein e>0.
Wir zeigen, dass unter diesen Umstânden die folgende Ungleichung besteht:

x sinh Kr [r sinh ko
vol(7r)^27rl(7) + 2tt -dp. (2.3)

k Jo *

Um dies einzusehen, wâhlen wir eine natûrliche Zahl n so, dass l/n < e/2 und so,
dass |K|(r + 2I/n)<7r/2, falls k imaginàr. Wir betrachten die Punkte

mit den Kreisbereichen

Wegen K^-k2 liefert der Vergleichssatz von Rauch

vol (Bo) ^ 2tt I dp. (2.4)

Weiter ist wegen dist (pl9 pl+1)^l/n

7rçBoU • • • UBn_!. (2.5)

Nun sei Gt die sternfôrmige Umgebung des Nullpunktes im Tangentialraum MPi,

welche durch die Exponentialabbildung exp (eingeschrânkt auf Mp) difïeomorph
auf das Innere exp (Gt) des Schnittortes C(pt) abgebildet wird. Es gibt einen Mass-

tensor g, auf G,, fur den die Abbildung exp | Gt zu einer Isometrie wird. Wir
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definieren fur i 0, n -1

und

JK1 C(R)Uexp(V1).

Mit dem Vergleichssatz von Rauch erhalten wir,. da der Schnittort C(pv)

M-exp(Gt) eine Nullmenge ist,

!H^pdp<2irl—L_îlZ. (2.6)
+l/n K Tl K

Dabei bezieht sich vol (V,) auf die Metrik g,. Wenn qeBl+1 — (Bl UC(p,)), so ist

q=exp(A) mit AeG, und r + i/n^distfo, q) \\A\\^r + 2lln, also ist q€
J. Das heisst, es gilt

(2.7)

Aus (2.7) und (2.5) folgt

Mit n-H>o> folgt jetzt die Ungleichung (2.3) aus (2.4) und (2.6).
In einem zweiten Schritt zeigen wir, dass man in vielen Fâllen den zweiten

Summanden in (2.3) weglassen kann: Es sei jetzt M eine kompakte Flâche mit
negativer Charakteristik x- Darauf sei 7 : [0, /] -* M mit ||-y|| 1 und 7(0) 7(0 ein
nicht nullhomotoper geschlossener Weg der Lange J. Die Ungleichung K** -k2
soll erfullt sein auf 7r+e fur ein e >0, und wie oben soll |i<|r<7r/2 gelten, falls k
imaginâr ist. In diesem Falle gilt

(2.8)

Beweis. Es genûgt, die Behauptung fur orientierbare Flâchen zu beweisen:

Wenn M nicht orientierbar ist, so betrachte man die zweiblâttrige Orientierungs-
ûberlagerung M* von M mit lângentreirer Ueberlagerungsabbildung <p. Wenn 7
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ein zweiufriger Weg ist, so gibt es in M* einen geschlossenen Ueberlagerungsweg
7* der Lange l mit der Eigenschaft, dass <p ° 7* 7. Der Ueberlagerungsweg 7*
erfùllt auf M* die Voraussetzungen fur (2.8), und man erhàlt die Behauptung fur
7 aus derjenigen fur 7* wegen yr c <p(7*r). Wenn 7 einufrig ist, so gibt es einen

Ueberlagerungsweg 7* der Lange 21 und eine Deckisometrie T mit T(7*(0)
7*(t +1). Fur dièse gilt T(y*r) y*r, also ist vol (7*0 2 vol (yr), und wieder làsst
sich die Behauptung von 7* auf 7 ùbertragen. Wir kônnen jetzt voraussetzen,
dass M orientierbar ist. Das heisst, M ist eine kompakte Flàche vom Geschlecht

Es gibt nun eine differenzierbare Abbildung U : R2->M und einen differen-
zierbaren Weg c : (-00, +<*>)—»R2 mit den folgenden vier Eigenschaften:

II ist Ueberlagerungsabbildung. (2.9)

Die Abbildung T : R2-*R2 mit T(x, y) (x +1, y) (2.10)
ist eine Decktransformation bezùglich il.

c ist ein Ueberlagerungsweg von y : H ° c — y (2.11)
auf dem Intervall [0,1],

Es gilt T(c(t)) c(t + 1) fur aile te(-00, +00). (2.12)

Dies kann man folgendermassen einsehen: Wie man von der Théorie der
Riemannschen Flâchen vom Geschlecht g ^ 2 her weiss, ist M konform aequiva-
lent zu einer Flâche der konstanten Krùmmung -1, dh. wenn g der Masstensor
von M ist: Es gibt eine auf M differenzierbare Funktion /, sodass der abgeânderte
Masstensor g' : fg die konstante Krùmmung — 1 besitzt. Bezùglich g' existiert
nach Preissmann [11] p. 181 genau eine zu 7 frei homotope geschlossene
Geodâtische or : [0,1]—»M. Ist *" : H-+M bezùglich g' lângentreue Ueberlager-
rungsabbildung der hyperbolischen Ebene H auf M, so gibt es eine
(orientierungserhaltende) Decktransformation T : H-*H bezùglich ^ und eine
gegenùber T invariante Geodâtische <r in H mit W ° <x a und T'(<r(0)
<r(f+l). Indem wir nôtigenfalls die Metrik g' mit einem geeigneten konstanten
Faktor multiplizieren, erreichen wir, dass ||<j||= 1. Die Homotopie y— a lâsst sich
zu einer mit V vertauschbaren Homotopie 7~<x auf H heben mit einem
geeigneten Ueberlagerungsweg 7 von 7. Aus T'(&(t)) &{t +1) folgt
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Fùhrt man auf H Fermikoordinaten

mit & als x-Achse ein, so erfùllen

Iï:=^°<2>~\ c:=$°7 und T:= <P <> T'o <pl

die Bedingungen (2.9) bis (2.12). O.B.d.A. kônnen wir noch

c(O) (O,y)

annehmen.
Auf R2 fùhren wir nun einen solchen Masstensor g ein, dass II : (R2, g) —»

(M, g) lângentreu wird. Die Menge

c' {pe (R2, g) | dist (p, c([0,1])) ^ r}

ist kompakt, da (R2, g) vollstàndig ist. Es gibt deshalb eine natùrliche Zahl m,
sodass fur aile Punkte p (x, y) e c' gilt: - m < x < m. Wir setzen nun

cn — c | [ — m, m + n], neN.

Dann gilt fur die Streifen

wegen (2.10) und (2.12):

l. (2.13)

Wegen T(cr) — cr gibt es zu jedem Punkt peyr einen Punkt pecrnS0 mit
lT(p) p, also ist 7rcJ7(crnSfc) fur jedes k. Zusammen mit (2.13) erhalten wir

bzw.

vol (yr)^vol (crnnSk\ fc 0,---,n-l.

Wegen Sk HSj 0 fur fc// erhalten wir nun mit (2.3)

n + 2m sinh kt 2it fr sinh i

n k n h k
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fur aile n. Mit n-»oo erhâlt man hieraus die Behauptung (2.8). Fur den dritten
und letzten Schritt benôtigen wir noch einen Hilfssatz:

LEMMA. Vorassetzung: F^Meine abgeschlossene Teilmenge, p>0 und

D {peM|dist (p,F) p}.

Behauptung: vol (D) 0.

Beweis. D ist abgeschlossen, also messbar. Deshalb ist fast jeder Punkt von D
ein sogenannter Dichtepunkt, dh. es gilt

vol(U8(p)nP)
vol(l/s(p))

fur fast aile p g D [9] p. 184, dabei ist

Uô(p) {q g M | dist (p q) < 8}.

Es genûgt demnach zu zeigen, dass D keine Dichtepunkte besitzt: Zu peD
existiert p'eF mit dist (p, p') p. Auf der kùrzesten Geodâtischen von p nach p1

wâhlt man einen Punkt q so nahe bei p, dass sein Abstand r von p kleiner ist als

der Injektivitâtsradius von q. Jetzt gilt

vol(l/a(p)nt7r(q)) l
s™ vol(Uô(p)) 2*

Aus l/r(q)ç l/p(p') und aus [/p(pOnD 0 folgt

lim supF vol(L76(p)) 2'

also ist p kein Dichtepunkt, womit das Lemma bewiesen ist.

Der dritte Schritt im Beweis von (2.2) ist nun leicht: Ist die Charakteristik von
M negativ und besteht der Schnittzyldus % € X{M) aus lauter nichtnullhomotopen
Wegen, so ist die Behauptung wegen (2.8) bereits bewiesen, sogar fur beliebiges

r>0, denn nach dem Satz von Gauss-Bonnet ist in diesem Fall k>0. Fur den
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allgemeinen Fall schliessen wir folgendermassen:

485

Figur 1

Wir wâhlen in jedem der Gebiete M1? M2 je einen Punkt p,, i 1, 2, der von
% dMx maximalen Abstand besitzt. Es ist dann mit (2.1)

r^ min {dist (pl9 <€), dist (p2, «)}.

Ferner gilt

/2 wenn k imaginâr,

(2.14)

(2.15)

denn wenn die Schnittkrummung K nach unten beschrànkt ist durch |k|2>0, so
ist nach dem Satz von Myers [7] p. 212

(2.16)

Andererseits ist dist (pl9 <8) + dist (p2, «)^dist (p1p2), woraus (2.15) folgt.
Nun sei 0<e<r<«. Es gibt ein ôe(O, e) mit der Eigenschaft, dass die

Kreisumgebungen U8(pt)9 i l, 2, einfachzusammenhângende Gebiete sind. Wir
entfernen dièse Umgebungen von M und fùgen an deren Stelle mit den Methoden
der Differentialtopologie je einen Torus an (siehe Figur 1). M geht dabei ùber in
eine neue Flâche M mit negativer Charakteristik. % kann man als Zyklus in M'
mit ^eXiM') ansehen, und man sieht sofort, dass in M' keine der Wegkom-
ponenten yt von % nullhomotop sein kann. Auf M! gibt es einen Riemannschen
Masstensor g', der auf dem Teilbereich M—( l/6 (pt) U L7S (p2))c M' mit g
ûbereinstimmt. Speziell ist

gf auf (2.17)



486 PETER BUSER

Ist nun re(O, r^-e) beliebig vorgegeben, so sind wegen (2.15) die Vorausset-
zungen fur (2.8) fur jede der Komponenten von <g erfûllt, also folgt

zunàchst auf M', dann aber ebenso auf M selber wegen (2.17). Jetzt kann man e

gegen Null gehen lassen und gewinnt damit (2.2) fur aile r<r^. Schliesslieh ist
(2.2) auch noch fur r r^ richtig auf Grund des oben bewiesenen Lemmas, da

wegen der Totaladditivitât des Lebesguemasses auf M

vol (<€r«) vol ({p g M | dist (p, «) r<J) + lim vol (<ê(r«~1/m)).

Damit ist (2.2) vollstândig bewiesen. Die Ungleichung (2.2) liefert nun sofort
einen Beweis von (B):

Ist nâmlich « e 2(M) mit M- « Mt UM2, Mx DM2 0, so ist min {vol (MO,
vol (M2)}^vol (<ër^), da ^ mindestens eines der beiden Gebiete M1? M2
zudeckt. Wegen r^^d/2 folgt jetzt aus (2.2)

Mit (2.18) und mit (A) ist (B) bewiesen, q.e.d.

Wir bemerken noch, dass man im Falle, wo M nichtpositive Krûmmung besitzt,
den Faktor u in (2.8) und a fortiori ebenso im Nenner von (B) weglassen kann
(siehe [3] pp. 27, 28). Es ist anzunehmen, dass dies sogar allgemein gilt, doch liess

sich bis jetzt kein Beweis dafûr finden.

3. Abschàtzung von At durch h nach oben

Wir wâhlen <8 e 2(M) und eine Zahl r e (0,1) fest aus und definieren

1 kt
r — arsmh :

K

wobei fur k 0 und fur k V— 1 • \k\ wieder die unter (D) getroffene Konvention
gilt. Fur den Fall, dass k =>/— 1 • \k\, beachte man, dass nach (2.16) und (2.18)
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nicht kleiner als |k|/2tt sein kann, sodass auch in diesem Fall r wohldefiniert
ist.

Fur die beiden Gebiete Ml? in die M-% zerfàllt, setzen wir rx

max{dist(p, <#) \peMt} und betrachten wie in (2.1) den kleineren der beiden
Abstânde: r<g =min{r1, r2}. Nach (2.2) ist, wenn wir vol (M^^vol (M2) an-
nehmen,

x)^ vol

also gilt

Daraus folgt wieder mit (2.2) wegen t < 1

(3.1)

Wir definieren fur i 1, 2:

0 fur qé M,,

/,(<}) dist(q, %) fur qeM, und dist (q, <#) « r,

fur qeM, und dist (q, "#) 2* r.

Da die Funktionen /, einer Lipschitzbedingung genugen, ist die Funktion ||grad/,||
fast ùberall deflniert und stellt eine auf M quadratisch integrierbare Funktion dar.
Dabei ist ||grad fj«l, und auf M-<r gilt sogar ||grad /,|| 0. Deshalb ist (siehe
(3.1))

M \

(32)

Es gibt eine Linearkombination F mit JMFdM 0. Wegen
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F2 /? + <*2/| und wegen

bleibt (3.2) richtig, wenn man dort /, durch F ersetzt. Da F einer Lipschitzbedin-
gung genùgt, ist F fur das Rayleighsche Extremalprinzip zugelassen [2] p. 186,
also gilt

(3.3)

fur jeden Schnittzyklus <eeX(M) und fur aile te(0,1). Geht man nun zu
h infcg J(<€) ùber und setzt speziell t §, so erhâlt man daraus die Ungleichung
(D).

Fur den Fall, dass k>0, lâsst sich (3,3) fur kleine Werte von h besser
auswerten. Dazu seien /ut und 0 definiert durch yu arsinh"2 pt

mint>0 t • arsinh"2 t : |8. Die numerischen Werte sind

jll 3.3198..., |3 0.9052....

Wir setzen t K^liryJfi, wobei wir uns auf den Fall h < k/2ttil einschrânken. Aus
(3.3) erhalten wir dann die folgende Abschâtzung von kx nach oben: Fur jede

kompakte Flâche mit K^—k1 (k>0) und mit h<Kl2irii gilt

(3.4)
K —

4. Ein Gegenbeispiel

In diesem Abschnitt konstruieren wir auf dem Torus eine Schar von
Riemannschen Metriken, um zu zeigen, dass die isoperimetrische Konstante h

beliebig nah bei Null sein kann, ohne dass dabei kl klein sein muss. Auf Grund
von (D) muss dabei der Betrag der Krummung grosse Werte annehmen. Die
Metriken normieren wir so, dass der Inhalt der Flâchen gleich eins wird. Den
Torus stellen wir folgendermassen dar:

Es sei F : R2-»R2 die Gruppe der Translationen (x, y)-»(x + m, y + n), m n e Z,
und T sei der Torus T R2/F, versehen mit der Standardmetrik dx2 + dy2. In
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natùrlicher Weise identifizieren wir T mit dem Fundamentalbereich

Ist x eine positive periodische Funktion, x£C°°(R) mit der Période 1, so ist
durch

ds2 X2(x)[dx2 + dy2] (4.1)

eine zusâtzliche Riemannsche Metrik auf T definiert. Wir wàhlen x geeignet. Zu
diesem Zwecke betrachten wir fur jeden Parameterwert e mit 0<e<| eine
periodische Funktion cp€C°°(R), die auf den Intervallen [n/2 + e, (n + l)/2-e],
n gZ, den konstanten Wert 1 annimmt, wâhrend <p auf den Intervallen [n/2 —e,

n/2 + e] zuerst von 1 monoton auf <p(n/2) e absinken, und anschliessend wieder
so zunehmen soll, dass <p(n/2 — x) <p(n/2 + x) fur aile x. Jetzt definieren wir

al
v -1/2

<p\x) dxj (4.2)

Es ist

X2(x)dx l und x(0) x(l) ae. (4.3)

0

Vermôge (4.1) und (4.2) ist auf T eine von e abhângige Riemannsche metrik
definiert. T versehen mit dieser Metrik bezeichnen wir mit Te. Volumenelement
und Norm des Gradienten lauten auf Te.

dTe x2 dT, ||grade f\\2e —2 ||grad /f, (4.4)

wobei

die entsprechenden Grôssen bezùglich der Standardmetrik auf T bezeichnen.
Es sei nun / mit AJ kltJ eine Eigenfunktion des Laplace-Operators Ae auf



490 PETER BUSER

TB zum kleinsten positiven Eigenwert À1>e und

T1 {psT\f(p)>0}, T2 {peT|/(p)<0}.

Da die Funktion / auf beiden T, eine Lôsung des Randwertproblems AJ kf,
f | dTj 0 ist, gilt zusammen mit (4.4)

f ||grade/|lfdTE f ||grad/fdT±- ^A1,E=-L-7 ^-^~r ' 1,2. (4.5)

Definieren wir deshalb eine Funktion F durch

(f(p) fur peTlf

F(p) fif(p) fur peT2,

0 sonst,

wobei f$>0 so gewâhlt ist, dass JTFdT 0, dann ist F fur das Rayleighsche
Extremalprinzip auf T zugelassen, und man erhâlt aus (4.5), wenn \t den ersten
Eigenwert des Laplace-Operators bezûglich der Standardmetrik bezeichnet,

A1,6^a~2A1 47r2a-2. (4.6)

Andererseits liefert das Rayleighsche Extremalprinzip auf Te, angewendet auf die
Funktion g(x, y) := sin (2irx) die Ungleichung

(4.7)

Mit den beiden Wegen

f-*?(*) (0,0 und r

ist « : 7 + jut g 5(Te) mit J(<ë) 4ae. Wegen lime_^0 <*(e) 1 gilt deshalb zusam-
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men mit (4.3), (4.6) und (4.7), wenn e—»0:

vol (T.)=l, Àlfe-*4ir2,

Das sind genau die in (E) gewûnschten Eigenschaften.

5. Flàchen mit kleinen Eigenwerten

Wir stellen in diesem Abschnitt eine Schar von Riemannschen Flàchen her,
deren Durchmesser à gegen Unendlich konvergiert, und deren Eigenwerte \l mit
der Ordnung exp( —d/2) klein werden. Dazu verwenden wir die in [4] be-
schriebene Méthode der Y-Stûcke.

Wir konstruieren zuerst in der hyperbolischen Ebene ein rechtwinkliges
geodâtisches Sechseck D, das aus sechs Spitzecken (das sind geodàtische Vierecke
mit drei rechten und einem spitzen Winkel) zusammengesetzt ist, wie in Figur 2

dargestellt. Die Bezeichnungen seien durch die Figur festgelegt. Dabei soll gelten:

<p tt/6, s s' und r r'.

Nach den Formeln der hyperbolischen Trigonométrie (z.B. Perron [10] p. 76-79)
ist

cos <p sinh r' • sinh r, sinh s cosh s' • sinh r',

also

s artanh -Jcos — 1, 66 r arsinh Jcos — 0, 83 (5.1)

R ist ein Parameter, den wir nachher nach Unendlich laufen lassen werden.
Es sei nun D' ein zu D kongruentes Sechseck mit den entsprechenden Seiten

a', b\ c' (siehe Figur 2). Indem wir uns D und D' ùbereinander liegend vorstellen
und die so zur Deckung gebrachten Seiten a mit a', b mit b\ c mit c'
identifizieren, nicht aber die verbleibenden drei Seiten, erhalten wir eine beran-
dete Flâche Y der Signatur (0, 3). Die Flâche Y trâgt in naturlicher Weise eine

Metrik der konstanten Krûmmung — 1, und die drei Randkomponenten yu y2, y3
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sind differenzierbar geschlossene Geodàtische. Dabei gilt

Figur 2

Von Y stellen wir noch ein zweites Exemplar Y* her mit den

Randgeodâtischen 7*, y* y% und verkleben y2 mit 73, y* mit 7* und schliesslich

7t mit yf. Auf dièse Weise erhalten wir eine kompakte Flàche F vom Geschlecht
zwei mit der konstanten Kriimmung— 1. Fur den Durchmesser d von F berechnet

man bei R -* « bis auf Glieder hôherer Ordnung

d 2(H + s + log cosh r) < 2R + 3,95.

Um Ai auf F nach oben abzuschàtzen, betrachten wir die Hilfsfunktion

Îsin
\- dist (p, yt) |, wenn dist (p, yx) ^ 3
16 J

1, wenn dist (p, yx) ^ 3

und setzen

¦I-
i, wenn peY

wenn peY*

dann erfûllt / die Voraussetzungen fur das Rayleighsche Extremalprinzîp, und man
erhàlt durch elementare Intégration zusammen mit (5.1):

2. (5.2)

Es wâre intéressant zu wissen, ob man zumindest auf Riemannschen Râchen mit
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anderen Methoden eine untere Schranke fur Ai finden kann, die von der Ordnung
exp (-d/2) ist.

Schliesslich wollen wir noch bemerken, dass aus d -> <» fur eine Schar von
Riemannschen Flâchen nicht immer A^O folgt. Verklebt man nâmlich die
Flàchen Y und Y* anders herum, indem man At mit Af nun aber A2 mit Af und
A3 mit Af identifiziert, so entsteht eine Flâche F' deren kûrzester nullhomologer
nicht trivialer Zyklus C aus geschlossenen Geodâtischen gerade durch C

7i + 72 + 73 gegeben ist, also die Lange J(C)>4r besitzt. Daraus folgert man
unschwer, dass h{F')>2rlir>\ (nach Gauss-Bonnet ist vol Y 2ir). Fur dièse

Flâchen gilt nun ebenfals d —» °°, aber auf Grund der Ungleichung von Cheeger
stets
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