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Area preserving twist homeomorphism of the annulus™

by JouNn N. MATHER

Let f: A — A be an orientation preserving and area preserving homeomorph-
ism of the annulus. The homeomorphism f is said to be a twist homeomorphism if
f admits a lifting F:A — A to the universal cover A of A which moves one
boundary component in one direction and the other boundary in the other
direction. Such a lifting will be called admissible.

If x is a fixed point of f, and % is a point of A covering x, then f(%) = X +k for
some integer k. The integer k depends on f but not on x. The integer k will be
called the Nielsen index of x. We let F denote the set of fixed points of f of
Nielsen index 0. A celebrated theorem of Birkhoff states:

THEOREM. (Birkhoff). If f is an area preserving, orientation preserving, twist
homeomorphism of A and f is an admissible lifting, then F contains at least two
points.

This was proved (in a more general setting) in [2]. An earlier paper [1] of
Birkhoff proves the existence of at least one point in F, and claims to prove the
existence of a second point in F, but the proof of the existence of the second point
was erroneous. A summary of Birkhoff’s work on this problem, and a clear proof
of Birkhoff’s theorem may be found in [3]. The way Birkhoff’s theorem is usually
stated is that f has at least two fixed points, but the stronger condition we have
stated is proved in [3] (by essentially Birkhoff’s method).

We can now state the main theorem which we will prove in this paper.

THEOREM 1. Let f be an area preserving, orientation preserving, twist
homeomorphism of the annulus A. Let U be an open set lying in the interior of A
and containing F. Then Jyz_, f*(U) separates the two boundary components of A.
In other words, the two boundary components of A lie in different components of

A-Us fU).

* Supported in part by NSF grant MCS 77-02919.
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398 JOHN N. MATHER

§1. Beginning of the proof of Theorem 1

First, we show that it is enough to prove that | J5__.. f*(U) separates the two
boundary components of A.

LEMMA 1. If U5 __. f*(U) separates the two boundary components of A, then
so does Ur__n f<(U) for sufficiently large N.

Proof. Let C,=A — UY__nf(U). If for any N, UMy f<(U) does not separate,
let By be the component of C, which contains dA. Then B,= |y By is
connected, since it is the decreasing intersection of compact connected sets. This
contradicts the hypothesis, and so proves the lemma. [

Now suppose |Jr—_nf“(U) separates the boundary components of A. By
applying f¥ to Ur-_nf“(U), we see that |JZN, f*(U) separates the boundary
components of A, and thus r_, f<(U) does likewise.

Let W be the union of |J5__. f<(U) with all points of A which are separated
from both boundary components by |Jr__.. f<(U). It is easily seen that W is an
open set in A.

Moreover, if W separates the two components of the boundary of A, then
Us-—w f“(U) already does so. For, if not, the connected component D of
A —Ur-_.f“(U) which contains one boundary component also contains the
other. However, no points of D are in W, so W would not separate after all.

Thus, we have reduced the problem of showing that | J5_, f*(U) separates to
the problem of showing that W separates. The topology of W is described by the
following result.

LEMMA 2. If W separates the two boundary components of A, then one
component of W is homeomorphic to an open annulus, and all other components are
homeomorphic to open disks. If W does not separate the two boundary components
of A, then each component of W is homeomorphic to an open disk.

Proof. Let D denote the complement of W in A. By Lefschetz duality, there is
an isomorphism

H,(W)=H(A, D)

where the left side denotes singular homology with Z coefficients, and the right
side denotes Cech cohomology with Z coefficients. (An exposition of Lefschetz
duality is given in [6]. See Chapter 6, §2, Theorem 19. The cohomology appearing
on the right side there is defined by means of a direct limit, but it is the same as
Alexander cohomology by the tautness property of Alexander cohomology, cf.
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Chapter 6, §6, and Alexander cohomolgy is the same as Cech cohomology,
Chapter 6, §8, Corollary8.)

It is easily seen that D is the union of the connected components of
A—-Ur-_«f“(U), which meet the boundary of A. Thus it has either two
components (in the case W separates) or one component (in the case W doesn’t).
In the exact sequence

H°(A)— H(D) - H'(A, D) —> H(A) > H'(D),

we see that H°(A)=0 and H'(A) — H'(D) is injective (because D contains the
boundary components). Hence

H°(D)— HY(A, D)

is an isomorphism, and HYA,D)=1Z or 0 according to whether W separates or
not. Thus H,;(W)=7Z or 0 according to whether W separates or not. But it is well
known that for any open connected set W, in the plane, W, is homeomorphic to
an annulus if H,(W,)=2Z and homeomorphic to a disk if H,(W;)=0. U

To prove theorem 1, we may assume that each component of U meets F, since
in any case, we may replace U by a smaller open neighborhood of F having this
property. In this case each component of W meets F. Assuming this is the case,
we will complete the prooof by showing the no component of W is homeomor-
phic to a disk. Thus, according to Lemma 2, W will have just one component ,
homeomorphic to an annulus and separating the two boundary components of A.

Since F is open and closed in the fixed point set of f, we may define the
Lefschetz index of F (with respect to f) just as we would define the Lefschetz
index of an isolated fixed point of f. Specifically, let A° denote the interior of A
and let ve H*(A°xX A°% A°x A°—A) denote the Thom Class, where A denotes
the diagonal of A°X A°. Let G be a neighborhood of F in A° which contains no
points of the fixed point set of f other than F. We have a mapping

(1,/):(G,G—F)—(A°xXA° A°xA°-A4)

Let w € H,(G, G—F) be the orientation class. The Lefschetz index of F with
respect to f is defined as

Li(F)=((1, /*v, ).

If F is finite this is just the sum of the Lefschetz indices of the points of F.
From the fact that f is a twist mapping, it follows easily that L,(F)=0. Indeed,
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we may suppose that G contains no fixed points of f other than F. We let F* be a
compact neighborhood of F in G. We may compute L;(F) using (G, G —F*) in
place of (G, G —F). For a sufficiently small pertubation f’' of f, we have

(@, *v, ) =1, F)*v, p)

where we€ Hy(G, G —F*) denotes the orientation class. But the right side is
Lq(F"), where F' is the set of fixed points of f' of Nielsen class 0. Thus, we have
shown that L;(F) is unchanged by small pertubations of f. However, the set of
twist homeomorphisms has two components, each of which is easily seen to
contain an f for which L;(F)=0. Thus L,(F)=0 for every twist homeomorphism

f.

LEMMA 3. Let W, be a connected component of W and let F,=FNW,.
Suppose F, # ¢. If W, is homeomorphic to an open disk, then L,(F,)=1. If W, is
homeomorphic to an open annulus, then L,(F)=0.

Using this Lemma, we can finish the proof of Theorem 1 very easily. We have
seen that we may suppose, without loss of generality, that each connected
component of W meets F. In this case W has only finitely many connected
components, W=W, U ---UW,_, and

L(F)= ), Ly(F)

where F, =FN W_. But the left hand side is 0, and by Lemma 2 and 3 every
summand on the right side is 0 or 1. Thus, every summand on the right side must
be 0, which, according to Lemmas 2 and 3 is possible only if W is homeomorphic
to an open annulus. Thus Theorem 1 will be proved, once Lemma 3 is proved.

We have actually proved more than Theorem 1: If every connected compo-
nent of U meets F, then W is homeomorphic to an annulus.

§2. Caratheodory’s theory of ends

We will develop that part of Caratheodory’s theory of ends which we need for
the proof of Lemma 3. We will state definitions and quote theorems, but for
examples and proofs we will refer to Caratheodory’s memoir [4] and a subsequent
development of the theory due to Cartwright and Littlewood [5].

Let G be a bounded open set in the plane. By a cross-cut of G, we will mean a
simple arc which lies in G, except for its endpoints, which are in the boundary of
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G. In the case the two endpoints coincide, so we have a simple closed curve with
one point on the boundary of G, and otherwise in G, the curve will still be called
a cross-cut, provided the two components it separates the plane into both contain
points of the boundary of G.

A sequence q;, g, . . . of cross-cuts will be called a chain if g, Nq; = ¢ for i#j
(including endpoints), and each g, separates G into two regions and q,.,
separates q, from q,.,. If q;, q,, . . . is a chain of cross-cuts, we let g, denote that
region of G, determined by g,, which contains q,,;. A sequence of open sets
g1, &, - .. obtained in this way will be called a chain of open sets. Note that
g:0g,>--Dg,>---. We will say that such a chain of cross-cuts, or, equival-
ently chain of open sets determines an end E,.

If E, and E, are ends, determined by chains g,, g, ..., and hy, h,, . . . of open
sets we say E, is contained in E, and write E, < E, if for each n, there is an m(n)
such that g, < h,. If E, < E, and E, < E,, we say E, and E, are the same end,
and write E, =E,. If E_ is an end and for any end E, such that E, < E,, we have
E, = E,, then E, is said to be a prime end. Let E, be an end of G and let U be an
open set in G. We will say U contains E, if U > g, for some n, where g, > g,>" - -
is a chain of open sets defining E,.

Let G be G and all of its prime ends. We topologize G as follows. A subset
U will be open if U N G is open in the original topology of G, and for each prime
end E, e U there is an open set V in G such that:

(1) veUnag,

(2) V contains E,,

(3) If V contains a prime end E,, then E, € U.

The principal result of Caratheodory’s investigation leads to the following
Proposition.

PROPOSITION (Caratheodory). If G is simply connected, then G is
homeomorphic to a closed disk.

See [4], Satz XIII and the footnote to Satz XV. In fact Caratheodory
formulated his results in terms of sequences, but what we have just stated is an
easy consequence of Caratheodory’s result. From the Proposition, we immediately
obtain the following resulit.

COROLLARY. If G is homeomorphic to an open annulus, then G is
homeomorphic to a closed annulus.

Now we suppose G is homeomorphic to an open disk or open annulus. We let
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h:G — G be a homeomorphism which extends to a homeomorphism h:G — G.
It is clear that h extends to a homeomorphism h:G — G. We will need the
following result.

PROPOSITION (Cartwright and Littlewood). If h is area preserving, and h
has no fixed point on the boundary of G, then h has no fixed point on the boundary
of G.

See Cartwright and Littlewood [5], Lemma 11. The hypothesis that h is area
preserving is essential.

§3. End of the proof of Theorem 1

In §1, we have reduced the problem of proving Theorem 1 to proving Lemma
3. To prove Lemma 3, we first consider the case W, is homeomorphic to an open
disk.

For each n, let 7, : A, = A denote the n-fold covering of A. Thus, A, is the
annulus. Let f,: A, — A, denote the mapping which covers f and is covered by f.
Let W, denote one component of 7,,' W,. The inverse image in A, of a point of
F is fixed under f,, since its inverse image in A is fixed under f Since F, # ¢, there
is a point in W, which is fixed under f,, and it follows that f,(W,)= W, and
f{(W,)=W,, since f(W)=W and f'(W)=W.

Since Fc W, FNaW,=¢. In other words, any fixed point of f on the
boundary of W, must have non-zero Nielsen index. Let n be any integer which
does not divide the Nielsen index of any fixed point on dW,. Then no fixed point
of f, lies on dW,,.

By the Cartwright and Littlewood result (§2), there is no fixed point of f, on
the boundary of W,, where W, denotes the Caratheodory construction (§2). But
W, is a closed disk, so we have constructed a homeomorphism of a closed disk
with no fixed points on the boundary. But the set of fixed points on the interior
corresponds precisely to F;,. It is well known that the Lefschetz index of the set of
points on the interior with respect f, has Lefschetz index 1 when f, has no fixed
points on the boundary. Hence L:(F;)=1, as asserted.

This is enough to prove Theorem 1. But to complete the proof of Lemma 3,
we must consider the case W, is homeomorphic to an open annulus.

In case W, is an open annulus, it clearly separates the two boundary
components of A. We let W, = ;' W,; this is connected. We may choose n so
that all the fixed points of f, : W, — W, are in the interior of W,, and so they
correspond n to 1 to the points of F,. Thus if we let F, denote the set of fixed
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points of f, in W, we have
L; (F,) = nL¢(F)).

But f,, : Wn - W, isa mapping of the closed annulus into itself, which does not

have any fixed points on the boundary, by the Cartwright-Littlewood result (§2).
Clearly

L; (F,)=L; (F,) =0,
so L;(F,;)=0.

§4. Remarks of the Proof

The only place in the proof where we have used the hypothesis that f is a twist
homeomorphism is to assure F# ¢, and FNOA =¢. Thus, our proof actually
shows a more general result.

THEOREM 2. Let f be an area preserving, orientation preserving homeomorph-
ism of the annulus A and f: A — A any lifting of f. Suppose F# ¢ and FNoA = ¢.
Let U be an open set lying in the interior of A and containing F. Then \Jy_, f<(U)
separates the two boundary components of A.

§5. The visiting set

If X is a closed invariant set of a homeomorphism f: A — A we define its
visiting set Vis (X) to be the set of all x € A such that if U is any neighborhood of
x in A and V is any neighborhood of X in A then f"(U) N V# ¢ for some integer
n. The visiting set is clearly closed and invariant.

If x is a periodic point of f, and f: A — A is a lifting of f, then for any X
covering x, we have

fi(®)=Tr (%)

for some integers p andq where T is a generator of the group of covering
transformations of A. The rational number p/q depends on f but not on X. We call
p/q the rotation number of x (with respect to f).

THEOREM 3. Let f be an orientation preserving, area preserving mapping of
an annulus A onto itself, and let f: A — A be any lifting of f. Let a =p/q be a
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rational number and let F, be the set of periodic points of rotation number a (with
respect to f) and period q. If F, # ¢ and F, N3A = ¢, then Vis (F,)N A° separates
the two boundary components of A.

Remark. Let a be the Poincare rotation number of f on the lower boundary of
A, and b the Poincare rotation number of f restricted to the upper boundary of
A. It is an easy consequence of the Birkhoff fixed point theorem that if « lies
between a and b, then F, # ¢. Clearly, in this case, F, N0A = ¢.

Proof. The set F, is the set of fixed points of f* of Nielsen index 0 with respect
to the covering transformation T?f4. Therefore if V is any neighborhood of F, in
the interior of A, Uj5__.. f**(V) separates the two boundary components of A.
Let V., V,, V,, ... be a neighborhood basis of F,, and let

X, = closure ( lj (V).

k =—o0

Clearly
Vis (E,)= () X,.
n=1

However, since each X,, N A° separates the two boundary components, it follows
easily that Vis (F,) N A° does also.
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