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Comment. Math. Helvetici 54 (1979) 378-396 Birkhiuser Verlag, Basel

Finitude du nombre des classes d’isomorphisme des structures
isometriques entieres

EvaA BAYER et FRANCOISE MICHEL

Introduction

Selon un théoréme classique, ’ensemble des classes d’isomorphisme des
formes bilinéaires, symétriques, entiéres, non singulieres de rang et de
déterminant (non nul) fixés est fini (voir par exemple [M-H], Chapitre 2, Lemme
(1,6)).

Dans cet article nous démontrons un théoréme de finitude analogue concer-
nant les structures isométriques entieres. Ce probléme trouve son origine en
théorie des noeuds.

DEFINITION. Une structure isométrique entiere est un triplet (V, S, t) ou:

1) V est un Z-module libre de rang fini

2) S: VXV — Z est une forme bilinéaire e-symétrique (o €= =1) non
singulieére

3) t:V — V un endomorphisme de V vérifiant S(tx, ty) = a*S(x, y) pour tout
x et y dans V, a étant un entier strictement positif (indépendant de x et de y). On
dira que t est une a-isométrie.

La constante a, qui ne figure pas dans la définition classique d’une structure
isométrique, est introduite pour obtenir de meilleures applications en topologie.

Le rang de V, 'entier positif a vérifiant S(tx, ty) =a>S(x, y) et le déterminant
de S sont des invariants de la classe d’isomorphisme de (V, S, t). Le polynOme
caractéristique et le polyndme minimal de ¢ aussi. Nous obtenons dans cet article
un critere de finitude qui dépend des propriétés du polyndOme minimal de
I’endomorphisme t. ‘

Soit A un polyndme a coefficients entiers. Fixons e =+1 et n et D deux
entiers strictement positifs.

Notons SI.(n, A, D) I’ensemble des classes d’isomorphisme des structures
isométriques (V, S, t) telles que n=rang, V, A =le polyndme minimal de ¢ et
telles que le déterminant de S divise D.

M Cet article contient I’essentiel de la thése des auteurs soutenue A I’'Université de Genéve.
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DEFINITION. Le polyndme A est semi-simple s’il n’a pas de facteurs multi-
ples dans sa décomposition en produit de facteurs irréductibles.

Le résultat algébrique de ce travail est:

THEOREME. Si SL (n, A, D) est non vide, SI (n, A, D) est fini si et seulement
si A est semi-simple.

Au paragraphe 6 nous déduirons, entre autres, de ce théoreme le corollaire:

COROLLAIRE. Siq=2 et si A est semi-simple, il n’y a qu’un nombre fini de
classes d’isotopie de noeuds simples $°7~ ! — §?9*! de dimension 2q—1 ayant A
pour polynéme d’ Alexander.

Remarque. Levine [L3] a montré qu’il n’y a qu’un nombre fini de classes de
Z-isomorphisme de structures isométriques (V, S, t) dans une classe fixée de
Q-isomorphisme, ceci lorsque S est unimodulaire et antisymétrique. Le travail de
Levine differe donc du notre par le point de vue adopté (Levine étudie la
S-équivalence) et par les techniques algébriques employées (Levine utilise la
structure du groupe symplectique). Nous parlerons brievement des applications
topologiques du travail de Levine au §6 (Remarque 6).

Nous allons donner un plan succinct de la démonstration. Observons tout
d’abord que le polyndme minimal A d’une a-isométrie a une propriété de
réciprocité: A = A,, ou:

AX)=A0) X A (a*XY) avec k = degré A.

En effet, si ¢t est une a-isométrie d’'une forme S, alors S(A(a’t ')(x),y)=
S(x, A(t)(y)) =0 pour tout x et y dans V. Il existe donc un entier non nul ¢ tel que
X*A(a’X 1) =cA(X). En développant cette égalité et en tenant compte du fait
que A est unitaire, on obtient: A(0)=c = xa*.

Nous pouvons maintenant décrire la fagon dont cet article est composé. Dans
les deux premiers paragraphes nous montrons la finitude de SI, (n, A, D) lorsque A
est irréductible. Pour cela nous associons a toute structure isométrique entiére
une forme e-hermitienne a valeurs dans un ordre d’un corps de nombres (§1).
Ensuite nous démontrons un théoréme de finitude de I’ensemble des classes
d’isomorphisme des formes e-hermitiennes d’invariants fixés (§2).

Au §3 nous montrons la finitude de SI (n, A, D) lorsque A =1+yy, avec vy
irréductible et y# v,.

Dans le cas général on met en évidence un sous Z-module d’indice fini qui est
somme orthogonale de structures isométriques dont le polyndme minimal est soit
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irréductible, soit de la forme +yy, avec vy irréductible et y# v,. Cela nous permet
de montrer la finitude de SI (n, A, D) lorsque A est semi-simple (§4).

Au §5 nous montrerons que si A n’est pas semi-simple, SI, (n, A, D) est vide ou
infini.

Nous remercions, de son aide et de ses précieux conseils Michel Kervaire qui
nous a proposé le sujet de ce travail et qui en a guidé toute I’évolution, ainsi que
Jerome Levine et Claude Weber avec qui nous avons eu de fructueuses conversa-
tions.

1. Finitude de SI.(n, A, D) lorsque A est irréductible
PROPOSITION 1. Si A est irréductible, SI_(n, A, D) est fini.

Soit (V, S, t) une structure isométrique dont la classe est dans SI_(n, A, D), A
irréductible. Suivant une méthode de Milnor [M] nous associerons a (V, S, t) une
forme e-hermitienne sur un A-module, ou A est un ordre d’un corps de nombres.
Nous ramenerons ainsi la Proposition 1 a une proposition concernant ces formes
e-hermitiennes laquelle sera démontrée au §2.

Le corps de nombres sera K= Q[X]/(A)=Q(7), ou 7 est une racine de A.
Nous avons vu dans I'introduction que si t est une a-isométrie, alors A = A,. Donc
K est muni d’'une Q-involution induite par 7=a*r"'. Si degré A>1, cette
involution est non triviale. Mais si degré A =1, alors A(X)= X=*a, donc t(x)=
+ax pour tout x dans V, et SI_.(n, A, D) est alors égal a I’ensemble des classes
d’isomorphisme des formes Z-bilinéaires &-symétriques sur un Z-module libre de
rang n, dont le déterminant divise D. La finitude de cet ensemble est bien connue
(voir par exemple [M-H] Chapitre 2 Lemme (1,6)). Nous pouvons donc supposer
que l'involution est non triviale.

Posons A =Z[1,a’t']. A est un ordre de K invariant par l’involution.
Munissons V d’une structure de Z[7]-module en posant 7-x = t(x), puis posons
AV =A® ;1 V.AV est un A-module sans torsion car A est irréductible, et AV est
de rang m =(n/degré A\) (le rang d’'un A-module sans torsion W sera par
définition la dimension sur K de KQ,W).

Etendons S a K®(,;V, et prenons ensuite sa restriction a AV, appelons s
cette restriction. L’égalité s(a*r 'x, y) = S(x, ry) montre immédiatement que s est
a valeurs entiéres.

Pour obtenir une forme &-hermitienne sur AV. fixons d’abord x et y dans AV.
Considérons F: A — Z définie comme suit: pour tout a€ A, F(a)=s(ax,y). F
est évidemment Z-linéaire. traceg,, étant non dégénérée sur K, il existe un
unique BeK tel que tracey,o (aB)=F(a)=s(ax,y) pour tout a € A. En fait
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comme s(ax, y)e Z, Be A*, ou A™ est par définition I’ensemble des y € K tels que
traceg,o (YA)< Z. Soit ¢ un entier non nul tel que cA*c A: alors ¢ € A.
Posons Bg(x, y) = cB. Bg(x, y) est 'unique élément de A qui vérifie:

traceg,o {aBs(x, y)} = cs(ax, y) pour tout a € A.

Bs: AV XAV — A est e-hermitienne, en effet on vérifie par calcul direct que
Bg est linéaire dans la premiere variable et que Bg(x, y) = eBs(y, x).

DEFINITION. Soit I" un ordre d’un corps de nombres, W un I'-module sans
torsion de rang fini. Nous dirons qu’une forme bilinéaire ou sesquilinéaire
B:WXW-—T est dexposant D, ou D est entier strictement positif, si
adg(V) contient le sous-groupe D -Hom; (W, I')=Hom, (W,DI') de
Homp (W, I'), ou adg : W — Hom (W, I') est défini par: adg (x)=B( , x).

Remarque 1. Si W est I'-libre de rang m, on peut représenter B: WXW — I
bilinéaire ou sesquilinéaire par une matrice m X m, et on vérifie par calcul direct
que:

Si dét (B) divise D, B est d’exposant D.

Si B est d’exposant D, dét (B) divise D™,

2) Si W, est un sous I'-module de W tel qu’il existe un entier non nul ¢ avec
cWc W, etsi B: WX W — I bilinéaire ou sesquilinéaire est d’exposant D, alors
la restriction de B 4 W, est d’exposant c¢2D.

LEMME 1. Bg est d’exposant cD

dét (S) divise D, donc S est d’exposant D (cf. Remarque 1). On vérifie
directement sur la définition de ’exposant que s (I’extension de S a AV) est aussi
d’exposant D.

Soit f un homomorphisme A-linéaire de AV dans cDA, et posons

f(x)}

F(x) = traCeK/Q {"C—‘

pour tout x dans AV. F est un homomorphisme Z-linéaire a valeurs dans DZ. s
étant d’exposant D, il existe y dans AV tel que

s(ax, y) = F(ax) = traceg,q {f—((;—xz} = traceg,o {af_(c{z}

pour tout a dans A et pour tout x dans AV. Ceci implique que Bg(x, y) = f(x)
pour tout x dans AV, donc Bg est d’exposant cD.

Notations. On note H3(m, D) I'ensemble des classes d’isomorphisme des
formes e-hermitiennes d’exposant D sur un A-module sans torsion de rang m.
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On note [ W, B] (respectivement [V, S, t]) la classe d’isomorphisme de (W, B)
(respectivement de (V, S, t)) dans H3(m, D) (respectivement dans SI_(n, A, D)).
La construction précédente nous donne une application

¢:SL.(n, A, D) — Hj(m, cD)

On a vérifier que ¢ est bien défine et de fibres finies.

@ est bien définie. Si (V, S, t) est isomorphe a (V’,S',t'), il existe un Z-
isomorphisme F:V — V' entre S et S’ tel que t'F = Ft, donc F s’étend en un
A-isomorphisme de AV dans AV’ qui est un isomorphisme entre Bg et Bg..

¢ est de fibres finies. Soit [W, B] un élement de H5(m, cD). On considére les
structures isométriques (V, S, t) telles que (AV, Bg) soit isomorphe a (W, B). Soit
F:AV — W un isomorphisme. Soit ¢, Pexposant de Z[r] dans A = Z[1, a®*7 ],
alors c;AV<c 'V, donc ¢;Wc F(V)< W. Il n’y a donc qu’un nombre fini (qui ne
dépend que de c, et de n) de possibilités pour le Z-module F(V).

Orsi (V, S, 1), (V', S, t') sont des structures isométriques avec F(V)=F'(V’),
on vérifie que (F') 'F:AV — AV’ fournit un Z-isomorphisme entre (V, S, t) et
(V', S, t"). Donc ¢ est de fibres finies.

La Proposition 2 démontrée au §2 dit que H3(m, cD) est fini. Comme on a
une application de fibres finies SI,(n, A, D) — H5(m, cD), ceci démontrera que
SI.(n, A, D) est fini lorsque A est irréductible.

2. Formes ¢-hermitiennes

Dans le paragraphe précédent nous avons été amenées a considérer des
formes e-hermitiennes (¢ = + 1 ou —1)-sur un A-module sans torsion de rang fini,
a valeurs dans A. Rappelons que A est un ordre d’un corps de nombres K muni
d’une involution non triviale et A est invariant par I’involution.

Nous notons H7j(m, D) I'’ensemble des classes d’isomorphisme des formes
e-hermitiennes de rang m et d’exposant D fixés (A et £ sont fixés pour tout le
paragraphe). Quelques fois nous fixerons aussi le A-module V sur lequel les
formes sont données et nous .utiliserons la notation H5(V, D).

Nous avons vu que la proposition 2 énoncée ci-dessous démontre la proposi-
tion 1:

PROPOSITION 2. H3(m, D) est fini.

Autrement dit il n’y a qu’un nombre fini de classes d’isomorphisme de formes
e-hermitiennes de rang et d’exposant donnés.
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Remarquons tout d’abord que si H5(V, D) est fini pour tout A-module V sans
torsion de rang m, alors H3(m, D) est aussi fini. En effet, il n’y a qu’un nombre
fini de classes d’isomorphisme de A-modules sans torsion de rang fini fixé. (voir
par exemple [S], Corollaire 3.10)

Remarquons aussi qu’il suffit de montrer la Proposition 2 dans le cas ou
A = Og: I’'anneau des entiers de K: il existe un entier non nul ¢, tel que ¢; Ok soit
contenu dans A. Si B: VXV — A est une forme e-hermitienne d’exposant D,
alors I’extension de B 2 M =0 ®,V, notée +yg, est e-hermitienne d’exposant
c¢;D. Ceci définit une application ¢ : H3(V, D) - Hg (M, ¢, D). Montrons que ¢
est de fibres finies. Rappelons que la notation [V, B] signifie: la classe d’isomor-
phisme de (V, B) dans H5(V, D). Si ¢[V, B]=[M, v], alors il existe un isomor-
phisme Ok -linéaire F: M — M qui est une isométrie entre yg et v. On a:c,Mc
F(V)c M, donc il n’y a qu’un nombre fini de possibilités pour le A-module F(V).
Mais si F': M — M est une isométrie Ok-linéaire entre (M, vg-) et (M, v) et que
F'(V)=F(V), alors (F)"'F:V — V est un isomorphisme A -linéaire entre (V, B)
et (V', B). Donc ¢ est de fibres finies.

On peut donc supposer que V est un Og-module sans torsion de rang m, que
nous fixons pour le reste du paragraphe.

Nous dirons que B:V XV — Oy représente a € Og s’il existe un x non nul
dans V tel que B(x, x)=a.

Nous avons besoin du lemme suivant:

LEMME 2. Il existe un sous-ensemble fini 2 de Og\{0} tel que toute forme
e-hermitienne B : VXV — Oy d’exposant D représente un élément de ().

La démonstration du Lemme 2 consiste a se ramener a un probleme concerant
des formes bilinéaires symétriques lequel est résolu dans O’Meara [O]. En effet, il
découle du Lemme 103.3 et de la Remarque 103.5 de O’Meara I’équivalent du
Lemme 2 pour les formes symétriques: Si F est un corps de nombres et Og
I’anneau des entiers de F, si W est un Og-module sans torsion de rang fini et I#0
un idéal de Oy, il existe un sous-ensemble fini @ de O\{0} tel que toute forme
Og-bilinéaire symétrique L: WX W — Og telle que I<Vol (L) représente un
élément de .

DEFINITION. Vol (L)=1%--- IZ. dét(L(x, %;))ij—1...c O X;---x. €W et
I, -+ I, des idéaux fractionnaires de Of sont tels que W=x,I,®D - - - D x,I,.
(Cette définition se trouve dans O’Meara [O] ou il est montré que Vol (L) ne
dépend pas du choix des x; et des I..)

On peut donner la méme définition pour L:V XV — Ok e-hermitienne.

Notons F le corps fixe de I'involution, O son anneau des entiers.
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Associons a tout B dont la classe est dans Hg (V, D) une forme Og-
bilinéaire, symétrique Lz :V XV — O Soit b un élément de Ok tel que b+
eb#0, un tel b existe car I’involution est non triviale. Considérons T: KXK — F
définie par: pour tout a et B dans K, T(a, B)=(b+eb) (aB+zcaB). T est
F-bilinéaire, symétrique et T est non dégénéréé car pour tout a non nul dans K,

1'(a,a—(—b1+—€b—))=2#0.

Posons Lg(x, y)=T(1, B(x, y)) = (b+¢&b) (B(x, y)+ B(y, x)) pour tout x et y dans
V. Ly est bien Og-bilinéaire et symétrique.

Posons Ot ={acK tel que T(a, B)€ O pour tout 8 dans O} et soit ¢ un
entier non nul tel que cO¥ soit contenu dans Og. On montre que Ly est
d’exposant ¢cD (on emploie le méme argument que dans la démonstration du
Lemme 1, T jouera le role de la trace).

Rappelons que Vol (Lg)=1I3- - I;. dét(Lg(x;, X))ij=1..k OO0 V=x1,P- -
@D x, I, les x; appartenant a V et les I, étant des idéaux fractionnaires de Ok.

Soit N=x,0:® - - - ®x,Op, N est un sous Ox-module de V. Soit ¢’ un entier
non nul tel que ¢'V< N. D’apres la Remarque 1, la restriction de Ly a N est
d’exposant c'’cD, ce qui entraine que dét(Lg(x;, X;));=1... divise (c*cD)*.

Posons I =15 - - I;. (c*>cD)*. Alors I est contenu dans Vol (Lg) pour tout B
dont la classe est dans Hg (V, D). I est un idéal entier car Vol (Lg) est contenu
dans Ok.

Remarquons que par le méme argument on peut montrer qu’il existe un idéal
J de Ok tel que J < Vol (B) pour tout B dont la classe est dans Hg (V, D) (J#0).

Ceci démontre le Lemme 2. En effet, par le résultat de O’Meara que nous
avons énoncé au début de la démonstration du Lemme 2, il existe un sous-
ensemble fini 2, de O\{0} tel que pour tout B dont la classe est dans

o.(V, D), Ly représente un élément de (2,. Soit c, un entier non nul tel que

c3

= 2(b+eb)

soit un élément de Og. Pour tout x dans V, B(c,x, c,x)=alg(x, x). Donc
= af), est ’'ensemble cherché.

Démonstration de la Proposition 2. Par récurrence sur m =rango, V.

m =1: Il n’y a qu’un nombre fini de possibilités pour I’idéal Vol (B) lorsque la
classe de B est dans Hg (V, D), car on a vu que dans ce cas Vol (B) contient un
idéal fixe non nul de Og. Posons J = Vol (B). Soit x # 0 un élément quelconque de
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V. 1l existe un idéal fractionnaire I de Og tel que V=1Ix. On a: Vol(B)=
I?B(x, x) par définition, donc B(x, x)Ox = JI 2. Ceci détermine B(x, x) (donc B)
a une unité de O preés. Notons U(Og) les unités de Og. Si deux formes B et B’
different par un élément de U(Og)? alors elles sont isomorphes. Or
U(Og)/U(Og)? est fini, donc il n’y a qu’un nombre fini de classes d’isomorphisme.

m>1: Par hypothése de récurrence Hg, (m', D) est fini si m’'<m. Soit () le
sous-ensemble fini de Ox\{0} donné par le Lemme 2. Pour toute forme &-
hermitienne B: VXV — Og d’exposant D il existe un élement xz; de V tel que
B(xg, xg) € {2. Soit Vy I'ensemble des xe V tels que B(xg, xg) divise B(xg, x)
dans Og. Vi est un sous Og-module de V. V; se décompose en somme
orthogonale de Ox-modules: Vg = Ogxg ® U,, ou U, est I'’ensemble des xe V
tels que B(xg, x)=0.

) étant fini, il existe un entier non nul ¢ tel que ca™'€ Ok pour tout a € Q.
Remarquons que cV < Vg pour tout B dont la classe est dans Hg, (V, D): en
effet, on a B(xg, x5)V < V. Donc la restriction de B 2 Vj est d’exposant ¢>D.
cV © Vg entraine qu’il existe une liste finie de Og-modules U,,..., U, <V telle
que Vy est égal a 'un des U; pour tout B dont la classe est dans Hg (V, D).

Notons X I'’ensemble de toutes les formes B dont la classe est dans

oV, D), et X; celui des formes de X qui satisfont Vg =U, X est donc la
réunion des X, - - -+ X;. Notons X! I’ensemble des restrictions des formes de X, a
U.

Soit Y; 'ensemble des formes dont la classe est dans Hg, (U, ¢2D) et qui se
décomposent en somme orthogonale de deux formes e-hermitiennes de rangs 1 et
m —1. Nous avons vu que X! < Y,. Aut (U,) agit sur Y; (mais pas nécessairement
sur X!: c’est pour ¢a que nous avons besoin de Y;). Y;/Aut(U;) est fini par
hypothese de récurrence.

Le Lemme 3 ci-dessous dit que la finitude de Y;/Aut (U,) pour tout i=1--- [
entraine celle de X/Aut (V)=Hg (V, D).

Nous appliquerons le Lemme 3 aussi dans les §8§3 et 4.

Pour ce lemme, K n’est pas nécessairement muni d’une involution, et A est un
ordre quelconque de K.

Soit V un A-module sans torsion de rang fini. Nous noterons ¥(V) soit

’ensemble des structures isométriques sur V, soit celui des formes £-hermitiennes
sur V.

LEMME 3. Soient U, ‘- U, des sous A-modules d’indice fini de V, X
i=1---1des sous-ensembles de F(V) tels que les restrictions a U, des éléments de
X, appartiennent a ¥(U;). On a donc des applications res: X; — F(U;).

Notons X la réunion des X, - - - X dans F(V), et supposons que Aut (V) agisse
sur X.
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Soit Y; € P(U;) un sous-ensemble stable par Aut (U;) contenant res (X).

Alors la finitude de Y;/Aut(U,) pour tout i=1---1 entraine la finitude de
X/Aut (V).

Preuve de Lemme. 3. Tout fe Aut(U,) s’étend par tensorisation en un K-
automorphisme unique de K®, U, = K®, V, extension que ’on notera fx.

Notons Aut (V| U;) 'ensemble des A-automorphismes de U, qui s’étendent
V. On a fe Aut (V| U,) si et seulement si f(V)=V.
Soit X!=res (X;). L’inclusion de X! dans Y, induit

m: X![Aut (V| U,) — Y/Aut (U))

Le cardinal des fibres de m est ‘majoré par le cardinal de Aut (U,)/Aut (V| U;) qui
est fini. En effet, soit ¢ un entier non nul tel que ¢V soit contenu dans U,, alors

1

donc il n’y a qu’un nombre fini de possibilités pour le Z-module fi (V).

Orssi f et f' sont dans Aut (U;) et si f (V) = fi(V) alors f¢' (fi(V)) =V, donc f
et f sont équivalents modulo Aut(V|U). Donc le cardinal de
Aut (U))/Aut (V| U,) est fini. Ceci implique que 7 est de fibres finies, donc la
finitude de Y/Aut(U;) entraine celle de X!/Aut (V| U,).

Soit Aut (V, U;) ’ensemble des automorphismes de V qui laissent stable U..

D’autre part, res: X; — X! induit une bijection

X/Aut(V, U,) — Xi/Aut (V| U,)

En effet, soient x et y des éléments de F(V) tels que les restrictions de x et de y a
U, notées x' et y’, appartiennent a $(U;). Supposons que x' et y’ soient
isomorphes par un isomorphisme fe Aut (V| U,), alors x et y sont isomorphes
par (fx | V) e Aut (V, U)).

Donc X;/Aut (V, U;) est aussi fini. Mais [[;—;...; (Xi/Aut (V, U,)) se surjecte sur
X/Aut (V). . ’

3. Structures isométriques avec polynome minimal de la forme vyv,, v irréductible
et y#vy,

PROPOSITION 3. Soit vy irréductible, y# v,. Alors SI.(n, yy,, D) est fini.

Démonstration. vy et vy, sont premiers entre eux, donc il existe des polyndmes
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f1, f2€ Z[X] et un entier non nul ¢ tels que:

c=f1v+fr¥a

Soit V un Z-module libre de rang n, fixé. Pour tout endomorphisme t: V — V
de polyndme minimal +yy,, posons:

Vi=v0V) et V,=y(0)(V).

La somme de V; et de V, dans V est directe. On vérifie que cV< VD V,,
donc il n’y a qu'un nombre fini de possibiltés pour le Z-module V@ V,, disons
U,--- U,

Notons X l’ensemble des structures isométriques dont la classe est dans
SL.(V, vvy., D), X; le sous-ensemble de X formé des structures (V, S, t) telles que
Yo (O(V)D y(t)(V) = U, et X! I’ensemble des restrictions des éléments de X; a U,.

Les éléments (U, S, t) de X! ont les propriétés suivantes:

1) U, se décompose en somme directe: U; = VD V,, avec t(V,)< V,, t(V,) <
V,, et le polyndme minimal de t| V; est v, celui de t| V, est v,.

2) S|V, xV,=8|V,xV,=0

3) rang,V, =rang;V,

4) le déterminant de S divise ¢’D

1) est trivial, 2) résulte d’un calcul direct, 3) est vrai car par 2) S induit une
injection V; - Hom, (V,, Z) donc rang, V,<rang, V,, de méme rang, V,<
rang; V. 4) découle du fait que cV < U..

Soit Y; l’ensemble des structures isométriques dont la classe est dans
SI. (U, yv,, ¢*D) et qui satisfont 1) 2) et 3). Remarquons que Aut (U;) agit sur Y;
(mais pas nécessairement sur X;). Le Lemme 3, §2, dit que la finitude des
Y./Aut (U;) entraine celle de X/Aut (V)=SI_(V, yy., D).

Il suffit donc de montrer:

AFFIRMATION. Y,/Aut(U;) est fini

Preuve de Uaffirmation. Soit ¥ = (U, =V, V,, S, t) un élément de Y,, fixé. S
induit une injection B : V, = Hom (V;, Z)= V¥. Notons T=(t| V,): V; = V..
On vérifie par calcul direct que (¢t | V,)=a’B~}(T*)!B.

Notons I(m, v) ’ensemble des classes d’isomorphisme des endomorphismes
d’un Z-module libre de rang m ayant y comme polyndme minimal.

On vérifie facilement que I’on a une application bien définie:

¢:Y/Aut (U,) — I(m, v)
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Obtenue en associant a la classe de & la classe de T. (car V, = U, N Q{y,()(U,)})
Montrons que ¢ est de fibres finies.
Soit ¥'=(U, =V DV, S',t') un élément de Y; tel que ¢(F)=¢d(F) Soit
F': Vi — V, un isomorphisme. B’ et T’ seront définis de la méme fagon que B et
T. Notons G'=B YF'*)"'B': QV% — QV,,.

"0
(OG}mw@meom@m

est une Q-isométrie entre & et ¥'. B et B’ sont d’exposant ¢?D, donc ¢c’DV¥c
B(V,), c2DV**< B'(V%). On en déduit que c>DV,< G'(V5) < (1/c?D) V,. Iin’y a
donc qu’un nombre fini de possibilités pour le Z-module G'(V3%).

Soit & un autre élément de Y; tel que ¢(F") = ¢(&). On définit F" et G" de la
méme fagcon que F et G'. Supposons que G"(V3)=G'(V5). Alors
(G 'G": V4 — V, est un isomorphisme, et

(F)'F" 0 ——— D Y
( 0 (GWG)l@%*V@W
donne une isométrie entre ¥’ et ¥".
Ceci montre que ¢ est de fibres finies.
I(m, v) est fini par [S], Corollaire 3.10, donc Y;/Aut (U,) est fini.

EXEMPLE. Si v et vy, sont tels qu’il existe des polynOmes entiers f; et f,
avec fiy+fry.,=1, alors SIL(n, ¥y, 1) s’injecte dans I’ensemble I(m,y) des
classes d’isomorphisme des Z[X]/(y)-modules sans torsion de rang m=
(n/2 degré v) (Iinjection est I’application ¢ décrite dans la démonstration ci-
dessus). '

Si de plus a =1, alors cette injection est aussi surjective.

§4. Structures isométriques avec polyndome minimal semi-simple

Rappelons qu’une structure isométrique entiere (V, S, t) est composée de:

1) V un Z-module libre de rang fini

2) S:VXV—>2Z une forme bilinéaire, non singuliere (dét(S)#0) e-
symétrique, ou £ = +1 ou —1.

3) t: V — V un endomorphisme satisfaisant:

S(tx, ty) = a*S(x, y) pour tout x et y dans V

pour un certain entier positif a (indépendant de x et de y)
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Soit A le polyndme minimal de ¢, alors A(0) # 0. Nous utilisons la notation:
A (X)=(A0) ' X% A (a®’X )

nous avons déja vu que la propriété d’isométrie de t et la non singularité de S
impliquent que A, = A (cf. introduction).

Nous notons SI,(n, A, D) ’ensemble des classes d’isomorphisme des structures
isométriques (V, S, t) telles que:

1) rang; V=n

2) le polyndme minimal de t est A

3) le déterminant de S divise D.

Un polyndme A € Z[ X] est dit semi-simple s’il n’a pas de facteur multiple dans
sa décomposition en produit de polyndmes irréductibles.

Nous allons maintenant démontrer le principal résultat algébrique de ce
travail:

PROPOSITION 4. Si A est semi-simple, alors SI_(n, A, D) est fini.

Démonstration. A a une décomposition en produit de polyndmes a coefficients
entiers, unitaires, irréductibles, de la forme:

A=Y MYV (Ve)a e (Vo)

(Yo)a=% si p=k, et (v,)a%v% si p>k

Notons
{'Yp Si p = k
o= .
Yo(Yo)a si p>k

et posons u, =A/A,. Remarquons que (w,), = p,. Comme A est semi-simple par
hypothese, les w, p=1,...,r sont des polynOmes entiers, premiers entre eux
dans leur ensemble, i.e. il existe des polynOmes entiers f; - - - f, et un entier non
nul c tels que:

c=fipat- - F i,
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Soit V un Z-module libre de rang n, fixé. Pour tout endomorphisme t: V — V
de polynOme minimal A, posons:

Vo =, (D(V).

Remarquons que

1) La somme des V, dans V est directe. cV< @) _; V,, donc il n’y a qu’un
nombre fini de sous Z-modules de V qui peuvent étre réalis€és comme
@D} -1, (1)(V) pour un certain choix de t. Appelons U, - - - U, ces sous Z-modules.

2) Les V, sont stables par t, et le polyndme minimal de ¢ |V, est A,

3) V, est orthogonal & V, si p#o.

Notons maintenant X ’ensemble des structures isométriques dont la classe est
dans SL (V; A, D), X, le sous-ensemble de X des structures isométriques (V, S, t)
telles que

® u,(NV)=U,< V.

p=1

On a:

i=1

Soit Y; l'ensemble des structures isométriques dont la classe est dans
SI, (U, A, ¢’D) et qui se décomposent en somme orthogonale &/ _, (W,, S, t,),
ou le polyndme minimal de f, est A,. Aut(U,) agit sur Y;. Observons qu’un
isomorphisme entre deux éléments de Y; préserve les décompositions or-
thogonales de U,. Deux structures de Y; sont donc isomorphes si et seulement si
les facteurs correspondants dans leurs décompositions orthogonales sont
isomorphes. Ceci montre que ’on a une injection:

Y/Aut(U) — [I 11 SL(n, A, c2D)

(ny-n,) p=1--¢
n,eN
n,=n

Par les Propositions 1 et 3 on en déduit que Y;/Aut (U,) est fini.

Notons X! I’ensemble des restrictions a U, des éléments de X;. Les propriétés
2) et 3) impliquent que X! est un sous-ensemble de Y;. On peut donc appliquer le
Lemme 3, §2: la finitude des Y;/Aut(U;) entraine la finitude de X/Aut (V)=
SI.(V, A, D).
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§5. Structures isométriques avec polynome minimal non semi-simple

PROPOSITION 5. Supposons que SI.(n, A, D) soit non vide. Si A est non
semi-simple, alors SI_(n, A, D) est infini.

Démonstration. On a déja vu que SI_(n, A, D) non vide entraine: il existe un
entier postif a tel que A, =A. Comme A est non semi-simple, il existe des
polynOmes entiers y et u, avec degré y=1, tels que A =y*u. Comme A, = A, on
peut les choisir tels que vy, =1, @, = u.

Soit (V, S, t) une structure isométrique dont la classe est dans SI (n, A, D).
Pour construire une infinit€ d’éléments de SI.(n, A, D), on commence par
décomposer V comme suit:

Posons V,=Ker(yu)(t)={xeV tel que (yn))(x)=0}, et W;=
V N[Q(yr)(t)(V)]={xe V tel qu’il existe un entier non nul m avec mxe
(yw)(®)(V)}. V; est Z-sommand direct dans V:V=W,®V,, et W; est Z-
sommand direct dans V,: V, = W,® W,, donc V=W, D W,D W,, comme somme
directe de Z-modules.

Remarquons que

1) V; et W, sont stables par t

2) S|V, xW,;=0

3) rang, W, =rang, W,

1) est immédiat a partir des définitions. On vérifie 2) par un calcul direct, en
utilisant que S((yw)(6)(x), y)=S(x, (yn)(a’t~")(y)), associé au fait que (yu), =
Y, et la définition de V, et de W,. Montrons 3): S induit une injection
W, Hom, (W,, Z) (cf. 2.)) donc rang, W, <rang, W,. Mais I’application W; —
Hom_(W,, Z) donnée par S est aussi injective. En effet, soit xe€ W, tel que
S(x, y) =0 pour tout y dans W;. Mais (yu)(t)(V)< W; donc S(x, (yu)(t)(2))=0
pour tout z dans V. On a: (yw), = yu, donc S((yw)(t)(x), (z) =0 pour tout z dans
V, d’ou (yu)(t)(x) =0, ce qui implique que x € V;, mais V;N W, =0, donc x =0.
Ceci entraine que rang, W, <rang, W,, donc rang, W, =rang, W,.

Par rapport a une base correspondant a la décomposition V=W, D W, W,
S a une matrice de la forme:

Si S S
eS; S, O
eST 0 O

Par 3), S; est une matrice carrée.
Apres ces préliminaires, on construit une infinité de structures isométriques
non isomorphes qui ont les mémes invariants que (V, S, t): Soit k un entier non
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nul. On pose:
Mk = k2W1@ sz® W3, L=t I Mk

Bien que W, et W, ne soient que des Z-facteurs, on vérifie que M, est stable par
t, en utilisant 1). On définit S, par:

1 .
Skz'EE(SleXMk)

S, a la matrice:

k*S, kS, S,
ekST S, O
eST 0 O

donc S, est une forme entieére, et dét(S,)=dét(S). (M, S,, &) est donc une
structure isométrique, et sa classe est dans SI,(n, A, D).
Montrons qu’il y a une infinité de (M,, S, t,) non isomorphes: Posons:

X =Ker y(t)/(yu)(t)(M,)

Le cardinal de la torsion de X; est un invariant de la classe d’isomorphisme de
(M, S, k)-

On a: (yw)(t)(Mi) = k*(yp)(t )W) = k*(yp)(t)(W;) = Wi = Ker y(t). Soit
W, un Z-complementaire de W; dans Ker y(# ). On a:

X =W, W3/k2('yu,)(t)W1)

Soit r =rang, W, =rang, W;=1. On a: r =rang, (k*(yu)(1)(W,)), car (yw)(t) est
injectif sur W,.
Soit ¢ le cardinal de

W/ (yw)(£)(W5)

Le cardinal de la torsion de X, est alors ck?". Donc il y a une infinité de structures
(M, S, t,) non isomorphes.

Nous aurons besoin de la remarque suivante pour ’application a la théorie des
noeuds:

Remarque 2. Soit b un entier positif. Notons f, l’extension de t 2
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Z[1/b]®,M,. On voit que les t, construits au cours de la précédente
démonstration donnent une infinité de f, non Z[1/b]-isomorphes: en effet on
regarde le cardinal de la torsion de Z[1/b]®,X,, et on voit que si k et k' sont des
entiers positifs, k# k', tous les deux premiers a b et a ¢ (¢ a été défini au cours de
la démonstration ci-dessus) alors f, et t} ne sont pas Z[1/b]-isomorphes.

§6. Applications a la topologie

Dans ce paragraphe on appelera surface toute 2q-variété compacte a bord,
orientable et lisse, plongée dans S>9*!.

DEFINITIONS. Soit M?? une surface.

1) On dira que M>? est simple si elle peut étre obtenue par attachement
d’anses de dimension q a un disque de dimension 2gq.

2) Soit D un entier strictement positif, on dira qu’une surface simple, M9, est
de type D si le déterminant de sa forme d’intersection, S : H,(M?%) x H,(M??) —
Z, divise D.

3) On dira que M?? est minimale si elle est simple et si sa forme de Seifert
A:H,(M*)xX H,(M?*?) — Z (cf. 1a définition dans [L.2]) est non singuliere (c’est-
a-dire de déterminant non nul).

4) Soient € = £1 et D un entier strictement positif, on dira que (V, A) est une
e-forme de type D si V est un Z-module libre de rang finietsi A: VXV — Z est
une forme bilinéaire telle que dét (A +eAT™) divise D.

Soient M>? une surface simple de type D, V=H,(M**) et A la forme de
Seifert de M?9, alors A +(—1)JA7 est la forme d’intersection de M4, (V, A) est
donc une (—1)?-forme de type D.

Remarqué 3. Soit q>2, par généralisation immédiate des résultats de Levine
[L1] on obtient: I’association 3 M?? de sa forme de Seifert (V, A) induit une
correspondance biunivoque entre les classes d’isotopie des 2q-surfaces minimales
de type D et les classes d’isomorphisme des (—1)?-formes non singulieres de type
D.

En particulier n, le rang de 4 et A, le polyndme minimal de
t=(—1)4*1-dét(4)4 ~'4A7 sont des invariants de la classe d’isotopie de M24.

Remarque 4. L’ensemble des classes d’isomorphisme des (—1)?-formes non
singulieres de type D, d’invariants n et A s’injecte dans SI_;,q(n, A, D). En effet, a
(V, A) non singuliere de type D on associe (V,S,t) ou S=A+(—1)AT et
t=(—1)""" dét (A)A'AT. [V, S, t]e SI_,q(n, A, D). L’injectivité découle du fait
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que si (V, S, t) est construite a partir de (V, A) alors

A= S(l_détt(A))—l'

La Proposition 4 du §4 implique donc:

PROPOSITION 6: Si A est semi-simple et si q>2, il n’y a qu’un nombre fini
de classes d’isotopie de 2q-surfaces minimales de type D d’invariants n et A fixés.

PROPOSITION 7. Si q>2 et si A est non semi-simple, I’ensemble des classes
d’isotopie des 2q-surfaces minimales de type D ayant n et A pour invariants est soit
vide soit infini. '

Preuve de la proposition 7. Supposons qu’il existe une 2q-surface minimale de
type D ayant n et A pour invariants. Soit (V, A) sa forme de Seifert, il suffit
maintenant d’exhiber pour tout k € N\{0} des (—1)?-formes de type D:(V,, A,)
toutes non isomorphes d’invariants n et A. Soit (V, S, t) la structure isométrique
associée a (V, A), A étant non semi-simple on applique la proposition 5, §5.
Lorsque (V, S, t) provient d’une (—1)?-forme, (V, A), les (M,, S,, t,) construits au
§5 sont tels que

_ __k )‘1
A S"(l dét (A)

sont des formes entiéres.
Les noeuds simples

DEFINITIONS

1) Un n-noeud 3" est une n-sphére d’homotopie différentiablement plongée
dans S"*2.

2) 3?1 est un noeud simple si []; (S***'\ 329" Y =T]; (S!) pour tout i<gq.

3) Une surface de Seifert est une surface dont le bord est un noeud.

Remarque 5. La forme de Seifert d’une surface de Seifert est une £-forme de
type 1.

Convention. A partir de maintenant nous dirons e-forme a la place de
e-forme de type 1.

Tout noeud simple borde une surface de Seifert simple M?? (cf. Levine [L4])
et la classe de S-équivalence S(A) de la forme de Seifert A de M?? est un
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invariant de la classe d’isotopie de 329! (cf. Levine [L1]). Soit A, une forme non
singuliere S-équivalente a A (il en existe par Trotter [T1]), alors n, le rang de A,
et A, le polyndme minimal de t =(—1)**'dét (A,)A,'Ag sont des invariants de
S(A) (cf. Trotter [T1] ou Levine [L1]).

Soient n e N\{0} et A € Z[X].

PROPOSITION 8. Sig=2 etsi A est semi-simple il n’y a qu’un nombre fini de
classes d’isotopie de (2q — 1)-noeuds simples ayant n et A pour invariants.

PROPOSITION 9. Si q=2 et si A est non semi-simple, I’ensemble des classes
d’isotopie des (2q — 1)-noeuds simples ayant n et A pour invariants est soit vide soit
infini.

La preuve de ces deux propositions 8 et 9 repose sur le résultat suivant du a
Levine [L1]:

(*) Si q=2 il y a correspondance biunivoque entre ’ensemble des classes
d’isotopie des (2q — 1)-noeuds simples et ’ensemble des classes de S-équivalence
des (—1)9-formes.

Preuve de la Proposition 8. Trotter [T1] a montré que toute classe de S-
équivalence contient une forme non singuliere. Deux formes isomorphes étant
S-équivalentes la proposition découle donc de la finitude de SI_;,q(n, A, 1) (en
utilisant (*) et la Remarque 4).

Preuve de la Proposition 9. Supposons qu’il existe un (2q—1)-noeud d’in-
variants n et A. Choisissons une (—1)?-forme, (V, A), non singuliére se trouvant
dans la classe de S-équivalence associée au noeud et faisons lui correspondre la
structure isométrique (V, S, t). On construit, comme dans la remarque 2, §5, pour
une infinit€ d’entiers k, des structures isométriques (M,, S, ) toutes non
Z[1/dét (A)]—isomorphes.

Il découle de cette constuction que les

_ b >—1
A"'S"(l dét (A)

sont des formes entieres

Les classes de S-équivalence des (V,, A, ) sont toutes distinctes car par Levine
[L1] ou Trotter [T1] deux formes non singulieres, S-équivalentes sont
Z[1/dét (A)]-isomorphes. Le résultat de Levine, (*), achéve cette preuve.

Remarque 6. Trotter [T2] s’est intéressé au probleme suivant: “Combien” y-
a-t-il de surfaces de Seifert minimales pour un (2q — 1)-noeud simple fixé? Levine
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[L3] a montré qu’il y en a un nombre fini si A est semi-simple et si g est impair et
plus grand que 2. La proposition 6 appliquée au cas D = 1 montre, en particulier,
que le résultat de Levine est vrai sans restriction sur la parité de q. D’autre part,
Trotter a des résultats de non finitude pour son probleme. Il faut remarquer que
les problemes topologiques traités par Trotter et Levine different de ceux traités
dans cet article. Cette différence de point de vue se retrouve en algebre: Trotter
et Levine s’intéressent aux classes de Z-isomorphisme des e-formes non
singulieres qui se trouvent dans une classe de S-équivalence fixée (ces e-formes
sont, en particulier, toutes Q-isomorphes).

Remarque 7. Soit (V, A) une (—1)?-forme non singuliére se trouvant dans la
classe de S-équivalence associée a un (2q—1)-noeud simple. A(X)=dét(A)
dét (X +(-1)9ATAT), est le polyndme d’Alexander de ce noeud. Soient a =
dét(A) et A’ le polyndme caractéristique de t=(—1)"""aA"'AT alors:
a"'A(X)=A4"(aX) ou n=degré A.
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