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Finitude du nombre des classes d'isomorphisme des structures
isométriques entières11

Eva Bayer et Françoise Michel

Introduction

Selon un théorème classique, l'ensemble des classes d'isomorphisme des

formes bilinéaires, symétriques, entières, non singulières de rang et de
déterminant (non nul) fixés est fini (voir par exemple [M-H], Chapitre 2, Lemme
(1,6)).

Dans cet article nous démontrons un théorème de finitude analogue concernant

les structures isométriques entières. Ce problème trouve son origine en
théorie des noeuds.

DÉFINITION. Une structure isométrique entière est un triplet (V, S, t) où:
1) V est un Z-module libre de rang fini
2) S'.VxV^Z est une forme bilinéaire s -symétrique (où e ±l) non

singulière
3) t : V —> V un endomorphisme de V vérifiant S(tx, ty) a2S(x, y) pour tout

x et y dans V, a étant un entier strictement positif (indépendant de x et de y). On
dira que t est une a-isométrie.

La constante a, qui ne figure pas dans la définition classique d'une structure
isométrique, est introduite pour obtenir de meilleures applications en topologie.

Le rang de V, l'entier positif a vérifiant S(tx, ty) a2S(x, y) et le déterminant
de S sont des invariants de la classe d'isomorphisme de (V, S, t). Le polynôme
caractéristique et le polynôme minimal de t aussi. Nous obtenons dans cet article
un critère de finitude qui dépend des propriétés du polynôme minimal de

Fendomorphisme t.

Soit A un polynôme à coefficients entiers. Fixons s ± 1 et n et D deux
entiers strictement positifs.

Notons SIe(n,k,D) l'ensemble des classes d'isomorphisme des structures
isométriques (V,S, t) telles que n rangz V, À=le polynôme minimal de t et
telles que le déterminant de S divise D.

(1) Cet article contient l'essentiel de la thèse des auteurs soutenue à l'Université de Genève.
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DÉFINITION. Le polynôme A est semi-simple s'il n'a pas de facteurs multiples

dans sa décomposition en produit de facteurs irréductibles.

Le résultat algébrique de ce travail est:

THÉORÈME. Si SIe(n, A, D) est non vide, SIe(n, A, D) est fini si et seulement

si A est semi-simple.

Au paragraphe 6 nous déduirons, entre autres, de ce théorème le corollaire:

COROLLAIRE. Si q >2 et si A est semi-simple, il n'y a qu'un nombre fini de

classes d'isotopie de noeuds simples S2q-1 —» S2^1 de dimension 2q — l ayant A

pour polynôme d'Alexander.

Remarque. Levine [L3] a montré qu'il n'y a qu'un nombre fini de classes de

Z-isomorphisme de structures isométriques (V, S, t) dans une classe fixée de

Q-isomorphisme, ceci lorsque S est unimodulaire et antisymétrique. Le travail de

Levine diffère donc du nôtre par le point de vue adopté (Levine étudie la
S-équivalence) et par les techniques algébriques employées (Levine utilise la
structure du groupe symplectique). Nous parlerons brièvement des applications
topologiques du travail de Levine au §6 (Remarque 6).

Nous allons donner un plan succinct de la démonstration. Observons tout
d'abord que le polynôme minimal A d'une a-isométrie a une propriété de

réciprocité: A Aa, où:

Aa(X) (A(0))~1X'cA(a2X-1) avec k degré A.

En effet, si t est une a-isométrie d'une forme S, alors S(A(a2f"1)(x), y)
S(x, A(t)(y)) 0 pour tout x et y dans V. Il existe donc un entier non nul c tel que
XïcA(a2X~1) cA(X). En développant cette égalité et en tenant compte du fait
que A est unitaire, on obtient: A(O) c= ±ak.

Nous pouvons maintenant décrire la façon dont cet article est composé. Dans
les deux premiers paragraphes nous montrons la finitude de SIe(n, A, D) lorsque A

est irréductible. Pour cela nous associons à toute structure isométrique entière
une forme e-hermitienne à valeurs dans un ordre d'un corps de nombres (§1).
Ensuite nous démontrons un théorème de finitude de l'ensemble des classes

d'isomorphisme des formes e-hermitiennes d'invariants fixés (§2).
Au §3 nous montrons la finitude de SIe(n, A, D) lorsque A 77a avec 7

irréductible et 75* 7a.

Dans le cas général on met en évidence un sous Z-module d'indice fini qui est

somme orthogonale de structures isométriques dont le polynôme minimal est soit
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irréductible, soit de la forme yYa avec y irréductible et 75e ya. Cela nous permet
de montrer la finitude de SIe(n, A, D) lorsque A est semi-simple (§4).

Au §5 nous montrerons que si À n'est pas semi-simple, SIe(n, A, D) est vide ou
infini.

Nous remercions, de son aide et de ses précieux conseils Michel Kervaire qui
nous a proposé le sujet de ce travail et qui en a guidé toute l'évolution, ainsi que
Jérôme Levine et Claude Weber avec qui nous avons eu de fructueuses conversations.

1. Finitude de SIe(n, A, D) lorsque A est irréductible

PROPOSITION 1. Si A est irréductible, SIe(n, A, D) est fini.

Soit (V, S, i) une structure isométrique dont la classe est dans SIe(n, A, D), A

irréductible. Suivant une méthode de Milnor [M] nous associerons à (V, S, i) une
forme e-hermitienne sur un A-module, où A est un ordre d'un corps de nombres.
Nous ramènerons ainsi la Proposition 1 à une proposition concernant ces formes
e-hermitiennes laquelle sera démontrée au §2.

Le corps de nombres sera K Q[X]/(A) O(r), où r est une racine de A.

Nous avons vu dans l'introduction que si t est une a-isométrie, alors A Aa. Donc
K est muni d'une Q-involution induite par f a2T~1. Si degré A>1, cette
involution est non triviale. Mais si degré A 1, alors A(X) X±a, donc t(x)
±ax pour tout x dans V, et SIe(n, A, D) est alors égal à l'ensemble des classes

d'isomorphisme des formes Z-bilinéaires e -symétriques sur un Z-module libre de

rang n, dont le déterminant divise D. La finitude de cet ensemble est bien connue
(voir par exemple [M-H] Chapitre 2 Lemme (1,6)). Nous pouvons donc supposer
que l'involution est non triviale.

Posons A =Z[t, aV""1]. A est un ordre de K invariant par l'involution.
Munissons V d'une structure de Z[T]-module en posant r • x f (x), puis posons
AV A®z[t]VAV est un A-module sans torsion car A est irréductible, et AV est
de rang m (n/degré A) (le rang d'un A-module sans torsion W sera par
définition la dimension sur K de K®AW).

Etendons S à K®z[t]V, et prenons ensuite sa restriction à AV, appelons s

cette restriction. L'égalité s(a2r~1x, y) S(x, Ty) montre immédiatement que s est
à valeurs entières.

Pour obtenir une forme e-hermitienne sur AV. fixons d'abord x et y dans AV.
Considérons F: A —> Z définie comme suit: pour tout ae A, F(a) s(ax9 y). F
est évidemment Z-linéaire. tracex/Q étant non dégénérée sur K, il existe un
unique $eK tel que trace^o (a|3) F(a) s(ax, y) pour tout a g A. En fait
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comme s(ax, y)eZ, |3 e A*, où A* est par définition l'ensemble des yeK tels que
traceK/Q (yA)<=Z. Soit c un entier non nul tel que cA*c:A: alors cfieA.

Posons Bs(x, y) c|3. Bs(x, y) est l'unique élément de A qui vérifie:

traceK/Q {aBs(x, y)} cs(ax, y) pour tout a g A.

Bs :AVxAV —> A est e-hermitienne, en effet on vérifie par calcul direct que
Bs est linéaire dans la première variable et que Bs(x, y) eBs(y, x).

DÉFINITION. Soit F un ordre d'un corps de nombres, W un F-module sans
torsion de rang fini. Nous dirons qu'une forme bilinéaire ou sesquilinéaire

B.WxW^F est d'exposant D, où D est entier strictement positif, si

adB V) contient le sous-groupe D • Homr W, F) Homr W, DF) de

Homr (W, D, où adB : W-> Homr (W, F) est défini par: adB (x) - B( x).

Remarque 1. Si W est F-libre de rang m, on peut représenter B.WxW —» F
bilinéaire ou sesquilinéaire par une matrice m x m, et on vérifie par calcul direct

que:
Si dét (B) divise D, B est d'exposant D.
Si B est d'exposant D, dét (B) divise Dm.

2) Si Wo est un sous F-module de W tel qu'il existe un entier non nul c avec
cW<= Wo, et si B : Wx W -> F bilinéaire ou sesquilinéaire est d'exposant D, alors
la restriction de B à Wo est d'exposant c2D.

LEMME 1. Bs est d'exposant cD

dét (S) divise D, donc S est d'exposant D (cf. Remarque 1). On vérifie
directement sur la définition de l'exposant que s (l'extension de S à AV) est aussi

d'exposant D.
Soit / un homomorphisme A-linéaire de AV dans cDA, et posons

F(x) traceK/op^

pour tout x dans AV. F est un homomorphisme Z-linéaire à valeurs dans DZ. s

étant d'exposant D, il existe y dans AV tel que

s(ax, y) F(ax) trace^ j——j trace^Q [«-JTj

pour tout a dans A et pour tout x dans AV. Ceci implique que Bs(x, y) /(x)
pour tout x dans AV, donc Bs est d'exposant cD.

Notations. On note H\(m, D) l'ensemble des classes d'isomorphisme des

formes e-hermitiennes d'exposant D sur un A-module sans torsion de rang m.
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On note [W, B] (respectivement [V, S, t]) la classe d'isomorphisme de W, B)
(respectivement de (V, S, t)) dans HA(m, D) (respectivement dans SIe(n, À, D)).

La construction précédente nous donne une application

On a vérifier que <\> est bien défine et de fibres finies.
<t> est bien définie. Si (V, S, t) est isomorphe à (V, S', t'), il existe un Z-

isomorphisme F: V —> V entre S et S' tel que t'F Ft, donc F s'étend en un
A-isomorphisme de AV dans AV qui est un isomorphisme entre Bs et Bs>.

4> est de fibres finies. Soit [ W, B] un élément de HA(m, cD). On considère les

structures isométriques (V, S, t) telles que (AV, Bs) soit isomorphe à (W,B). Soit
F: AV —» W un isomorphisme. Soit cx l'exposant de Z[r] dans A =Z[t, a2r~1],
alors CxAVc: V, donc C!WciF(V)c: W. Il n'y a donc qu'un nombre fini (qui ne
dépend que de cx et de n) de possibilités pour le Z-module F(V).

Or si (V, S, 0, (V, S', t') sont des structures isométriques avec F(V) F'(V),
on vérifie que (F')~1F: AV —» AV fournit un Z-isomorphisme entre (V, S, 0 et
V, S', t'). Donc <f> est de fibres finies.

La Proposition 2 démontrée au §2 dit que HeA(m, cD) est fini. Comme on a

une application de fibres finies SIe(n, À, D) —» H^m, cD), ceci démontrera que
SIe(n, À, D) est fini lorsque À est irréductible.

2. Formes e-hennitiennes

Dans le paragraphe précédent nous avons été amenées à considérer des

formes e-hermitiennes (e +1 ou — 1) sur un A-module sans torsion de rang fini,
à valeurs dans A. Rappelons que A est un ordre d'un corps de nombres K muni
d'une involution non triviale et A est invariant par l'involution.

Nous notons HA(m, D) l'ensemble des classes d'isomorphisme des formes
e-hermitiennes de rang m et d'exposant D fixés (A et s sont fixés pour tout le
paragraphe). Quelques fois nous fixerons aussi le A-module V sur lequel les

formes sont données et nous utiliserons la notation H%(V, D).
Nous avons vu que la proposition 2 énoncée ci-dessous démontre la proposition

1:

PROPOSITION 2. HeA(m, D) est fini.

Autrement dit il n'y a qu'un nombre fini de classes d'isomorphisme de formes
e-hermitiennes de rang et d'exposant donnés.
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Remarquons tout d'abord que si H\{V, D) est fini pour tout A-module V sans
torsion de rang m, alors H%(m, D) est aussi fini. En effet, il n'y a qu'un nombre
fini de classes d'isomorphisme de A-modules sans torsion de rang fini fixé, (voir
par exemple [S], Corollaire 3.10)

Remarquons aussi qu'il suffit de montrer la Proposition 2 dans le cas où
A OK: l'anneau des entiers de K: il existe un entier non nul ct tel que CiOK soit
contenu dans A. Si B : Vx V —» A est une forme e-hermitienne d'exposant D,
alors l'extension de B à M=OK®AV, notée 7B, est e-hermitienne d'exposant
cj). Ceci définit une application <j> :HeA(V, D) —» HoK(M, cxD). Montrons que <f>

est de fibres finies. Rappelons que la notation [ V, B] signifie: la classe d'isomorphisme

de (V, B) dans H\(V, D). Si <f>[V, B] [M, 7], alors il existe un isomor-
phisme OK-linéaire F:M —> M qui est une isométrie entre yB et 7. On a : qMc
F(V) <= M, donc il n'y a qu'un nombre fini de possibilités pour le A-module F(V).
Mais si F' :M —» M est une isométrie OK-linéaire entre (M, 7B>) et (M, 7) et que
F(V) F(V), alors (F'^F: V -» V est un isomorphisme A-linéaire entre (V, B)
et (V\B'). Donc <£ est de fibres finies.

On peut donc supposer que V est un OK -module sans torsion de rang m, que
nous fixons pour le reste du paragraphe.

Nous dirons que B : V x V -» OK représente a e OK s'il existe un x non nul
dans V tel que B(x, x) a.

Nous avons besoin du lemme suivant:

LEMME 2. U existe un sous-ensemble fini il de OK\{0} tel que toute forme
e-hermitienne B : Vx V —» OK d'exposant D représente un élément de il.

La démonstration du Lemme 2 consiste à se ramener à un problème concerant
des formes bilinéaires symétriques lequel est résolu dans O'Meara [O]. En effet, il
découle du Lemme 103.3 et de la Remarque 103.5 de O'Meara l'équivalent du
Lemme 2 pour les formes symétriques: Si F est un corps de nombres et OF
l'anneau des entiers de F, si W est un OF-module sans torsion de rang fini et IV 0

un idéal de OF, il existe un sous-ensemble fini <P de OF\{0} tel que toute forme
OF-bilinéaire symétrique L.WxW —» OF telle que IcVol(L) représente un
élément de <2>.

DÉFINITION. Vol(L) l\ • • J^. détCLCx,,*,))^ k où xx--xkeW et

Ii • • • lit des idéaux fractionnaires de OF sont tels que W x1I1(B • • -(Bxklk.
(Cette définition se trouve dans O'Meara [O] où il est montré que Vol (L) ne

dépend pas du choix des x, et des Iv)
On peut donner la même définition pour L : Vx V —» OK e-hermitienne.
Notons F le corps fixe de l'involution, OF son anneau des entiers.
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Associons à tout B dont la classe est dans Heojy,D) une forme OF-
bilinéaire, symétrique LB : Vx V -» OF. Soit b un élément de OK tel que b +
eb # 0, un tel b existe car l'involution est non triviale. Considérons T.KxK —» F
définie par: pour tout a et j3 dans K, T(a, |3) (6 + eb) (a/3 + eâ/3). T est

F-bilinéaire, symétrique et T est non dégénérée car pour tout a non nul dans K,

i--z
Posons LB(x, y) T(l, B(x, y)) (b + eb) (B(x, y) + B(y, x)) pour tout x et y dans

V. LB est bien OF-bilinéaire et symétrique.
Posons O% {aeK tel que T(a, p)e OF pour tout /3 dans OK} et soit c un

entier non nul tel que cO% soit contenu dans OK. On montre que LB est

d'exposant cD (on emploie le même argument que dans la démonstration du
Lemme 1, T jouera le rôle de la trace).

Rappelons que Vol(LB) I? • • • II. dét(LB(xl,xï))lJS!Sl k où V x1I1©---
0xklk, les xx appartenant à V et les lx étant des idéaux fractionnaires de OF.

Soit N XxOF© • • • ©xkOF, N est un sous OF-module de V. Soit c' un entier
non nul tel que c'VcJV. D'après la Remarque 1, la restriction de LB à N est

d'exposant cf2cD, ce qui entraine que dét(LB(xl, Xj))t J=1 k divise (c'2cD)k.
Posons 1 2? • • • II. (c'2cD)k. Alors 2 est contenu dans Vol (LB) pour tout JB

dont la classe est dans HoK(V, D). I est un idéal entier car Vol (LB) est contenu
dans OK.

Remarquons que par le même argument on peut montrer qu'il existe un idéal

I de OK tel que / c Vol (B) pour tout B dont la classe est dans HeOk(V, D) (Jï 0).
Ceci démontre le Lemme 2. En effet, par le résultat de O'Meara que nous

avons énoncé au début de la démonstration du Lemme 2, il existe un sous-
ensemble fini O0 de OF\{0} tel que pour tout B dont la classe est dans

HoK(V, D), LB représente un élément de iîQ. Soit c2 un entier non nul tel que

soit un élément de OK. Pour tout x dans V, B(c2x,c2x) aLB(x,x). Donc
û aO0 est l'ensemble cherché.

Démonstration de la Proposition 2. Par récurrence sur m =rangOKV.
m 1: II n'y a qu'un nombre fini de possibilités pour l'idéal Vol (B) lorsque la

classe de B est dans HoK(V, D), car on a vu que dans ce cas Vol (B) contient un
idéal fixe non nul de OK. Posons / Vol (B). Soit x 9e 0 un élément quelconque de



Finitude du nombre des classes d'isomorphisme 385

V. Il existe un idéal fractionnaire I de OK tel que V-Ix. On a: Vol(E)
I2B(x, x) par définition, donc B(x, x)OK=jr2. Ceci détermine B(x, x) (donc B)
à une unité de OF près. Notons U(OF) les unités de OF. Si deux formes B et B'
diffèrent par un élément de l/(OF)2, alors elles sont isomorphes. Or
U(OF)/U(OF)2 est fini, donc il n'y a qu'un nombre fini de classes d'isomorphisme.

m > 1: Par hypothèse de récurrence HeoJjn\ D) est fini si m'<m. Soit fi le
sous-ensemble fini de OK\{0} donné par le Lemme 2. Pour toute forme e-
hermitienne B:VxV-^ OK d'exposant D il existe un élément xB de V tel que
B(xB,xB)e(l. Soit VB l'ensemble des xeV tels que JB(xB, xB) divise B(xB9x)
dans OK. Vb est un sous OK -module de V. VB se décompose en somme
orthogonale de OK-modules: VB OKxB(BU0, où [/0 est l'ensemble des xeV
tels que B(xB, x) 0.

12 étant fini, il existe un entier non nul c tel que a*"1 e OK pour tout a e O.

Remarquons que cV<= VB pour tout B dont la classe est dans HoK(V,D): en
effet, on a B(xB, xB)Vc VB. Donc la restriction de B à VB est d'exposant c2D.

cVc VB entraîne qu'il existe une liste finie de OK-modules Ul9..., Ut <= V telle

que VB est égal à l'un des Ul pour tout B dont la classe est dans HoK(V, D).
Notons X l'ensemble de toutes les formes B dont la classe est dans

HoK(V,D), et Xt celui des formes de X qui satisfont VB Uv X est donc la
réunion des Xx • • • Xt. Notons X[ l'ensemble des restrictions des formes de Xt à

Ut.

Soit Yt l'ensemble des formes dont la classe est dans HoK(Ul9 c2D) et qui se

décomposent en somme orthogonale de deux formes e-hermitiennes de rangs 1 et
m -1. Nous avons vu que X[ <= Yx. Aut (LQ agit sur Y, (mais pas nécessairement
sur X[: c'est pour ça que nous avons besoin de Yt). Yl/Aut(L/l) est fini par
hypothèse de récurrence.

Le Lemme 3 ci-dessous dit que la finitude de Y^Aut (JJX) pour tout i 1 • • • l
entraine celle de X/Aut(V) H^K(V,D).

Nous appliquerons le Lemme 3 aussi dans les §§3 et 4.
Pour ce lemme, K n'est pas nécessairement muni d'une involution, et A est un

ordre quelconque de K.
Soit V un A-module sans torsion de rang fini. Nous noterons 5^(V) soit

l'ensemble des structures isométriques sur V, soit celui des formes e-hermitiennes
sur V.

LEMME 3. Soient L^ • • • Ux des sous A-modules d'indice fini de V, Xx

i 1 • / des sous-ensembles de &( V) tels que les restrictions à Ut des éléments de

Xx appartiennent à Sf(Ut). On a donc des applications res:X, -> Sf([/,).
Notons X la réunion des Xt • • • Xi dans Sf(V), et supposons que Aut (V) agisse

surX.
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Soit Y, c <?([/,) un sous-ensemble stable par Aut(l/l) contenant res(Xt).
Alors la finitude de YJAut (Ut) pour tout i \ • • -l entraine la finitude de

X/Aut(V).

Preuve de Lemme 3. Tout /eAut(LO s'étend par tensorisation en un K-
automorphisme unique de KSaL^ =K@a V, extension que l'on notera fK.

Notons Aut (V | LO l'ensemble des A-automorphismes de Ul qui s'étendent à

V. On a fe Aut (V | U%) si et seulement si fK(V) V.

Soit Xf res(X,). L'inclusion de Xf dans Y, induit

ir :Xf/Aut (V | 17.) -* YJAut (LO

Le cardinal des fibres de tt est majoré par le cardinal de Aut (LQ/Aut V | LO qui
est fini. En effet, soit c un entier non nul tel que cV soit contenu dans Ul9 alors

donc il n'y a qu'un nombre fini de possibilités pour le Z-module fK(V).
Or si / et f sont dans Aut (10 et si fK(V) f'K(V) alors f^ifkiV)) V, donc /

et f sont équivalents modulo Aut(V|l/l). Donc le cardinal de

Aut(L0/Aut(V| LO est fini. Ceci implique que tt est de fibres finies, donc la
finitude de YJAut(Ut) entraine celle de Xf/Aut(V| Ut).

Soit Aut(V, 17, l'ensemble des automorphismes de V qui laissent stable Ux.

D'autre part, res: Xx —» X[ induit une bijection

X,/Aut (V, Ut) -» Xf/Aut (V | Ut)

En effet, soient x et y des éléments de &(V) tels que les restrictions de x et de y à

[/„ notées x1 et y', appartiennent à #XLO. Supposons que x' et y' soient
isomorphes par un isomorphisme /eAut(V| LO, alors x et y sont isomorphes
par(/K|V)GAut(V,l7l).

Donc Xj/Aut V, LO est aussi fini. Mais n=i i (XJAut (V, LO) se surjecte sur
X/Aut(V).

3. Structures isométriques avec polynôme minimal de la forme 77a, 7 irréductible
et

PROPOSITION 3. Soit y irréductible, y^ ya. Alors SIB(n, 77a, D) est fini.

Démonstration, y et ya sont premiers entre eux, donc il existe des polynômes
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fl9f2^Z[X] et un entier non nul c tels que:

Soit V un Z-module libre de rang n, fixé. Pour tout endomorphisme t : V
de polynôme minimal yya, posons:

et V2

La somme de Vx et de V2 dans V est directe. On vérifie que cVc Vx© V2,
donc il n'y a qu'un nombre fini de possibiltés pour le Z-module Vx© V2, disons

C/i • • • Ui-
Notons X l'ensemble des structures isométriques dont la classe est dans

SIe(V, 77a, D), Xx le sous-ensembïe de X formé des structures (V, S, t) telles que
7a(0(V)©7(0(V) l/,, et X[ l'ensemble des restrictions des éléments de Xx à I7r

Les éléments (17,, S, 0 de X[ ont les propriétés suivantes:
1) Ut se décompose en somme directe: Ut Vx© V2, avec f Vx)c Vl9 t( V2) c

V2, et le polynôme minimal de 11 Vx est 7, celui de 11 V2 est 7a.

2) S| VxXV^Sl V2xV2 0

3) rangzVi rangzV2
4) le déterminant de S divise c2D
1) est trivial, 2) résulte d'un calcul direct, 3) est vrai car par 2) S induit une

injection Vt —> Homz (V2, Z) donc rangz Vx^rangz V2, de même rangz V2<
rangz Vx. 4) découle du fait que cVc Uv

Soit Yj l'ensemble des structures isométriques dont la classe est dans

SIe(Ut9 77a, c2D) et qui satisfont 1) 2) et 3). Remarquons que Aut ([/,) agit sur Y,

(mais pas nécessairement sur X[). Le Lemme 3, §2, dit que la finitude des

Y/Aut (Ut) entraine celle de X/Aut (V) SIe(V, 77a, D).
Il suffit donc de montrer:

AFFIRMATION. YJAut (Ut) est fini

Preuve de Vaffirmation. Soit SP (U, Vx© V2, S, t) un élément de Y,, fixé. S

induit une injection B : V2 -> Homz Vl9 Z) Vf. Notons T (t\V1):V1-> Vx.
On vérifie par calcul direct que (t | V2) a2B~1(T*)~1B.

Notons I(m, 7) l'ensemble des classes d'isomorphisme des endomorphismes
d'un Z-module libre de rang m ayant 7 comme polynôme minimal.

On vérifie facilement que l'on a une application bien définie:

4>:YJAut(Ul)-»I(m,y)
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Obtenue en associant à la classe de & la classe de T. (car V\ Ux

Montrons que <f> est de fibres finies.
Soit #" (£/, Vien, S', 0 un élément de Y, tel que </>(^) </>(#") Soit

F' : V[ -*• Vj un isomorphisme. B' et T' seront définis de la même façon que B et
T. Notons G^JBHF'T'B'iQV^-» QV2.

G'): Q(V'10 V'2) ~* Q(Vl

est une Q-isométrie entre SP et S?. B et B' sont d'exposant c2D, donc c2DVf a
B(V2), c2DVfcB'(V0. On en déduit que c2DV2c G'(V2)ci (l/c2D) V2. Il n'y a

donc qu'un nombre fini de possibilités pour le Z-module G'(V2).
Soit ST un autre élément de Y, tel que $(&») ${&). On définit F" et G" de la

même façon que F et G'. Supposons que G"(V2) G'(V2). Alors
(G')"1 G": V2 -» V2 est un isomorphisme, et

o (ori
donne une isométrie entre S? et S^'.

Ceci montre que <t> est de fibres finies.
I(m, 7) est fini par [S], Corollaire 3.10, donc YJAutiU,) est fini.

EXEMPLE. Si y et ya sont tels qu'il existe des polynômes entiers fx et f2

avec /iY+f2ya:=l> alors SIe(n, yya, 1) s'injecte dans l'ensemble I(m, 7) des

classes d'isomorphisme des Z[X]/(y)-modules sans torsion de rang m
(n/2 degré y) (l'injection est l'application <f> décrite dans la démonstration ci-
dessus).

Si de plus a 1, alors cette injection est aussi surjective.

§4. Structures isométriques avec polynôme minimal semi-simple

Rappelons qu'une structure isométrique entière (V, S, t) est composée de:
1) V un Z-module libre de rang fini
2) S:VxV-*Z une forme bilinéaire, non singulière (dét(S)^O) e-

symétrique, où e — +1 ou —1.

3) t : V -> V un endomorphisme satisfaisant:

S(tx, ty) a2S(x, y) pour tout x et y dans V

pour un certain entier positif a (indépendant de x et de y)
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Soit À le polynôme minimal de t, alors À (0)^0. Nous utilisons la notation:

(A(0))-1XdegreX

nous avons déjà vu que la propriété d'isométrie de t et la non singularité de S

impliquent que Aa A (cf. introduction).
Nous notons SIe(n, A, D) l'ensemble des classes d'isomorphisme des structures

isométriques (V, S, t) telles que:
1) rangz V n
2) le polynôme minimal de t est A

3) le déterminant de S divise D.
Un polynôme A e Z[X] est dit semi-simple s'il n'a pas de facteur multiple dans

sa décomposition en produit de polynômes irréductibles.
Nous allons maintenant démontrer le principal résultat algébrique de ce

travail:

PROPOSITION 4. Si A est semi-simple, alors SIe(n, A, D) est fini

Démonstration. A a une décomposition en produit de polynômes à coefficients

entiers, unitaires, irréductibles, de la forme:

A Yl * " ' YkYk + l(7k+ l)a ' " * 7r(7r)a

où

(7P)a 7P si p^fc, et (7p)a^7P si p>fe.

Notons

rYP si p<fc

LYp(7P)a si p>fc

et posons jxp A/Ap. Remarquons que (/mp)a /mp. Comme A est semi-simple par
hypothèse, les julp p 1,..., r sont des polynômes entiers, premiers entre eux
dans leur ensemble, i.e. il existe des polynômes entiers f1 - • • fr et un entier non
nul c tels que:
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Soit V un Z-module libre de rang n, fixé. Pour tout endomorphisme t : V —» V
de polynôme minimal À, posons:

Remarquons que
1) La somme des Vp dans V est directe. cV<= ©p=1 Vp, donc il n'y a qu'un

nombre fini de sous Z-modules de V qui peuvent être réalisés comme
©p=i l*p(t)(V) pour un certain choix de t. Appelons U1 • • • Ux ces sous Z-modules.

2) Les Vp sont stables par t, et le polynôme minimal de t \ Vp est Àp.

3) Vp est orthogonal à Va si p^a.
Notons maintenant X l'ensemble des structures isométriques dont la classe est

dans SIe(V; A, D), Xt le sous-ensemble de X des structures isométriques (V, S, t)
telles que

p=l

On a:

1 1

Soit Yt l'ensemble des structures isométriques dont la classe est dans

SIe(Ut, À, c2D) et qui se décomposent en somme orthogonale ©p=i (Wp, Sp, fp),

où le polynôme minimal de tp est Àp. AutiUJ agit sur Yt. Observons qu'un
isomorphisme entre deux éléments de Yt préserve les décompositions
orthogonales de Ux. Deux structures de Y, sont donc isomorphes si et seulement si

les facteurs correspondants dans leurs décompositions orthogonales sont
isomorphes. Ceci montre que l'on a une injection:

YJAut (m ^ fi II SIe(np,Ap,c2D)

Par les Propositions 1 et 3 on en déduit que Y^AutCLQ est fini.
Notons X[ l'ensemble des restrictions à Ut des éléments de Xt. Les propriétés

2) et 3) impliquent que X\ est un sous-ensemble de Y,. On peut donc appliquer le
Lemme 3, §2: la finitude des YJAxx\(Ux) entraine la finitude de X/Aut(V)
SIe(V,KD).
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§5. Structures isométriques avec polynôme minimal non semi-simple

PROPOSITION 5. Supposons que SIe(n,KD) soit non vide. Si k est non
semi-simple, alors SIe(n,k,D) est infini.

Démonstration. On a déjà vu que SIe(n, À, D) non vide entraine: il existe un
entier postif a tel que Àa À. Comme À est non semi-simple, il existe des

polynômes entiers y et jul, avec degré 7^1, tels que À y2fx. Comme Àa À, on
peut les choisir tels que ya y, fxa jll.

Soit (V,S, t) une structure isométrique dont la classe est dans SIe(n,k,D).
Pour construire une infinité d'éléments de SIe(n,k,D), on commence par
décomposer V comme suit:

Posons V1 Ker(7fi)(0 {xGV tel que (yti)(t)(x) 0}, et W3

y rï[Q(Y/x)(f)(V)] {jc€ V tel qu'il existe un entier non nul m avec mxe
(7/ll)(0(V)}. Vx est Z-sommand direct dans V:V=W1©Vr1, et W3 est Z-
sommand direct dans V1:V1 W2© W3, donc V=W1(B W2© W3, comme somme
directe de Z-modules.

Remarquons que
1) Vx et W3 sont stables par t
2) S\VxXW3 0

3) rangz Wt rangz W3

1) est immédiat à partir des définitions. On vérifie 2) par un calcul direct, en
utilisant que S((yix)(t)(x), y) S(x, (7fjt)(a2f~1)(y)), associé au fait que (7jm)a

7jit, et la définition de Vt et de W3. Montrons 3): S induit une injection
W3 ^~> Homz (Wx, Z) (cf. 2.)) donc rangz W3 <rangz Wx. Mais l'application Wt -*
Homz(W3,Z) donnée par S est aussi injective. En effet, soit xeWx tel que
S(x, y) =0 pour tout y dans W3. Mais (7fx)(0(V)c W3 donc S(x, (yn)(t)(z)) 0

pour tout z dans V. On a: (7jm)a yn, donc S((yii)(t)(x), (z) 0 pour tout z dans

V, d'où (7fx)(t)(jc) 0, ce qui implique que x e Vl9 mais Vx H Wx 0, donc x 0.

Ceci entraine que rangz Wx<rangz W3, donc rangz Wt rangz W3.

Par rapport à une base correspondant à la décomposition V= Wx(BW2(BW3,
S a une matrice de la forme:

Par 3), S3 est une matrice carrée.

Après ces préliminaires, on construit une infinité de structures isométriques

non isomorphes qui ont les mêmes invariants que (V, S, t): Soit k un entier non
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nul. On pose:

Mk k2W1®kW2® W3, tk 11 Mk

Bien que Wt et W2 ne soient que des Z-facteurs, on vérifie que Mk est stable par
f, en utilisant 1). On définit Sk par:

fc2
Sk=T-2(S\MkxMk)

Sk a la matrice:

S ko c

ekSl S4 0

eSï 0 0

donc Sk est une forme entière, et dét(Sk) dét(S). (Mk, Sk, fk) est donc une
structure isométrique, et sa classe est dans SIe(n, À, D).

Montrons qu'il y a une infinité de (Mk, Sk, tk) non isomorphes: Posons:

Le cardinal de la torsion de Xk est un invariant de la classe d'isomorphisme de

(Mk, Sk, tk).
On a: (T^KMfc^fc^iuiK^KW^^k^TiuiKtKWOe W3c:Ker 7(fk). Soit

Wo un Z-complèmentaire de W3 dans Ker y(tk). On a:

Xk W0©W3/fc2(7fx)(OW1)

Soit r rangz W! rangz W3>1. On a: r rangz (fc2(7jiL)(0(W1)), car (yjx)(O est

injectif sur Wx.
Soit c le cardinal de

Le cardinal de la torsion de Xk est alors ck2r. Donc il y a une infinité de structures
(Mk, Sk, fk) non isomorphes.

Nous aurons besoin de la remarque suivante pour l'application à la théorie des

noeuds:

Remarque 2. Soit b un entier positif. Notons tk l'extension de tk à
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Z[l/b]<8>zMk. On voit que les tk construits au cours de la précédente
démonstration donnent une infinité de tk non Z[l/b]-isomorphes: en effet on
regarde le cardinal de la torsion de Z[l/b]®zXk, et on voit que si k et kr sont des

entiers positifs, k^k', tous les deux premiers à b et à c (c a été défini au cours de
la démonstration ci-dessus) alors tk et tk ne sont pas Z[l/&]-isomorphes.

§6. Applications à la topologie

Dans ce paragraphe on appelera surface toute 2q-variété compacte à bord,
orientable et lisse, plongée dans S2q+1.

DÉFINITIONS. Soit M2q une surface.
1) On dira que M2" est simple si elle peut être obtenue par attachement

d'anses de dimension q à un disque de dimension 2q.
2) Soit D un entier strictement positif, on dira qu'une surface simple, M2q, est

de type D si le déterminant de sa forme d'intersection, S:Hq(M2tl)xHq(M2<l) ->
Z, divise D.

3) On dira que M2q est minimale si elle est simple et si sa forme de Seifert
A:Hq(M2q)xHq(M2q) -* Z (cf. la définition dans [L2]) est non singulière (c'est-
à-dire de déterminant non nul).

4) Soient e ± 1 et D un entier strictement positif, on dira que V, A) est une
e-forme de type D si V est un Z-module libre de rang fini et si A : V x V —» Z est

une forme bilinéaire telle que dét(A + eAT) divise D.
Soient M2q une surface simple de type D, V Hq(M2q) et A la forme de

Seifert de M2q, alors A + (-l)qAT est la forme d'intersection de M2q. (V, A) est
donc une (—l)q-forme de type D.

Remarqué 3. Soit q>2, par généralisation immédiate des résultats de Levine

[Ll] on obtient: l'association à M2q de sa forme de Seifert (V, A) induit une
correspondance biunivoque entre les classes d'isotopie des 2q-surfaces minimales
de type D et les classes d'isomorphisme des (—l)q -formes non singulières de type
D.

En particulier n, le rang de A et À, le polynôme minimal de

t=(- i)?+1- dét (A)A "" U rsont des invariants de la classe d'isotopie de M2?.

Remarque 4. L'ensemble des classes d'isomorphisme des (-l)q-formes non
singulières de type D, d'invariants n et A s'injecte dans Sl^^qin, A, D). En effet, à

(V,A) non singulière de type D on associe (V, S, t) où S A + (-l)qAT et
t (-l)q+1 dét (A)A~1AT. [V, S, t]e SI(_1)q(n, A, D). L'injectivité découle du fait
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que si (V, S, 0 est construite à partir de (V, A) alors

La Proposition 4 du §4 implique donc:

PROPOSITION 6: Si A est semi-simple et si q>2, il n'y a qu'un nombre fini
de classes d'isotopie de 2q-surfaces minimales de type D d'invariants net A fixés.

PROPOSITION 7. Si q>2 et si A est non semi-simple, Vensemble des classes

d'isotopie des 2q-surfaces minimales de type D ayant n et A pour invariants est soit
vide soit infini.

Preuve de la proposition 7. Supposons qu'il existe une 2q -surface minimale de

type D ayant n et A pour invariants. Soit (V, A) sa forme de Seifert, il suffit
maintenant d'exhiber pour tout keN\{0} des (-l)q-formes de type D:(Vk, Ak)
toutes non isomorphes d'invariants n et A. Soit (V, S, t) la structure isométrique
associée à (V,A), A étant non semi-simple on applique la proposition 5, §5.

Lorsque (V, S, 0 provient d'une (-l)q-forme, (V, A), les (Mk, Sk, tk) construits au
§5 sont tels que

det!

sont des formes entières.

Les noeuds simples

DÉFINITIONS
1) Un n-noeud Xn est une n-sphère d'homotopie différentiablement plongée

dans Sn+2.

2) X2*"1 est un noeud simple si EL (S2q+1\i;2q~1) ni (S1) pour tout i<q.
3) Une surface de Seifert est une surface dont le bord est un noeud.

Remarque 5. La forme de Seifert d'une surface de Seifert est une e-forme de

type 1.

Convention. A partir de maintenant nous dirons e-forme à la place de
e-forme de type 1.

Tout noeud simple borde une surface de Seifert simple M2* (cf. Levine [L4])
et la classe de S-équivalence S(A) de la forme de Seifert A de M2" est un
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invariant de la classe d'isotopie de ^2q-1 (cf. Levine [Ll]). Soit Ao une forme non
singulière S-équivalente à A (il en existe par Trotter [Tl]), alors n, le rang de Ao
et À, le polynôme minimal de t (— l)q+1dét(A0)Aô1Aj sont des invariants de

S(A) (cf. Trotter [Tl] ou Levine [Ll]).
Soient n e N\{0} et A g Z[X].

PROPOSITION 8. Siq>2 et si A est semi-simple il n'y a qu'un nombre fini de

classes d'isotopie de (2q —1)-noeuds simples ayant n et A pour invariants.

PROPOSITION 9. Si q>2 et si A est non semi-simple, Vensemble des classes

d'isotopie des (2q — \)-noeuds simples ayant n et A pour invariants est soit vide soit

infini.

La preuve de ces deux propositions 8 et 9 repose sur le résultat suivant du à

Levine [Ll]:
(*) Si q>2 il y a correspondance biunivoque entre l'ensemble des classes

d'isotopie des (2q — l)-noeuds simples et l'ensemble des classes de S-équivalence
des (—l)q -formes.

Preuve de la Proposition 8. Trotter [Tl] a montré que toute classe de S-
équivalence contient une forme non singulière. Deux formes isomorphes étant
S-équivalentes la proposition découle donc de la finitude de Sl^^qin, A, 1) (en
utilisant (*) et la Remarque 4).

Preuve de la Proposition 9. Supposons qu'il existe un (2q-l)-noeud
d'invariants n et A. Choisissons une (—l)q-forme, (V, A), non singulière se trouvant
dans la classe de S-équivalence associée au noeud et faisons lui correspondre la
structure isométrique (V, S, 0- On construit, comme dans la remarque 2, §5, pour
une infinité d'entiers fc, des structures isométriques (Mk, Sk, tk) toutes non
Z[l/dét (A)]-isomorphes.

Il découle de cette constuction que les

— c^l 1
dét(A)/

sont des formes entières
Les classes de S-équivalence des Vk, Ak) sont toutes distinctes car par Levine

[Ll] ou Trotter [Tl] deux formes non singulières, S-équivalentes sont

Z[l/dét (A)]-isomorphes. Le résultat de Levine, (*), achève cette preuve.

Remarque 6. Trotter [T2] s'est intéressé au problème suivant: "Combien" y-
a-t-il de surfaces de Seifert minimales pour un (2q — l)-noeud simple fixé? Levine
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[L3] a montré qu'il y en a un nombre fini si À est semi-simple et si q est impair et
plus grand que 2. La proposition 6 appliquée au cas D 1 montre, en particulier,
que le résultat de Levine est vrai sans restriction sur la parité de q. D'autre part,
Trotter a des résultats de non finitude pour son problème. Il faut remarquer que
les problèmes topologiques traités par Trotter et Levine diffèrent de ceux traités
dans cet article. Cette différence de point de vue se retrouve en algèbre: Trotter
et Levine s'intéressent aux classes de Z-isomorphisme des e -formes non
singulières qui se trouvent dans une classe de S-équivalence fixée (ces e-formes
sont, en particulier, toutes Q-isomorphes).

Remarque 7. Soit (V, A) une (—l)q-forme non singulière se trouvant dans la
classe de S-équivalence associée à un (2q-l)-noeud simple. -d(X) dét(A)
dét(X+(—l)qA-1AT), est le polynôme d'Alexander de ce noeud. Soient a
dét(A) et A' le polynôme caractéristique de t (— ï)Q+1aA~1AT alors:
an-1A(X) A\aX) où n= degré A.
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