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Comment. Math. Helvetici 54 (1979) 431-439 Birkhduser Verlag, Basel

Dichtepunkte im Spektrum Riemannscher Fliachen

PETER BUSER

Wir betrachten eine Folge {F, };,—,; von kompakten Riemannschen Flichen mit
festem Geschlecht g(F,)=g=2. Die Flichen versehen wir mit der konform
vertraglichen Poincaré-Metrik der konstanten Krimmung —1. Im Spektrum des
Laplace-Beltrami-Operators Ag, dieser Flichen spielt die Zahl ; eine spezielle
Rolle. Bedeutet namlich Ag,[x, y] fir 0<x <y die Anzahl der Eigenwerte von
Ag, im Intervall [x, y], gezéhlt mit ihren Vielfachheiten, so ist mit 0 < x <7 fiir alle
n [1]

Ag [x,i]<4g-2 (1)

wdhrend Ag, [, %+ €] mit n — o fiir jedes € >0 beliebig gross wird, sobald die
Léinge w(F,) der kiirzesten geschlossenen Geodidtischen von F, gegen Null konver-
giert. Man kann sich nun fragen, was rechts von der Stelle ; passiert. Nach dem
asymptotischen Gesetz von Weyl gilt fiir festes n

AFn[O, YJ~ Y(g_ 1)5 wenn y — o,

Man konnte deshalb vermuten, dass man eine Ungleichung der Form (1) auch fiir
weitere Intervalle rechts von § beweisen kann, und dass der beschriebene Ver-
dichtungseffekt nur bei x =3 auftritt. Ueberraschenderweise ist jedoch das Gegen-
teil der Fall: Wenn sich das Spektrum der Schar {F,} bei x =7 in der genannten
Weise verdichtet, dann auch an jeder weiteren Stelle rechts von , und das Mass
der Verdichtung lasst sich sogar explizit angeben. Um diese Behauptung zu
prazisieren, fithren wir folgende Bezeichnung ein:

DEFINITION. Eine Zahl x =0 heisst Dichtepunkt fiir die Spektren der Folge
{E }:_,, wenn lim Ag,[x—¢, x+e]=+x fiir alle £>0. Sind x,y zwei Dich-

n—»o0

tepunkte, so heisst

. - AFn[y_eiy+8]
;x):=lim 1
p(y; x) sl-I»I(l) nl.IEo Ap[x—¢€,x+¢€]

die relative Dichte von y beziiglich x, sofern der Grenzwert existiert, andernfalls
ist die relative Dichte nicht erklart.
431
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Nach (1) kann x <} nie Dichtepunkt sein, aber x =1 ist stets einer, wenn
w(F,) — 0. Fir Beispiele hierzu siehe [1]. Wir zeigen nun umgekehrt:

SATZ. Wenn die Folge {F,}._, einen Dichtepunkt besitzt, so gilt (mit n — )
(a) w(F,)—0.

(b) Jedes x =} ist Dichtepunkt der Folge.

(c) Fiir 3=<x<y ist die relative Dichte erkliirt und betrigt

( .x)_.(4x——1>%
p(y; =1

Beweis von (a). Essei x >0 und {#, }x1 ={F.«}x -1 €ine Teilfolge mit w(%,)=
Wo fir ein wy>0. Wir zeigen, dass x nicht Dichtepunkt ist.

Einer Idee von Fejes-T6th [4] folgend legen wir auf & = %, (k festgehalten)
eine endliche Menge 2 von Punkten im gegenseitigen Abstand grosser oder
gleich

r =4 min {p,, (x +1)""/3},

und zwar so, dass (q, ) <r fiir alle q € &F ist. Man nennt P gesdttigt beziiglich r.
Es sei B die Menge aller geoditischen Kreise auf %, die in ihrem Innern keine,
aber auf dem Rand mindestens drei Punkte von ? enthalten. Fiir den Radius R
eines solchen Kreises gilt offenbar

Ir<R<r<i (2)

Die Punkte von 2, die auf eimr und demselben kreis Ke % liegen, sind
Eckpunkte eines konvexen geoditischen Polygons mit Umkreis K. Da fiir je zwei
solche Polygone beide Umkreise im Innern frei sind von Eckpunkten, und weil
nach (2) die Umkreisradien kleiner sind als der halbe Injektivitatsradius von &, so
ist der Durchschnitt zweier Polygone immer entweder leer, eine Ecke oder eine
gemeinsame Seite. Weiter iiberdecken die Polygone ganz %. Zerlegt man deshalb
jedes Polygon durch Diagonalen in geoditische Dreiecke, so ist dadurch auf &
eine Triangulierung definiert, bei der jedes Dreieck eine Seitenlinge grosser oder
gleich r und nach (2) einen Umkreisradius kleiner als r besitzt. Der Flacheninhalt
dieser Dreiecke ist deshalb stets griosser oder gleich dem Flacheninhalt des
gleichseiten Dreiecks mit Seitenldnge r in der hyperbolischen Ebene, also wegen
r<ji stets grosser als ir*. Der Inhalt von & ist nach Gauss-Bonnet gleich
41r(g—1). Folglich besteht die Triangulation aus h6chstens 127 (g — 1)/r* Dreiek-
ken. Nun wurde in [1] gezeigt, dass der kleinste positive Eigenert n(D) des
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Neumannproblems
Agu =n-u auf D, * du |aD =0 3)

auf jedem solchen Dreieck D grosser ist als 4 ctgh >r>x +1. Also folgt aus dem
zweiten Minimaxprinzip von Courant, dass Ag [0, x +1]<12m(g—1)/r* fiir alle
k. Das bedeutet aber gerade, dass x kein Dichtepunkt ist, was zu zeigen war.

Fiir den Beweis von (b) und (c) ist es nitig zu wissen, wie sich der kleinste
positive Eigenwert von (3) verandert, wenn man das Gebiet leicht verzerrt. Es
seien dazu fir den Moment etwas allgemeiner D, D zwei beliebige berandete
Flichen, n(D), n(D) die kleinsten positiven Eigenwerte von (3) und @:D — D
ein in beiden Richtungen stiickweise differenzierbarer Homéomorphismus. Wenn
fiir eine Zahl o =1 und fiir alle p, g€ D die Ungleichung

& dist (p, q) <dist (Pp, Pq) <odist (p, q)

erfiillt ist, so heisst @ eine o-quasi-Isometrie, und es gilt

LEMMA 1. o *n(D)<n(D)<ao*n(D).

Beweis. Da mit ¢ auch @' eine o-quasi-Isometrie ist, geniigt es, die Un-
gleichung rechts zu beweisen. Wir betrachten dazu eine Eigenfunktion u von (3)
zum FEigenwert n =n(D). Wegen [pu=mn""JpAu=0 sind die offenen Teil-
mengen

D,={peD|u(p)>0}, D_={peD|u(p)<0}

nicht leer, und u ist auf beiden Teilmengen eine Eigenfunktion zur gemischten
Randbedingung u * du | 8D + =0. Es folgt aus der Greenschen Formel

| teradup=m| @)

D+

Auf D+ :=@®(D ) erfillt die Hilfsfunktion v:=u > ®~! die Ungleichungen

D

| lgradop<o?
D

D+

lerad ulP, j <o v )
D+

Es gibt eine solche Zahl a >0, dass die Funktion f, (p):=v(p) fir p»’:‘D—T+
f.(p):=av(p) fir pe D_ die Bedingung fsf, =0 erfilllt. Fir f, gilt dann das
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Rayleighsche Extremalprinzip, also wegen (4) und (5)

[ leradgP [ leradup
(D)<= <o*=———=0"n(D), qed

.

Beweis von (b) und (c). Wir betrachten zwei feste Zahlen a, b mit $<a<b
und setzen zur Abkiirzung fiir 0<t<1:

1 t)+120
xo=xo(t) =3log6/t, @, =120

=m | 2 (g—1). (6)

Ko

Wegen (1) reduzieren sich beide Behauptungen unmittelbar auf den folgenden
Hilfssatz:

LEMMA 2. Zu jedem t mit 0<t<min{l, a—3} existiert eine Zahlenfolge

{L,,.}7-1 mit lim L,,, = +x, sodass fiir alle £€[a, b] und neN gilt

n—»o

L. - (6(1=0)—2F— 0, <Ag[0, £]< o, + L, (£ +1)—3)

Beweis. Es se F=F,, n festgehalten. Das Lemma stiitzt sich ganz wesentlich
auf den folgenden Satz iiber Kragen 2], [6]:

Fiir jede einfachgeschlossene Geodiitische vy auf F mit Lange I(vy) ist die Umgebung

Z(y)={peF|dist(p,y)<d,}, d,=arcsinh{cosech}I(y)}
I

topologisch ein Zylinder, der sich durch Fermikoordinaten p =(x,y) mit vy als
y-Achse beschreiben ldsst in der Form :

Z(y)={(x,y)|xe[~-d,, d,), yeR/[y—y+27]} (7)
mit dem Masstensor
ds?>=dx?*+[1(y)-cosh xT dy>. (8)

Ist vy eine weitere einfachgeschlossene Geoditische, die -y nicht schneidet, so sind die
Zylinder Z(y) und Z(%y) disjunkt.
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Es seien nun vy,,...,v; k=k(n), samtliche einfachgeschlossenen
Geoditischen auf F der Linge I(y,) <4y, i=1,..., k. Wegen po<z ist ()<
2d,, also sind nach dem Satz iiber Kragen die v, paarweise disjunkt, und es ist
sogar

Z(v)NZ(y)=D;  i#), 1sijsk )
Von der Flachentopologie her ist bekannt, dass dabei
k=k(n)<3g-3 (10)

sein muss. Wir betrachten nun einen der Zylinder Z(+y;) und setzen zur
Abkiirzung

Slnh 2I.L0
sinh % I(y,)

2 k(n)
= ; (11)

x; :=arccosh { }>7uo, L; :=max {x; — xo— wo; 0},

Mit Hilfe der einfachen Beobachtung, dass x ™' sinh x <2 fiir |x| <2 rechnet man
nach, dass

X+po<d, i=1,....k (12)

Wir konnen deshalb auf jedem der Zylinder Z(y;) die folgenden sechzehn Punkte
auszeichnen:

Pﬁz(ix”-%’)’ j=09'~"7; izl""’k' (13)

Hier haben wir die Koordinaten (7) verwendet. Wir verbinden P;; mit P, durch
ein geoditisches Segment o}, j=0,...,7 (mod 8), den Index i lassen wir aber
wenn es geht weg, ebenso schreiben wir P; statt P;; usw. Um die Linge und den
Abstand dieser Segmente von v; auszurechnen, fallen wir z.B. von P, aus das Lot
u an v; (innerhalb von Z(,)), ebenso vom Mittelpunkt des Segmentes o, aus das
gemeinsame Lot v’ von o, und v, Die Lote zusammen mit o, und +; bilden ein
Spitzeck, das ist ein geoditisches Viereck mit drei rechten Winkeln, den aufeinan-
derfolgenden Seiten u, v, v’, u’ und einem spitzen Winkel bei P, zwischen u und
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Figur 1
u’' (Figur 1). Fir solche Spitzecke gilt allgemein [5] p. 79
sinh u’ = cosh u - sinh v, sinh u = cosh u’ - sinh v’. (14)

In unserem Fall ist u=x, v=%Il(y,), v =dist(oy,v,), u' =3l(o,), also wie
beabsichtigt

I6)=pe, §=0,...,7; i=1,...,k (15)

Wegen v'<u ist max{l+u—v'; u/v'}<sinh u/sinhv’, und es folgt aus der
zweiten Gleichung (14), da p,<<1/6:

- 1
dist (o7, v;) = max {%,xi——g u,o}, i=0,...,7. (16)

Die acht Segmente o bzw. o;; definieren je einen zu vy, homotopen Weg ;" bzw.
v:. Es sei Wi der durch vy, und vy berandete Zylinder und W, :=W; U W, c
Z(y); i=1,..., k. Endlich bezeichnet F’ den Abschluss von F— | J}_, W.. Aus
(9) folgt

F ist die bis auf Rander disjunkte Vereinigung F=F UW,U - - - UW,. a7
Weiter wird behauptet

Der Injektivitdtsradius ist auf F' iiberall grosser als 2. (18)

Beweis. Wenn der Injektivititsradius in einem Punkt p € F kleiner ist oder

gleich 2u,, so gibt es eine in p gebrochene geschlossene Geoditische o der Lange
l(o)<4pu,, die offenbar zu einem der +y; frei homotop ist und mit y, zusammen
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einen Zylinder S berandet. Dieser wird durch das gemeinsame Lot v’ von ¢ nach
v; und durch das Lot u von p aus an +y; in zwei kongruente Spitzecke mit den
aufeinanderfolgenden Seiten u=dist(p,vy;), v=31(y,), v =dist(o,vy), u'=
3 l(o)=<2u, zerlegt. Aus (14) folgt wegen po<1/6, dass cosh {u + po}=<cosh x;.
Also liegt p im Zylinder W,, q.e.d.

Es gibt eine Triangulierung von F' in m <12m*uq>(g — 1) geoditische Dreiecke
D, mitq(D,)>§&v=1,...,m. (19)

Beweis. Wegen (9), (11), (12) und (15) liegen keine zwei der Punkte Pj; aus
(13) naher beieinander als u,. Die Punkte (13) lassen sich deshalb zu einem
beziiglich u, gesittigten System % auf F’' erginzen, das wegen (18) auf dieselbe
Weise wie im Beweis von (a) die verlangte Triangulation liefert, q.e.d.

Wir zerlegen jetzt die Zylinder W, ebenfalls in geeigneter Weise. Dazu fithren
wir folgende Abkiirzungen ein (siehe (11)), das Symbol [.] ist die Gaussklammer,
[x]=max{zeZ|z=<x}.

1

r=m(£(1+1)—-973 '=w(E(1-1)—3)72
o e

Es gibt eine Zerlegung W, = W,;U - - - UW,, in n, <2m,+2m; bis auf Rdnder
disjunkte Bereiche mit m(W,,)=¢& v=1,...,n,. (20)

Beweis. Es sei zuerst x; > x,+ w,. Mit den Koordinaten (7) definieren wir auf
W die Bereiche

A,,={(x,y)eWflﬁ(v—l)sxsﬁgv}, v=1,...,mg;
my mg

L. .

B, ={(x, y)e W/ | x0+——'(v—1)SxSx0+£ v}, v=1,...,m;
m; m;

C={(x,y)e W | x=x,— po}.

Nach (8), (16) und wegen u,<1/6 lasst sich jeder der Bereiche A,, ..., A, und
C v 2-quasi-isometrisch auf einen flachen Zylinder Z =[0, a]XR/[y+—y+]
versehen mit der Metrik ds?= dx*+ dy? abbilden mit a <pu,, B <I(y,) - cosh x; <
9uo. Nun ist bekanntlich (%)= min {m?/a?; 47w?*/B8?}, also ist nach Lemma 1

n(C)>£a n(Av)>§9 V=1,...,m0.
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Wegen 1<2e ™ cosh x <1+1/6 fiir x =x,=x,(t) (siche (6)), lasst sich jeder Be-
reich B, (1+ t)*-quasi-isometrisch abbilden auf einen Zylinder

B={0, - | xRily > y +2n],

1

versehen mit der Metrik

ds*=dx*+f*(x) dy?, f(x)=l—§§cosh {x0+—rli—(v~1)} - e*.

Auf B! ist das Eigenwertproblem (3) l6sbar, und zwar kann man folgendes zeigen
(z.B. [3] Lemmata 7,8,9): Der Ansatz u(x,y)=v(x)- w(y) liefert samtliche
Eigenwerte von (3). Ist dabei w# const., so ist der zugehorige Eigenwert
>min {f 2(x) | x€[0, L/m;T}. Ist w=const., so ist v eine Losung der Schwin-
gungsgleichung v"+v'+mv=0 auf [0,L/m;] zur Randbedingung v'(0)=
v'(Ly/m;)=0.

In unserem Fall ist f(x)<3pu,, also ist n(B.) =3+ 7*m?L;2=¢&(1+t). Nach
Lemma 1 heisst das, es ist

n(Bv)2§7 V=19"'9mi'

Indem wir auf W; analog verfahren, ist die Behauptung im Falle x; > x,+ u,
bewiesen. Fir x; <x,+ u, verlauft aber der Beweis genau gleich, nur dass dann
die Bereiche B, nicht vorkommen.

Fiir einen Bereich D auf F bezeichnet A (D) den kleinsten positiven Eigenwert
des Randwertproblems Agu=A - u auf D, u |aD =0.

Auf jedem Zylinder Z(vy;) gibt es bis auf Rdnder disjunkte Bereiche
Zl'ls"',zim; mit’\(ziv)s-fyvzl)- . "Zm;- (21)

Beweis. Wir setzen Z, ={(x,y)eZ(y)|a,<x=<a,+r}, a,:=x,+r'(v—1),
v=1,...,m!. Die Hilfsfunktion f(x,y)={f(x):=e *sin{m(x—a,)/r'} versch-
windet auf dem Rand von Z,,, und es gilt wegen x = x, nach (8)

[ lgare [T roeax
(142

[ r L e dx

v

=(1-1)¢
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Folglich ist A(Z,) <& nach dem Rayleighschen Extremalprinzip. Indem wir auf
der linken Seite von Z(«y;) entsprechend verfahren, ist (21) bewiesen.

Der Beweis von Lemma 2 und damit von (b) und (c) ist nun nicht mehr
schwer. Nach dem bereits bewiesenen Teil (a) des Satzes gilt w(F,)— 0, wenn
n — oo, also L,, — . Die Ungleichung rechts in Lemma 2 folgt mit (10), (17),
(19) und (20) aus dem zweiten Minimaxprinzip von Courant, diec Ungleichung
links mit (10) und (21) aus dem ersten Minimaxprinzip. Damit ist alles bewiesen.

LITERATUR

[1] BUsERr, P., Riemannsche Flichen mit Eigenwerten in (0,%), Comment. Math. Helv. 52 (1977),
25-34.

[2] ——, The collar theorem and examples, manuscripta math. 25 (1978), 349-357.

[3] ——, Beispiele fiir A, auf Mannigfaltigkeiten, erscheint in Math. Z.

[4] Fries TOTH, L., Kreisausfiillungen der hyperbolischen Ebene, Acta Math. Acad. Sci. Hungaricae 4
(1953). 103-110.

[5] PErRRON, O., Nichteuklidische Elementargeometrie der Ebene, (Stuttgart, Teubner, 1962).

[6] RanpoL, B., Cylinders in Riemann surfaces, Comment. Math. Helv. 54 (1979), 1-5.

Sonderforschungsbereich
Theoretische Mathematik
Universitdt Bonn, Beringstrasse 4
D-53 Bonn

Eingegangen den 7. Juli 1978



	Dichtepunkte im Spektrum Riemannscher Flächen.

