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Abelian group extensions and the axiom of constructibility

by PauL C. ExLor and MARTIN HUBER™

Introduction

Throughout this paper the word ‘“‘group” will mean ‘“‘abelian group”. The
results of Shelah’s remarkable work on Whitehead’s problem ([Sh,], [Sh,])
suggested the investigation of the structure of Ext (A, Z) for torsion-free A under
the hypothesis of the Axiom of Constructibility, V=L. Applying Shelah’s
methods, H. Hiller, Shelah and the second-named author obtained a surprisingly
simple description of the torsion-free part of Ext (A, Z) in terms of A[H-H-S].

In this paper we study, in the same spirit, the group Ext (A, G) in the case
where A is torsion-free and G is any group satisfying suitable cardinality
conditions. We are interested in characterizing pairs (A, G) such that
Ext (A, G)=0 as well as in determining the structure of Ext (A, G). Herein we
restrict our attention to its torsion-free part. Since in our case Ext (A, G) is always
divisible, the structure of its torsion-free part is completely determined by its
torsion-free rank. (Following [F,] we denote the torsion-free rank of a group B by
ro(B).)

Our first task is to settle the case where A is countable. For this, of course, we
do not need any additional axiom of set theory. We assume G to be a group of
countable torsion-free rank, thus unifying the known cases G =Z[J, §2] and
G =T, a torsion group ([B:], [B,]). In Section 1 we consider the crucial case
where A is of rank 1. For such A we give a group-theoretical characterization of
pairs (A, G) such that Ext(A, G)=0 and show that Ext(A, G)#0 implies
ro(Ext (A, G))=2" (Theorem 1.2). In Section 2 we study Ext (A, G) in case A is
any coutable torsion-free group. Applying Theorem 1.2 we obtain various condi-
tions that are necessary and (or) sufficient for the vanishing of Ext (A, G)
(Theorems 2.1 and 2.6, Corollaries 2.4 and 2.7). In particular we have the
following analogue of Pontryagin’s criterion: If Ext (B, G) =0 for every subgroup
B of A of finite rank, then Ext (A, G) =0 (Corollary 2.7). Using Theorem 1.2 we
conclude that also in this case, Ext(A, G)#0 implies ryo(Ext (A, G))=2%
(Theorem 2.8).

* Research of the first author partially supported by NSF grant MCS76-12014.
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Section 3 is devoted to the vanishing of Ext (A, G) for uncountable A. From
now on we have to assume V =L in order to be able to apply Shelah’s methods.
The main theorem of this section (Theorem 3.2) generalizes earlier results of the
first-named author (see [E;]). In particular it contains the following singular
compactness theorem for Ext:(V =L). Let A be a group of singular cardinality
and let G be a group of cardinality <«. If Ext (B, G) =0 for every subgroup B of
A of cardinality <k, then Ext (A, G)=0. The proof of this is based on a new
version [Sh;] of the principal result of [Sh,]. Among other consequences of
Theorem 3.2 we deduce a vanishing result for Ext (A, G) (Theorem 3.7) which
corresponds to a theorem of Hill [Hi].

The final section deals with the structure of Ext (A, G) for uncountable A. We
show that the main result of [H-H-S] generalizes to our situation; we proceed
along the lines of that proof. Theorem 4.5 may be viewed as the principal result of
Section 4: (V=L). Let A be torsion-free and G of countable torsion-free rank
such that Ext(A, G)#0. Suppose that B is a pure subgroup of A and that
Ext (A/B,G)=0. If B is of minimal cardinality, then r,(Ext (A, G))=2"®! (As
usual |B| denotes the cardinality of B.) The case where A is of singular cardinality
relies on a variant of Theorem 3.2 which is of interest in its own right (Theorem
4.3). Finally we deduce some corollaries concerning the torsion-free rank of
Ext (A, G) which extend results of [H-H-S] and [Hu].

1. The rank one case

In this section we investigate the group Ext (A, G) in case A is torsion-free of
rank 1 and G any group of (at most) countable torsion-free rank.

We first recall some definitions and known facts and state certain exact
sequences which will be important tools in the proof of Theorem 1.2. Given a
prime p, we denote the p-primary part of a group G by ¢,G and the torsion
subgroup of G by tG. The p-primary part of Q/Z is denoted by Z(p™) and its full
preimage in Q by Q®. A group G is called p-divisible if pG = G; G is divisible if
it is p-divisible for every prime p. A group which does not contain any nontrivial
divisible subgroup is called reduced. It is well known that every group is the direct
sum of its maximal divisible subgroup and a reduced group.

Let A be a torsion-free group of rank 1. For a nonzero element x € A and any
prime p let h,(x) be the largest integer k such that p* divides x if it exists, or
h,(x) = otherwise; h,(x) is called the p-height of x. Suppose that for every p we
are given k, which is either a nonnegative integer or «. Then there exists a
nonzero y € A such that for every p, h,(y)=k, if and only if the following two
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conditions hold:

k,# h,(x) only for finitely many p’s; (1.1a)
k,=h,(x) whenever k,=o or h,(x)=o (1.1b)

(see e.g. (F,, $§85]). By definition of the p-heights we can associate with every
nonzero x € A a short exact sequence

0>Z—— A— @ Z(p*)— 0, (1.2)
p

where p is given by w(1)=x and k, = h,(x) for every p. Here k, =0 means that
the p-primary part does not occur. For any group G this sequence induces a long
exact sequence

0 — [ Hom (Z(p*), G) > Hom (A, G) —» G —
|

(1.3)
—[1Ext(Z(p*), G) — Ext (A, G) — 0.
p
In particular we shall make use of the sequence
0— Hom (Z(p™), G) — Hom (Q®, G) » G —
(1.4)

— Ext (Z(p™), G) = Ext (Q®’, G) - 0

which is induced by 0 »Z — Q® —Z(p™) — 0.
The following facts will be applied several times; therefore we state them as a
lemma.

LEMMA 1.1. (a) For any group G, Ext(Z(p"),G)=G/p"G. (b)
Ext (Z(p™), G) =0 if and only if G is p-divisible.

Proof. Statement (a) is well-known (see e.g. [F;](D), p. 222) while (b) follows
from Corollary 4.3 and Theorem 4.5 of [N, ].

Finally we assign to every group G two sets of primes

D,(G)={p|pG#G} and
D,(G)={p|p**"*G#p*“G for all k}.
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We are now ready to state the result of this section.

THEOREM 1.2. Let A be a torsion-free group of rank 1 and let G be any
group of countable torsion-free rank. Then
(a) Ext(A, G)=0 if and only if for any nonzero x € A the following conditions
hold:
(1) {p e Dy(G) | h,(x) #0} is finite;
(2) for all pe D5(G), h,(x) <.
(b) If Ext (A, G)#0, then the torsion-free rank of Ext (A, G) is =2,

Remarks

1) Combining (a) with (1.1a, b) we obtain that Ext (A, G)=0 if and only if
there is a nonzero x€ A such that (1) and (2') are satisfied, where (2')
means that h,(x) =0 for all pe D,(G).

2) Let G be a group satisfying conditions (1) and (2) for any nonzero x € Q. It
is not hard to see that such a G is the direct sum of a divisible group and a
bounded torsion group. On the other hand, there are cotorsion groups G,
i.e. groups satisfying Ext(Q, G)=0, (of uncountable torsion-free rank)
that are not of this form (cf. [F,], §55). We conclude that the countability
hypothesis on G in statement (a) cannot be dropped.

3) In (b) the hypothesis on G cannot be omitted either. By [M—V, p. 119]

there are groups A and G, A torsion-free of rank 1 and G torsion-free of
rank 2%, such that Ext (A, G)=@Q.
Rg

Proof of Theorem 1.2. We observe that it suffices to prove the following two
statements:
(a') If there is a nonzero x€ A such that (1) and (2) are satisfied, then
Ext (A, G)=0.
(b") If there is a nonzero x€ A such that (1) or (2) does not hold, then
ro(Ext (A, G))=2%,

Proof of (a’): We consider the associated exact sequence (1.3). Since
Ext(A, G) is divisible, the assertion follows if we can show that
I1, Ext (Z(p*), G) is divisible, the assertion follows if we can show that
[1, Ext (Z(p*), G) is a bounded torsion group. By conditin (1) and Lemma 1.1
Ext (Z(p*-, G) nonzero only for a finite set of primes, say I. Thus it remains to
show that for all p € I, Ext (Z(p*-), G) is a bounded torsion group. If k, <o this is
obvious. In case k, =% condition (2) implies that p**'G =p“G for some k.
Therefore by Lemma 1.1(b) the first term of the exact sequence

Ext (Z(p™), p“G) — Ext (Z(p™), G) — Ext (Z(p™), G/p*G) — 0
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is trivial. Consequently, Ext (Z(p~™), G) is a bounded torsion group. This com-
pletes the proof of (a').

Proof of (b"): Suppose first that (1) does not hold. Again we consider the
associated exact sequence (1.3). By hypothesis and Lemma 1.1 the product
[1, Ext (Z(p*), G) has infinitely many nontrivial factors. Therefore it has a
quotient isomorphic to [],.; Z(p) for some infinite set of primes J. It follows that
ro({1, Ext (Z(p*>), G))=2". As ro(G) is countable, we see from (1.3) that
ro(Ext (A, G))=2% as well.

Now suppose that x does not satisfy (2). So there is a prime p such that A
contains a copy of Q® and the chain

G2pG=2 - 2pG2---

is properly descending. Since Ext(Q®, G) is then an epimorphic image of
Ext (A, G), it suffices to show that ry(Ext (Q®, G))=2%. For this purpose we
distinguish two cases. First assume that G/tG is not p-divisible. Then its p-adic
completion (G/tG); is torsion-free of cardinality 2™. But by [Ny, p. 233], (G/tG),
is an epimorphic image of Ext (Z(p~), G/tG); hence ro(Ext (Z(p™), G/tG))= 2",
Using the sequence (1.4) for G/tG, we conclude that ro(Ext (Q®, G/tG))=2",
and hence ry(Ext (Q®’, G))=2%.

In the second case assume that G/tG is p-divisible. Then the reduced part of
t,G must be unbounded. Therefore, by the main result of [Sz], there is an
epimorphism

tG—» D Z(p“)=H.

k<w

We claim that ry(Ext(Q®, H))=2". By Lemma 1 of [R] we have
|Ext (Z(p~™), H)| = 2%.. Thus, using exactness of (1.4) for G = H, we conclude that
|Ext (Q®, H)| =2 . But Ext (Q®, H) is torsion-free, hence the claim is proved.

Now Ext (Q®, H) is an epimorphic image of Ext (Q®, tG), and the latter fits into
an exact sequence

Hom (Q®, G/tG) — Ext (Q®, tG) — Ext (Q®, G).

As Hom (Q®, G/tG) is countable, it follows that r,(Ext (Q®’, G))=2" also in this
case. This completes the proof of Theorem 1.2. -
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2. The countable case

Throughout this section G denotes a given group of countable torsion-free
rank. We now study the group Ext (A, G) in case A is any countable torsion-free
group. We start with

THEOREM 2.1. For any countable torsion-free group A the following
statements are equivalent:
(a) Ext(A, G)=0;
(b) A is the union of an ascending chain of pure subgroups {A, | n <} such
that A,=0 and for all n, r(A,.1/A)<1 and Ext (A,.,/A,, G)=0.

For the proof of this theorem we need the following auxiliary result.

LEMMA 2.2. Suppose that G is reduced. If A is torsion-free of finite rank such
that Ext (A, G) =0, then the torsion-free rank of Hom (A, G) is countable.

Proof. We proceed by induction on the rank of A. Suppose first that A is of
rank 1 and let x € A, x# 0. Then we consider the associated exact sequences (1.2)
and (1.3). Since G is reduced, we have Hom (Z(p*-), G) =0 if k, = or if pG = G.
It remains to consider those primes for which pG# G and k, <. But we know
from Theorem 1.2(a) that k,#0 only for a finite number of them. Therefore
[1, Hom (Z(p*°), G) is a bounded torsion group, and hence exactness of (1.3)
implies that r,(Hom A, G)) is countable.

Now assume that the lemma holds for all torsion-free groups of rank <n. Let
A be torsion-free of rank n+1 such that Ext (A, G)=0, and let B be a pure
subgroup of A of rank n. Then there is an exact sequence

0— Hom (A/B, G) - Hom (A, G) —» Hom (B, G) — Ext (A/B, G) — 0.

As by induction hypothesis ro,(Hom (B, G)) is countable, we conclude that
ro(Ext (A/B, G)) is countable too. But then we have Ext (A/B, G) =0 by Theorem
1.2(b). Therefore by the first part, r,(Hom (A/B, G)) is countable; hence
r (Hom (A, G)) is countable as well.

Proof of Theorem 2.1. The implication (b)=>(a) is a special case of [E,,
Theorem 1.2]. Conversely, suppose that A is a countable torsion-free group such
that Ext (A, G)=0. Let A be represented as the union of an ascending chain of
pure subgroups {A, | n <w} such that A,=0 and ry(A,.,/A,)=<1. Clearly such a
chain of subgroups exists. Then we have Ext (A,, G) =0 for all n, and therefore
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there are exact sequences
Hom (A,, G) = Ext (A, .,/A,, G)— 0.

Note that we may assume G to be reduced. Thus r,(Hom (A,, G)) is countable by
Lemma 2.2 and hence ry(Ext(A,.1/A,, G)) is countable too. But then by
Theorem 1.2(b) Ext (A, ../A,, G)=0 for all n. This completes our proof.

Theorems 1.2 and 2.1 provide a number of interesting consequences. The first
generalizes Stein’s theorem (see e.g. [E;, Theorem 4.1}).

COROLLARY 2.3. Suppose that G is countable torsion-free and for all primes
p, G is not p-divisible. If A is any group of countable torsion-free rank, then
Ext (A, G)=0 implies A free.

Proof. First it follows from [N,, Theorem 4.5] that for any A, Ext(A, G)=0
implies A torsion-free. Therefore, if A is of countable rank, we may apply
Theorem 2.1. Hence A is the union of an ascending chain {A, | n <} of pure
subgroups such that A,=0 and for all n, ro(A,.,/A,)<1 and Ext(A,.,/A,, G)=
0. Now by the hypothesis on G we have D(G)=D,(G)=P (the set of all
primes). Thus, by remark 1) from Theorem 1.2, there is for every n a nonzero
X € A,.1/A.(except that A, ., =A,) such that h,(x) =0 for all p. But this means
that for all n, A,./A, is free; hence by [E,, Theorem 2.6] A is free.

COROLLARY 2.4. Let G' be a pure subgroup of G. If A is any countable
torsion-free group, then Ext(A,G)=0 if and only if Ext(A,G')=0 and
Ext (A, G/G")=0.

Proof. The “if”’ part holds trivially. Conversely, suppose that Ext (A, G)=0.
Then clearly Ext(A, G/G')=0, and by Theorem 2.1, A is the union of an
ascending chain of pure subgroups {A, | n <} such that A,=0 and for all n,
ro(A,.1/A,) <1 and Ext (A,.,./A,, G)=0. Now D,(G") is contained in D,(G) for
i=1, 2, since G' is pure in G. Therefore by Theorem 1.2(a) we have
Ext (A, .,/A,, G)=0 for all n, and hence Ext (A, G')=0 by Theorem 2.1.

COROLLARY 2.5. There is a countable quotient H of G such that for any
countable torsion-free group A, Ext (A, G)=0 if and only if Ext (A, H)=0.

Proof. By the main result of [Sz] and the proof of [E;, Theorem 2.2] there is a
countable torsion group T and an epimorphism ¢ :tG—>T such that for any
countable torsion-free A, Ext (A, tG)= 0 if and only if Ext (A, T) = 0. We denote



Abelian group extensions 447

the induced homomorphism Ext (G/tG, tG) — Ext (G/tG, T) by €4 and let H be a
representative of the class e,/ G]. Thus there is a commutative diagram

0—>tG—> G — G/tG —0

€ n

0—» T — H— G/tG—0

with exact rows. We claim that H has the required properties. First it is clear that
H is countable. Furthermore we see from the diagram that n is an epimorphism.
Hence for any group A, Ext (A, G)=0 implies Ext (A, H)=0. Conversely, sup-
pose that A is countable torsion-free such that Ext (A, H)=0. Then we have
Ext (A, G/tG)=0 and Ext(A, T)=0 by Corollary 2.4. Thus Ext (A, tG)=0 as
well and hence Ext (A, G)=0. This completes our proof.

THEOREM 2.6. If A is a countable torsion-free group such that Ext (A, G)=
0, then Ext (A/B, G)=0 for every pure subgroup B of A of finite rank.

Proof. Let B be any pure subgroup of A of finite rank. We can choose an
ascending chain of pure subgroups {B, | n <w} of A of finite rank with union A
such that B, = B and for all n, ry(B,..,/B,)< 1. Then the same argument as in the
proof of Theorem 2.1 shows that Ext (B, .,/B,, G)=0 for all n. Now let A, =
B,/B, so we have A/B=J,., A, where A;=0 and for all n, A, is a pure
subgroup of A/B of finite rank and A,.,/A, =B,.,/B,. Therefore we have
Ext (A/B, G) =0 by Theorem 2.1.

Remark. Combining Theorems 1.2, 2.1 and 2.6 we obtain another proof of
Baer’s criterion which characterizes pairs of groups (A, T), A countable torsion-
free and T a torsion group, such that every extension of T by A splits [B,].

The following result is an analogue of Pontryagin’s criterion (see e.g. [F,],
Theorem 19.1).

COROLLARY 2.7. If A is a countable torsion-free group such that
Ext (B, G)=0 for every subgroup B of A of finite rank, then Ext (A, G)=0.

Proof. Let A be represented as the union of an ascending chain of pure
subgroups {A, | n <w} such that A;=0 and for all n, ro(A,.,/A,)=<1. Then for
all n, Ext (A,,, G) =0 by hypothesis. Using Theorem 2.6, we conclude that for all
n, Ext (A, .,/A,, G)=0. Hence we have Ext (A, G)=0 by Theorem 2.1.
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The next result contains Proposition 5 of [Hu] and, in particular, the well-
known fact that for every countable torsion-free nonfree group A, r,(Ext (A, Z))
is 2% (see e.g. [J], Théoréme 2.7).

THEOREM 2.8. Let A be a countable torsion-free group such that
Ext (A, G) #0. Then the torsion-free rank of Ext (A, G) is =2%.

Proof. Clearly we may assume that G is reduced. If Ext (A, G)#0, then by
Corollary 2.7 there exists a subgroup B of A of finite rank such that
Ext (B, G) # 0. Suppose that B is of minimal rank, and let B’ be a pure subgroup
of B such that ry(B/B’)=1. Then we consider the exact sequence

Hom (B’, G) — Ext (B/B’, G) — Ext (B, G) — Ext (B’, G).

The minimality of ro(B) implies that Ext(B’, G)=0. Thus the exact sequence
yields that Ext (B/B’, G) # 0, and hence by Theorem 1.2(b), r,(Ext (B/B’, G))=
2%. On the other hand, by Lemma 2.2, r(Hom (B’, G)) is countable. It follows
that r,(Ext (B, G))=2", hence ry(Ext (A, G))=2%.

Remark. For A a countable torsion-free group and T an arbitrary torsion
group, Baer [B,] has shown that Ext (A, T) is torsion-free. If in addition T is
countable, we conclude that

Ext (A, T)=[]Q (cf. [B,], pp. 229-230).
Ro

It is well-known that this group admits a compact topology. Furthermore we know
from [J, Corollaire 2.8] that the same holds for groups of the form Ext (A,Z), A
being countable torsion-free. These facts led us to ask the following

Question. Does Ext (A, G) admit a compact topology whenever A is counta-
ble torsion-free and G countable of finite torsion-free rank?

3. The uncountable case: vanishing of Ext (A, G)

In order to extend the results of the previous sections to groups of uncounta-
ble cardinality, we shall need to assume the Axiom of Constructibility, V =L.
Before stating the main result of this section, let us recall a definition from [E;].
For any set U and infinite cardinal A, let K,-(U) denote the filter on P(U), the
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power set of U, generated by all X € #(P(U)) satisfying

(i) X is closed under unions of chains; and
(ii) for all S < U, there exists H € X such that S< H and |H|<|S|+A.

(Such an X will be called a generating element of K,-(U).) We shall say that a
property P of subsets of U holds for almost all subsets (w.r.t. K,-«(U)) if {ScU|S
satisfies P} belongs to K,-(U).

LEMMA 3.1. (1) If A <p, then K,«(U)< K, ~(U).

(2) K,+«(U) is A*-complete, i.e. if X,, y<A are elements of K,-(U), then
N{X, | » <A} belongs to K,-(U).

(3) If Ve U and X € K,«(V), then {H< U | HN V € X} belongs to K, -(U).

@) If A is a group, B a subgroup of A and XeK,-(A/B), then
{H< A | (H+B)/B e X} belongs to K,-(A).

(5) If A is a group, then almost all subsets of A (w.r.t. K, (A)) are pure
subgroups of A.

(6) If B is a pure subgroup of A, then for almost all subsets H of A (w.r.t.
K, (A)), B+H is a pure subgroup of A.

Proof. (1)—~(4) are easy consequences of the definition. Part (5) follows from
the facts that (i) the union of a chain of pure subgroups is a pure subgroup, and
(i1) every infinite subset of A is contained in a pure subgroup of A of the same
cardinality (cf. [F,], Proposition 26.2). By (5) applied to the group A/B we obtain
an element X of K, (A/B) consisting of pure subgroups of A/B. Then by part (4),
Y={Hc A |(H+B)/Be X} belongs to K, (A); it is readily verified that for all
HeY, B+H is a pure subgroup of A. This proves (6).

For any infinite cardinal «, let cf (k) denote the confinality of k. By definition,
Kk is singular if cf (k) <k and otherwise « is regular. Recall that a group is said to
be k-generated if it has a set of generators of cardinality <«.

THEOREM 3.2. (V=L). Let A be a group of uncountable cardinality x and
let G be a group of cardinality A <k. Then
(1) If k is singular and Ext (B, G) =0 for every k-generated subgroup B of A,
then Ext (A, G)=0.
(2) Ext(A, G)=0 if and only if A is the union of a continuous ascending chain
{A, | v<cf ()} of k-generated pure subgroups of A such that Ext (A,, G) =
0 and for all v <cf (), Ext(A,./A,, G)=0.
(3) If Ext(A, G)=0, then for almost all subgroups H of A (w.r.t. K,-(A)),
Ext (A/H, G)=0.
The above result is proved in [E;] for the case of a torsion-free group A and
G a torsion group, but the same proof works for arbitrary A and G any countable



450 PAUL C. EKLOF AND MARTIN HUBER

group. That proof was based on [Sh,]; here we shall give a proof based on a new
simplified version [Sh;] of the principal result of [Sh,]. For the convenience of the
reader we shall state a version (for abelian groups) of the main theorem of [Sh;].

THEOREM 3.3 (Shelah). Let k be a singular cardinal and let {«; | i <cf ()} be
an increasing and continuous sequence of cardinals satisfying: k,=0, cf (k) <k,
and sup {k; | i <cf (k)} = k. Let A be a group of cardinality «; let S; = the set of all
subgroups of A of cardinality k; and let S;={0}U .. Suppose ¥ is a class of pairs
(C,, C,) of subgroups of A such that C,< C,. Suppose F satisfies the following two
properties:

(HI) For every i <cf (k), there is a function g, : S; X S; — S, such that whenever
A S A, are in S} and A,e{0}U(range g;), then A,< g(A,, A,) and
(g(A1, Ay, ADeF,;

(HII) For every i <cf (k) and every A, S A, in Si.,, if (A,, A,) € F then player
II has a winning strategy in the following game: in the n'* move (n <o),
player I chooses B, € S; such that C,_, < B,(where C_,=0) and then
player II chooses C, € S; such that B, < C,. Player II wins if

A+ U C, A+ U C)e&.

n<w n<w

Then A is the union of a continuous ascending chain {A, | v<w cf ()} of
k-generated subgroups of A such that A,=0 and (A,.1,A)EF for all v<
w cf (k).

Proof of Theorem 3.2. Let A and G be as in he hypotheses of 3.2. We shall
prove (1), (2) and (3) simultaneously by induction on «. Part (3) is proved as in the
proof of Theorem 3.4 of [E,]. (In place of Lemma 3.5(3) we require the
straightforward generalization in which K, is replaced by K,-). The sufficiency of
the condition in part (2) is just Theorem 1.2 of [E,], and when « is regular,
necessity is Theorem 1.5 of [E,]. (Note that we can assume the chain {A, | v <k}
consists of pure subgroups by Lemma 3.1(5).) Thus it remains only to prove (1)
and necessity in (2) when « is singular.

Let & be the class of pairs (C,, C,) of subgroups of A such that C, is a pure
subgroup of C, and Ext(C,/C,,G)=0. Choose an increasing sequence
{k; |i<cf(x)}, whose limit is x such that k,=0 and for all i=0, k., =
max {cf (k), A}. We shall show that % satisfies (HI) and (HII) of Theorem 3.3.
First we prove a lemma.

LEMMA 3.4. (V=L). Let k be a limit cardinal, let A be a group of cardinality*
x and let G be a group of cardinality A <«k. Suppose that Ext (B, G)=0 for every
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k-generated subgroup B of A. Let C be a subgroup of A of infinite cardinality .,
where A < u* < k. Then there is a pure subgroup C* of A of cardinality p such that
C* contains C and

(*) Ext (C'/C*, G) =0 for all subgroups C' of A of cardinality u that contain C*.

Proof. If no such group C* exists, then we can construct by induction a
continuous ascending chain {C, | v <u*} of subgroups of A of cardinality u such
that C,=C and for all v, Isv<u™, C, is pure in A and Ext (C,,,/C,, G)#0.
Let C=U,<.+ C.. Then |C|=pu* <k, but Ext (C, G) #0 by Lemma 1.4 of [E,],
which contradicts the hypothesis. This completes the proof of the lemma.

Now we can verify (HI) by defining g so that for all (A;, A,)€eS;XS,
A,cg(A,, A, and C*=g(A,, A,) satisfies (*) of Lemma 3.4. (Note that if
A;=0, then (g(A;, A,), 0)e ¥ by the hypothesis of Theorem 3.2(1).)

It remains to verify (HII). Given A, ¢ A, in Si,,(i =1) such that (A,, A)EeF,
there exists by Lemma 3.1(6) a generating element X of K,+(A,) such that for all
He X, A, +H is a pure subgroup of A,. Moreover since by inductive hypothesis
A,/ A, satisfies Theorem 3.2(3) we may assume — using Lemma 3.1(4) - that every
element H of X satisfies Ext(A,/(A,+H),G)=0. Hence for all HeX
(A,, A,+H)e %. Now the winning strategy of player II is as follows. Suppose
C,._, € S; has been chosen so that C,_, N A, € X. If player I chooses B, € S; with
C,_,< B,, then player II chooses C, € S} such that B, = C, and C, N A, € X this
is possible because k; =A. Now

(A + U CII(A+ U C)=A/(A+ 9 (C.NAY),
and (A,, A+ Un<o, (C.NAY))eF since X is closed under unions of chains. It
follows easily that (A,+ |UJ,.<o, Co, A1+ Un<o, C)EZF.

Therefore by Theorem 3.3 we have a continuous ascending chain {A, [v <
o cf (k)} of k-generated subgroups with union A such that (A, ., A,)e % for all
v <w cf (k). Note that the continuity of the chain implies that for all v, A, is pure
in A. By choosing a continuous subchain of length cf (x) we obtain the chain
required for Theorem 3.2(2). This completes the proof of Theorem 3.2.

COROLLARY 3.5 (V=L). Let G be a group of countable torsion-free rank.
There is a countable quotient H of G such that for any torsion-free group A,
Ext (A, G)=0 if and only if Ext(A, H)=0.

Proof. Let H be the countable quotient of G given by Corollary 2.5. For any
group A, Ext (A, G)=0 implies Ext (A, H)=0. We shall prove by induction on
|A| that the converse is also true if A is torsion-free. For countable A this is
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Corollary 2.5. If A is uncountable and Ext (A, H) =0, then by Theorem 3.2(2), A
is the union of a continuous chain {A, | v <cf ()} of k-generated subgroups such
that Ext(A,, H)=0 and for all v<cf(kx), A,./A, is torsion-free and
Ext(A,.,/A,, H)=0. By induction, Ext(A,, G)=0 and for all v<cf(k),
Ext (A,.,/A,, G)=0; hence (by Theorem 1.2 of [E,]) Ext (A, G)=0.

Remark. As an immediate consequence of Corollary 3.5 we obtain Theorem
3.2 for A torsion-free and G any group of countable torsion-free rank (and
arbitrary cardinality) with A = @ in 3.2(3). This generalizes Theorem 3.4 of [E,].

We can also generalize Shelah’s solution of Whitehead’s problem in L using
Corollary 2.3.

COROLLARY 3.6 (V=L). Suppose that G is a countable torsion-free group
such that for all primes p, G is not p-divisible. For any group A, if Ext(A, G)=0
then A is free. '

Proof. We proceed by induction on the cardinality of A, using Corollary 2.3
and Theorem 3.2(2).

Remark. By [Sh,], Corollary 3.6 is independent of ZFC. Moreover the same
holds for Corollary 3.5 and Theorem 3.2(2) and (3) (see [E;]). We do not know,
however, if Theorem 3.2(1) is independent of ZFC.

The following result is related to Corollary 2.5 as Hill’s theorem ([Hi]) is
related to Pontryagin’s criterion.

THEOREM 3.7 (V=L). Let A be a torsion-free group and G a group of
countable torsion-free rank. Suppose A =, ., A,, where {A, | n<w} is a chain
of pure subgroups of A such that Ext (A,, G)=0 for all n <w. Then Ext (A, G)=
0. -

Proof. By Corollary 3.5 we may assume that G is countable. the proof of the
theorem will be by induction on |A|. If A is countable the result follows easily
from Corollary 2.7. Suppose now that |A|=«k>N,. Theorem 3.2(3) and Lemma
3.1(2) and (3) imply that there is a generating element X of K, (A) consisting of
subgroups H such that for all n<w, Ext(A,/(HNA,), G)=0. Moreover by
Lemma 3.1(6) we may assume that for all He X and all n<w, A, +H is pure in
A. Now using the properties of a generating element we can define by transfinite
induction a continuous ascending chain {H, | v <k} of elements of X such that
Hy=0, A=, H,, and for all v<k, |H,|<k. For all v<k

Hv+1/Hv = U ((Hv+1 n An) +Hv)/Hv and ((Hv+1 n An) + Hv)/Hv
= (I-Iv,-i—l N An)/(Hv n An)'
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Hence Ext ((H,.,NA,)+H,)/H,, G)=0 since by choice of X, Ext(A,/(H, N
A,), G)=0. Moreover ((H,,,NA,)+H,)/H, is pure in H,,/H, since by choice
of X, A,+H, is pure in A. Therefore by inductive hypothesis,
Ext (H,.,/H,, G)=0. Since this is true for all v <k, it follows that Ext (A, G)=0.
This completes the proof of the theorem.

4. The uncountable case: structure of Ext (A, G)

The aim of this final section is to determine the torsion-free rank of Ext (A, G)
in the case where A is uncountable torsion-free and G satisfies suitable cardinal-
ity conditions. The results of this section extend those of [H-H-S], when Shelah’s
solution of Whitehead’s problem in L is taken into account. We do not know,
however, whether our results remain valid without additional axioms of set
theory. We start with

THEOREM 4.1 (V=L). Let A be a torsion-free group of uncountable cardi-
nality « and let G be any group of cardinality <k. Suppose that for every

Kk -generated pure subgroup B of A, Ext (A/B, G)# 0. Then the torsion-free rank of
Ext (A, G) is 2~.

To prove this we follow the pattern of the proof of the corresponding result
(Theorem 1) of [H-H-S]. The regular case is an easy consequence of the
subsequent proposition. Recall that Ext (A, G) can be defined as the quotient
group Fact (A, G)/Trans (A, G), where Fact (A, G) is the abelian group of all
factor sets on A to G and Trans (A, G) is the subgroup of transformation sets
(see e.g. [F,], pp. 209-211).

PROPOSITION 4.2 (V=L). Let A be a torsion-free group of regular uncoun-
table cardinality k and let G be any group of cardinality <. Suppose that for every
k -generated pure subgroup B of A, Ext (A/B, G) #0. If A, is any k-generated pure
subgroup of A, then for every f,€ Fact (A,, G) there exists a subset {f* | @ <2} of
Fact (A, G) such that

(1) for all a <2*, f* extends f,;
(ii) for each pair a#B, f*—f" represents an element of infinite order of
Ext (A, G).

The proof of this proposition is almost identical with that of Proposition 1 in
[H-H-S]. We only have to replace the statement “A is free” by “Ext (A, G)=0".
Instead of [E,, Theorem 2.6] we make use of Theorem 1.2 of [E,]. Note that the
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cardinality hypothesis on G is needed in order that Lemma 3 of [H-H-S] can be
applied.

The proof of Theorem 4.1 in case « is singular relies on the above proposition
and

THEOREM 4.3 (V=L). Let A be any group of singular cardinality k. Let G
be a group of cardinality A <k and let vy be any infinite cardinal < k. Suppose that
every k-generated subgroup B of A contains a y*-generated subgroup C such that C

is pure in B and Ext (B/C, G)=0. Then A contains a vy -generated pure subgroup
C such that Ext (A/C, G)=0.

Proof. Let %, be the class of pairs (B, 0) where B is a subgroup of A that
contains a y*-generated subgroup C such that C is pure in B and Ext (B/C, G) =
0. Let &, be the class of pairs (B, C) of subgroups of A where C is a non-trivial
pure subgroup of B such that Ext(B/C, G)=0. We show that the class ¥ =
F,U %, satisfies (HI) and (HII) of Theorem 3.3, assuming that the sequence
{k; | i <cf (x)} is chosen such that «, =max {cf (k), A, ¥}. Condition (HI) is easily
verified by means of the following analogue of Lemma 3.4.

LEMMA 4.4 (V=L). Suppose that A and G satisfy the hypotheses of Theorem
4.3. Let B be a subgroup of A of cardinality p, where max {A, y}<u <k. Then
there is a pure subgroup B* of A of cardinality w such that B* contains B and
Ext (B’/B*, G)=0 for all subgroups B’ of A of cardinality u that contain B*.

Proof. We proceed as in the proof of Lemma 3.4. Supposing that no such B*
exists, we obtain a subgroup B of A of cardinality w* which is the union of a
continuous ascending chain {B, | v <u*} of subgroups of cardinality w such that
B,=B and for all v, 1<v<pu™, B, is pure in A and Ext(B,,,/B,, G)# 0. By
hypothesis B contains a y*-generated pure subgroup C such that Ext (B/C, G) =
0. As |B| is regular, we may assume that C is contained in B,; so we have
B/C=U,<.-B,/C. But then Lemma 1.4 of [E,] yields a contradiction, and our
lemma is proved.

It remains to check (HII). Given A, ¢ A, in Si,; such that (A,, A))e &, we
distinguish the following two cases. First if A; #0, we proceed exactly as in the
proof of Theorem 3.2. In the second case, suppose that A; =0. So (A,, A))eF
means that A, contains a vy -generated pure subgroup C such that
Ext (A,/C,G)=0. Then by Theorem 3.2(3) and Lemma 3.1 there exists a
generating element X of K,-(A,) consisting of subgroups H of A, such that
(A,, C+H)e %. Now the winning strategy of player II is to choose C, € S} such
that C, contains C and C, N A, € X. This is possible by the assumption on ;.
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Then

A+ U CHIA+ U Cl=A/U (C.NA))

n<w n<w n<w

= A/(C+ U (C.NA)).

n<w

But (A,, C+ U, <, (C,NA,)) is in & since X is closed under unions of chains; so
indeed (A,+U,<o Co, A+ Upn<. CEZ.

Therefore by Theorem 3.3 we obtain a continuous chain {A, | v < cf (x)} of
k-generated pure subgroups of A such that A =|J, _,uu) A, A; contains a
v*-generated pure subgroup C with Ext(A,/C,G)=0 and for all v, 1sv<
w cf (k), Ext(A,.,/A,, G)=0. Hence we have Ext(A/C,G)=0 by Theorem
3.2(2). This completes the proof of Theorem 4.3.

Proof of Theorem 4.1. Clearly 2" is an upper bound for r,(Ext (A, G)). If « is
regular, Proposition 4.2 implies that the quotient group of Ext (A, G) modulo
torsion is of cardinality 2. Hence in this case 2* is also a lower bound for
ro(Ext (A, G)). Note that for k regular the theorem still holds if the cardinality of
G is k.

Now assume that « is singular. In this case we define by induction a chain of
pure subgroups {A, | v <cf (x)} of A such that

(i) A= Uv<cf(x) A,

(ii) |A,| is a regular cardinal >max{|G|,|U.<, A.l};

(iii) if C is a |A,|-generated pure subgroup of A,, then Ext (A,/C, G) # 0.
The definition of the chain is similar to the one in the proof of Theorem 1 of [H-
H-S]. Instead of Theorem 2 of [H-H-S] we apply our Theorem 4.3, while
condition (iii) is checked by making use of Theorem 3.2(3).

Let A,=J,.,A,. As in [H-H-S], we deduce from Proposition 4.2 that to
each sequence m of ordinals of length v with n(u)e2, w<w, a factor set
freFact (A,, G) can be assigned such that

(iv) if £ is an initial segment of n, then f™ extends f¢;

(v) if £#m are of the same length v, then f® —f™ represents an infinite order

element of Ext (A, G).
We conclude that there are [[, (o 2i4l=2% factor sets on A to G which
represent pairwise different elements of Ext (A, G) modulo torsion. This com-
pletes the proof of Theorem 4.1.

THEOREM 4.5 (V=L). Let A be a torsion-free group and let G be any group
of countable torsion-free rank such that Ext (A, G)# 0. Suppose that B is a pure
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subgroup of A such that Ext(A/B, G)=0. If B is of minimal cardinality, then
ro(Ext (A, G))=2"8!,

Proof. By hypothesis we have Ext (A, G)=Ext (B, G). The case where B is
countable is therefore settled by Theorem 2.8. For uncountable B the result
follows from Corollary 3.5 and Theorem 4.1.

Remark. The following special case of the above theorem is implicit in [N, ]: If
A is a torsion-free group and T a torsion group such that Ext (A, T)#0, then
ro(Ext (A, T))=2%. Note that this does not require V=1L.

The next two results are immediate consequences of Theorem 4.5.

COROLLARY 4.6. (V=L). Let A be torsion-free and let G be countable such
that Ext (A, G)# 0. Then

(a) ro(Ext (A, G))=2" for some infinite cardinal w;

(b) ro(Ext (A, G))=|Ext (A, G)|.

COROLLARY 4.7. (V=L). Let A be k-free for some infinite cardinal k and
let G be countable. If Ext (A, G) #0, then ryo(Ext (A, G))=2" for some p=«.

Recall that a group A is called «-free if every k-generated subgroup of A is
free. We already mentioned that the results of this section extend those of
[H-H-S]. Corollaries 4.7 and 4.8 generalize, moreover, Théoreéme 1 and Corol-
laire 2 of [Hul, respectively.

COROLLARY 4.8 (V=L). Let A be any group and let G be countable. If
Ext (A, G) is nonzero and divisible, then r,(Ext (A, G)) =2" for some infinite w.

Proof. Clearly we may assume that G is reduced. We consider the exact
sequence

Hom (tA, G) — Ext (A/tA, G)—> Ext (A, G) — Ext (tA, G) — 0.

From Lemma 55.3 of [F,] we know that Ext (tA, G) is reduced. On the other
hand, the hypothesis implies that Ext (tA, G) is divisible; hence Ext (tA, G)=0.
Using Lemma 1.1 we conclude that G is p-divisible for every prime p for which
t,A#0. Therefore we have tG=0 whenever t,A#0. It follows that
Hom (TA, G)=]], Hom (t,A, t,G) = 0. Hence by exactness of the above sequence
¢ is an isomorphism. Thus it sufficies to consider the case where A is torsion-free.
But this case has already been settled by Corollary 4.6(a).
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