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Dichtepunkte im Spektrum Riemannscher Flàchen

Peter Buser

Wir betrachten eine Folge {Fn}~=1 von kompakten Riemannschen Flâchen mit
festem Geschlecht g(Fn) g^2. Die Flâchen versehen wir mit der konform
vertràglichen Poincaré-Metrik der konstanten Krùmmung — 1. Im Spektrum des

Laplace-Beltrami-Operators AFn dieser Flâchen spielt die Zahl | eine spezielle
Rolle. Bedeutet nàmlich AFn[x, y] fur O^x<y die Anzahl der Eigenwerte von
AFn im Intervall [x, y], gezâhlt mit ihren Vielfachheiten, so ist mit O^x <\ fur aile

J2 (1)

wâhrend AFn[|,| + e] mit n—»oo fur jedes e>0 beliebig gross wird, sobald die

Lange jLt(Fn) der kùrzesten geschlossenen Geodàtischen von Fn gegen Null konver-
giert. Man kann sich nun fragen, was redits von der Stelle \ passiert. Nach dem

asymptotischen Gesetz von Weyl gilt fur testes n

AFn[0, y]~y(g-l), wenn y-*».
Man kônnte deshalb vermuten, dass man eine Ungleichung der Form (1) auch fur
weitere Intervalle rechts von \ beweisen kann, und dass der beschriebene Ver-
dichtungsefïekt nur bei x \ auftritt. Ueberraschenderweise ist jedoch das Gegen-
teil der Fall: Wenn sich das Spektrum der Schar {Fn} bei x —\ in der genannten
Weise verdichtet, dann auch an jeder weiteren Stelle rechts von |, und das Mass

der Verdichtung làsst sich sogar explizit angeben. Um dièse Behauptung zu
pràzisieren, fùhren wir folgende Bezeichnung ein:

DEFINITION. Eine Zahl x ^0 heisst Dichtepunkt fur die Spektren der Folge

{Fn}^=1, wenn lim AFn[x — e, x +£] +<*> fur aile e>0. Sind x, y zwei

Dichtepunkte, so heisst

^r6^o n-»oo AFn[x - e,

die relative Dichte von y bezùglich x, sofern der Grenzwert existiert, andernfalls
ist die relative Dichte nicht erklârt.
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432 Peter Buser

Nach (1) kann x<\ nie Dichtepunkt sein, aber x=\ ist stets einer, wenn
/m(Fn)—» 0. Fur Beispiele hierzu siehe [1]. Wir zeigen nun umgekehrt:

SATZ. Wenn die Folge {Fn}~=1 einen Dichtepunkt besitzt, so gilt (mit n —» <*>)

(a) M,(Fn)-*0.
(b) Jedes x^\ ist Dichtepunkt der Folge.
(c) Fur \^x<y ist die relative Dichte erklàrt und betràgt

Beweis von (a). Es sei x >0 und {3Fk}k*=i ={^Vik}k=i eine Teilfolge mit
fx0 fur ein jbto>0. Wir zeigen, dass x nicht Dichtepunkt ist.

Einer Idée von Fejes-Tôth [4] folgend legen wir auf 3F 3Fk (k festgehalten)
eine endliche Menge 0> von Punkten im gegenseitigen Abstand grôsser oder
gleich

und zwar so, dass (q, 3P)<r fur aile qeSF ist. Man nennt $J> gesàttigt bezùglich r.

Es sei S§ die Menge aller geodâtischen Kreise auf 3F, die in ihrem Innern keine,
aber auf dem Rand mindestens drei Punkte von ^ enthalten. Fur den Radius R
eines solchen Kreises gilt offenbar

Die Punkte von 3>, die auf ein und demselben kreis Ke0H liegen, §ind

Eckpunkte eines konvexen geodâtischen Polygons mit Umkreis K. Da fur je zwei
solche Polygone beide Umkreise im Innern frei sind von Eckpunkten, und weil
nach (2) die Umkreisradien kleiner sind als der halbe Injektivitâtsradius von $, so
ist der Durchschnitt zweier Polygone immer entweder leer, eine Ecke oder eine

gemeinsame Seite. Weiter ùberdecken die Polygone ganz 3*. Zerlegt man deshalb

jedes Polygon durch Diagonalen in geodâtische Dreiecke, so ist dadurch auf 9
eine Triangulierung definiert, bei der jedes Dreieck eine Seitenlânge grôsser oder
gleich r und nach (2) einen Umkreisradius kleiner als r besitzt. Der Flâcheninhalt
dieser Dreiecke ist deshalb stets grôsser oder gleich dem Flâcheninhalt des

gleichseiten Dreiecks mit Seitenlânge r in der hyperbolischen Ebene, also wegen
r<\ stets grôsser als |r2. Der Inhalt von 3F ist nach Gauss-Bonnet gleich

4tr(g-l). Folglich besteht die Triangulation aus hôchstens 127r(g - l)/r2 Dreiek-
ken. Nun wurde in [1] gezeigt, dass der kleinste positive Eigenert t)(D) des
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Neumannproblems

*du\dD O (3)

auf jedem solchen Dreieck D grôsser ist als |ctgh2r>x + l. Also folgt aus dem
zweiten Minimaxprinzip von Courant, dass A^O, x + l]^127r(g-l)/r2 fur aile
fc. Das bedeutet aber gerade, dass x kein Dichtepunkt ist, was zu zeigen war.

Fur den Beweis von (b) und (c) ist es nôtig zu wissen, wie sich der kleinste

positive Eigenwert von (3) verândert, wenn man das Gebiet leicht verzerrt. Es

seien dazu fur den Moment etwas allgemeiner D, D zwei beliebige berandete
Flâchen, t](D), t)(D) die kleinsten positiven Eigenwerte von (3) und <P : D —> D
ein in beiden Richtungen stûckweise difïerenzierbarer Homôomorphismus. Wenn
fur eine Zahl a^ 1 und fur aile p,qeD die Ungleichung

l dist (p, q) ^ dist (<2>p, <Pq) ^ crdist (p, q)

erfùllt ist, so heisst <P eine a-quasi-Isometrie, und es gilt

LEMMA 1. o--4tî(D)^tï(D)^o-4tî(D).

Beweis. Da mit <P auch <P~X eine cr-quasi-Isometrie ist, genùgt es, die
Ungleichung rechts zu beweisen. Wir betrachten dazu eine Eigenfunktion u von (3)
zum Eigenwert i]=r](D). Wegen JD u tj~1 $dAu =0 sind die offenen Teil-
mengen

D+ {peD|u(p)>0}, D_ {PgD|m(p)<0}

nicht leer, und u ist auf beiden Teilmengen eine Eigenfunktion zur gemischten
Randbedingung u * du \ dD ± 0. Es folgt aus der Greenschen Formel

u2. (4)

Auf D± : <P(D±) erfûllt die Hilfsfunktion v := u <> «Ê"1 die Ungleichungen

[ ||grad vf^ a2 f ||grad u||2, [ u2 ^ a2 f v2. (5)
Jd± -b± «fc>± jûj=

Es gibt eine solche Zahl a>0, dass die Funktion fot(p): v(p) fur
die Bedingung Jd/«=0 erfûllt. Fur fa gilt dann das
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Rayleighsche Extremalprinzip, also wegen (4) und (5)

f Ilgrad/J|2 f ||gradu||2^^4JL= <t4ti(D), q.e.d.^4JL7
Jd Jd

Beweis von (b) und (c). Wir betrachten zwei feste Zahlen a, b mit \<a<b
und setzen zur Abkûrzung fur 0<f<l:

(6)

Wegen (1) reduzieren sich beide Behauptungen unmittelbar auf den folgenden
Hilfssatz:

LEMMA 2. Zu jedem t mit 0<t<min{l, a— |} existiert eine Zahlenfolge

{Lt,n\n=i mû 1™ Lt,n +00, sodciss fur aile £e[a, b] und neN gilt

Beweis. Es se F Fn, n festgehalten. Das Lemma stûtzt sich ganz wesentlich
auf den folgenden Satz ùber Kragen [2], [6]:

Fur jede einfachgeschlossene Geodàtische y auf F mit Lange l(y) ist die Umgebung

Z(y) {p g FI dist (p, 7) ^ dy}, dy arcsinh {cosech \l

topologisch ein Zylinder, der sich durch Fermikoordinaten p — (x, y) mit y als

y-Achse beschreiben làsst in der Form

Z(y) {(x, y) | x g [-d,, dyl y e R/[y ^ y + 2tt]} (7)

mit dem Masstensor

(8)

Ist y eine weitere einfachgeschlossene Geodàtische, die y nicht schneidet, so sind die

Zylinder Z(y) und Z(y) disjunkt.
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Es seien nun 7l,..., yk ; fc fc(n), sàmtliche einfachgeschlossenen
Geodâtischen auf F der Lange l(yl)^4iJLO9 i 1,..., k. Wegen jx,0<g ist /(7l)<
2dyi, also sind nach dem Satz iiber Kragen die 7l paarweise disjunkt, und es ist

sogar

Z(7l)nz(7j) 0; i*U î^Uj^k. (9)

Von der Flâchentopologie her ist bekannt, dass dabei

k k(n)^3g-3 (10)

sein muss. Wir betrachten nun einen der Zylinder Z{yx) und setzen zur
Abkûrzung

xt : arccosh \ ^° \ > 7/x0, L, : max {xt - x0- fx0; 0},

A.n: - I A- (11)
U l==i

Mit Hilfe der einfachen Beobachtung, dass x~l sinh x<2 fur |x|<2 rechnet man
nach, dass

xt + fxo< d^, î 1,..., k. (12)

Wir kônnen deshalb auf jedem der Zylinder Z(7l) die folgenden sechzehn Punkte
auszeichnen:

^], j 0,..., 7; i 1,..., k. (13)

Hier haben wir die Koordinaten (7) verwendet. Wir verbinden Pf} mit Pj+1 durch
ein geodâtisches Segment or*, j 0,..., 7 (mod 8), den Index i lassen wir aber
wenn es geht weg, ebenso schreiben wir P, statt P^ usw. Um die Lange und den
Abstand dieser Segmenté von yt auszurechnen, fàllen wir z.B. von Po aus das Lot
u an 7, (innerhalb von Z(7l)), ebenso vom Mittelpunkt des Segmentes <t0 aus das

gemeinsame Lot v' von cr0 und 7l. Die Lote zusammen mit aQ und 7l bilden ein
Spitzeck, das ist ein geodâtisches Viereck mit drei rechten Winkeln, den aufeinan-
derfolgenden Seiten w, v9 v\ u' und einem spitzen Winkel bei Po zwischen u und
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Figur 1

iï (Figur 1). Fur solche Spitzecke gilt allgemein [5] p. 79

sinh iï cosh u • sinh v, sinh u cosh iï • sinh v'. (14)

In unserem Fall ist u xl, u=^f(7l), i/ dist (o-0, 7,), iï ^l(a0), also wie
beabsichtigt

/ 0,...,7; (15)

Wegen v'<u ist max{l + u-t>'; u/v'}<sinh u/sinhd;, und es folgt aus der
zweiten Gleichung (14), da julo<1/6:

dist (o"*, 7l î 0,..., 7. (16)

Die acht Segmente a* bzw. crll definieren je einen zu 7, homotopen Weg 7^ bzw.

y~. Es sei Wf der durch 7, und yf berandete Zylinder und W, := W~U W^c:
Z{yt)\ i 1,..., k. Endlich bezeichnet P den Abschluss von F— U^i Wr Aus
(9) folgt

F ist die bis auf Rânder disjunkte Vereinigung F FUW1U"«UWk. (17)

Weiter wird behauptet

Der Injektivitâtsradius ist auf F' ûberall grôsser als 2/ul0. (18)

Beweis. Wenn der Injektivitàtsradius in einem Punkt peF kleiner ist oder
gleich 2fx0, so gibt es eine in p gebrochene geschlossene Geodàtische a der Lange

0, die ofïenbar zu einem der 7, frei homotop ist und mit 7, zusammen
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einen Zylinder S berandet. Dieser wird durch das gemeinsame Lot vr von a nach

yt und durch das Lot u von p aus an yt in zwei kongruente Spitzecke mit den
aufeinanderfolgenden Seiten u dist (p, yt)9 v=\ I(Yi)> v' dist (or, yt), u'
|I(o")^2fjL0 zerlegt. Aus (14) folgt wegen /ulo<1/6, dass coshju + juiol^coshx^
Also liegt p im Zylinder Wl9 q.e.d.

Es gibt eine Triangulierung von F' in m ^ 127T2/xô2(g — 1) geodâtische Dreiecke
Dv mîr tï(Dv)>ê v 1,..., m. (19)

Beweis. Wegen (9), (11), (12) und (15) liegen keine zwei der Punkte P* aus
(13) nâher beieinander als jul0. Die Punkte (13) lassen sich deshalb zu einem
bezûglich jlx0 gesàttigten System 9* auf F' ergànzen, das wegen (18) auf dieselbe
Weise wie im Beweis von (a) die verlangte Triangulation liefert, q.e.d.

Wir zerlegen jetzt die Zylinder Wt ebenfalls in geeigneter Weise. Dazu fùhren
wir folgende Abkûrzungen ein (siehe (11)), das Symbol [.] ist die Gaussklammer,
[x] max {z g Z | z ^ x}.

Es gibt eine Zerlegung Wt Wtl U • • • U WlWi in ^ =^2mo + 2m1 bis auf Rânder
disjunkte Bereiche mit r\(Wlv) ^ fe v 1,..., nr. (20)

Beweis. Es sei zuerst xt >xo + jlx^,. Mit den Koordinaten (7) definieren wir auf
^ die Bereiche

— (i^)m0 m0

ml

Nach (8), (16) und wegen julo< 1/6 làsst sich jeder der Bereiche Al9..., A^ und
C V2-quasi-isometrisch auf einen flachen Zylinder 3? [0, a]xR/[y i->y + j3]
versehen mit der Metrik ds2 dx2 + dy2 abbilden mit a ^ |ut0, p ^ 1(7,) • cosh x, <
9/m0- Nun ist bekanntlich ri(!Z) min {ir2/a2;4ir2l($2}, also ist nach Lemma 1

T|(Ay)>6 v 1,..., m0.
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Wegen K2e~x coshx<l + f/6 fur x^xo xo(0 (siehe (6)), lâsst sich jeder Be-
reich Bv (1 H- f)*-quasi-isometrisch abbilden auf einen Zylinder

versehen mit der Metrik

ds2 dx2+f(x)dy2, ^cosh(x0+
Ztt l> m,

Auf B'v ist das Eigenwertproblem (3) lôsbar, und zwar kann man folgendes zeigen
(z.B. [3] Lemmata 7,8,9): Der Ansatz u(x, y) u(x) • w(y) liefert sàmtliche

Eigenwerte von (3). Ist dabei w# const., so ist der zugehôrige Eigenwert
^min{/~2(x) | x€[0, LJm^. Ist w= const., so ist v eine Losung der Schwin-
gungsgleichung v" + v' + r\v 0 auf [0, A/mJ zur Randbedingung t>'(0)

In unserem Fall ist /(jt)<3/u,0, also ist Tî(Bt) |+ 7r2mfLr2^g(l + 0. Nach
Lemma 1 heisst das, es ist

Indem wir auf Wr analog verfahren, ist die Behauptung im Falle xl>x0+ii0
bewiesen. Fur ^^Xo+julq verlâuft aber der Beweis genau gleich, nur dass dann
die Bereiche Bv nicht vorkommen.

Fur einen Bereich D auf F bezeichnet À(D) den kleinsten positiven Eigenwert
des Randwertproblems AFu À • u auf D, u \ dD 0.

Auf jedem Zylinder Z(yt) gibt es bis auf Rânder disjunkte Bereiche

ZlU ,Zlw; mit A(Zlv)^4 v 1,... ,2mf. (21)

Beweis. Wir setzen Zlv={(x,y)sZ(yl)\av^x^av + r'}y o.
v l, ...,m;. Die Hilfsfunktion /(x, y) /(x): e"^x sin{7r(x-av)/r'} versch-
windet auf dem Rand von Zlv, und es gilt wegen x ^ x0 nach (8)

f ||grad/||2 r+'f\x)e*dx
^<(1+0f f(x)exdx
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Folglich ist À(Zlv)<£ nach dem Rayleighschen Extremalprinzip. Indem wir auf
der linken Seite von Z{yx) entsprechend verfahren, ist (21) bewiesen.

Der Beweis von Lemma 2 und damit von (b) und (c) ist nun nicht mehr
schwer. Nach dem bereits bewiesenen Teil (a) des Satzes gilt jll(Fh) —> 0, wenn
n -» oo, also Ltn —> oo. Die Ungleichung rechts in Lemma 2 folgt mit (10), (17),
(19) und (20) aus dem zweiten Minimaxprinzip von Courant, die Ungleichung
links mit (10) und (21) aus dem ersten Minimaxprinzip. Damit ist ailes bewiesen.
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