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The Boolean algebra of spectra

A. K. BOUSFIELD

Introduction

Let Ho® denote the stable homotopy category of CW-spectra (cf. [Adams 2]),
and for E e Ho® let E« be the associated homology theory. For E, G € Ho®* we say
E. and G- have the same acyclic spectra if the following equivalent conditions
hold:

(i) For XeHo*, E: X=0 G.X =0.

(ll) For fX — Y eHo®, f*IE*X""‘E*Y@f*ZG*XzG*Y.

This gives a very coarse equivalence relation for spectra, and we let A(Ho")
consist of all the equivalence classes (E) for E € Ho*, where (E) is given by all
G € Ho® such that E« and G+ have the same acyclic spectra. We partially order
A(Ho®) by writing (E)=(G) when each Gx-acyclic spectrum is Ex-acyclic. Our
purpose in this note is to study the algebraic structure of A(Ho*) when it is
equipped with the relation =< and the operations v and A induced from the usual
wedge and smash product for spectra.

We say that (E)e A(Ho®) has a complement (E)° € A(Ho°) if (E)A(E)¢ =(0)
and (E)Vv(E)° =(S) where S is the sphere spectrum, and we note that (E)° is
unique when it exists. We let BA(Ho®) = A(Ho®) consist of those (E)e A(Ho")
with complements, and we observe that BA(Ho®) is a Boolean algebra. We prove
that (E) e BA(Ho®) whenever E is a (possibly infinite) wedge of finite CW-spectra.
It would be most interesting to determine the sublattice of BA(Ho") given by such
(E). We show that (S°U_ e")=(S° for each a €[S""!, S°] with n# 1, and that
(DE)=(E) when E is a finite CW-spectrum and DE is its Spanier-Whitehead
dual. This incidentally implies that G.E=0&'G*E =0, for G, E cHo® with E
finite. Some other members of BA(Ho") are (K) and (SZ,,) where K is the
spectrum of complex K-theory and SZ;, is the Moore spectrum associated with a
subring Z;,< Q. Indeed, (K) and (SZ,) are of the form (E)° where E is an
appropriate wedge of finite CW-spectra, though the proof for K will be postponed
to [Bousfield 3].

We also introduce a distributive lattice DL(Ho") given by all (E) e A(Ho®) with
(E)AN(E)=(E), and we show that BA(Ho") < DL(Ho") = A(Ho®) where both
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containments are proper. It turns out that (E)e DL(Ho®) whenever E is a
(possibly infinite) wedge of ring spectra and finite CW-spectra. In fact, most
familiar spectra represent elements of DL(Ho®).

The class A(Ho®) has applications to the homological localization theory of
spectra, cf. [Bousfield 3], [Ravenel]. In particular, the E«-localization is equivalent
to the G«-localization iff (E) = (G), and a determination of A(Ho") would provide
an inventory of the possible homological localization functors.

Our results on the structure of A(Ho®), BA(Ho®), and DL(Ho") are estab-
lished in §2. Some of our proofs involve [E,]«-colocalizations of spectra, and we
develop the required theory in §1.

We essentially use the notation and terminology of [Adams 2]. However, we
let Ho® be the category of CW-spectra and homotopy classes of maps of degree 0,
cf. [Adams 2, p. 144]. Thus Ho® is an additive category equipped with an
equivalence ) : Ho* — Ho® induced by the ‘shift” suspension Y of CW-spectra.
We write [ X, Y] for the group of morphisms X — Y e Ho®, and write [ X, Y], for
[2"X, Y] where neZ. By a cofibre sequence we mean a sequence in Heo®
equivalentto X > Y —»> Y U ¢ CX for some cellular map f of degree 0 between
CW-spectra, cf. [Adams 2, p. 155]. Recall that He® has arbitrary coproducts
induced by the wedge v for CW-spectra, and for X, Y € Ho® there is a natural
smash product X A'Y e Ho* which is associative, commutative, and unitary (with
the sphere spectrum S as unit) up to coherent natural equivalences, cf. [Adams 2,
p. 158]. We call E € Ho*® a ring spectrum if it is equipped with an associative (but
not necessarily commutative) multiplication EAE — E and a two sided unit
S — E in Ho®. As usual, we let Xo Y=mXAY =[S, XA Y]} for X, Y cHo".

§1. [E, ]--colocalizations of spectra

In preparation for §2 and for [Bousfield 3], we now develop the [E, -
colocalization theory of spectra. Some of the concepts here have previously been
developed by J. P. May (unpublished) and in [Bousfield 2].

For EcHo®, a map f:A — BeHeo® is called an [E, }--equivalence if
f«:[E,A}=[E,B),, and a spectrum CecHo® is called [E, J«-colocal if
g«:[C, X}+=[C, Y} whenever g: X — Y is an [E, J-equivalence. It is easy to
check:

(1.1) E is [E, J«-colocal.

(1.2) If {X_} is a set of [E, J.-colocal spectra, then v, X, is [E, J«-colocal.

(1.3) If W — X — Y is a cofibre sequence in Ho® and any two of W, X, Y
are [E, J--colocal, then so is the third.

(1.4) If X is [E, J~-colocal, then so is XA Y for all YeHo"
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A map ¢:X — AcHe® is called an [E, }-colocalization of A if X is [E, -
colocal and ¢ is an [E, }J«-equivalence. Note that the [E, ]J«-colocalizations of A
are initial among the [E, ]«-equivalences with target A, and are terminal among
the maps from [E, ]«-colocal spectra to A. [E, J«-colocalizations are clearly
unique up to equivalence and

PROPOSITION 1.5. Each spectrum A eHo® has an [E, ]--colocalization.

Proof. We inductively construct a transfinite sequence of inclusions of CW-
spectra

A=BycB,c---cB,cB,;<" "

where B, = J,., B, for each limit ordinal A and where B,< B,., is given
by the push-out square

V. V M,

acl f:Me:_-)BS

|

Vv V  Cone(M,)— B4

acl f:M.—>B,

in which {M,_},.; consists of all cofinal subspectra of the spectra )" E for ne Z,
and f ranges over all cellular functions M, — B, of degree 0, cf. [Adams, p. 140,
154]. Now let o be the number of stable cells in E and let vy be the first infinite
ordinal of cardinality greater than o. Then for each «a €I, each cellular function
M, — B, of degree 0 extends over Cone(M,) because the image of M, is
contained in B, for some s <v. Thus [E, B, }s=0. Since A is a closed subspectrum
of B, (cf. [Adams 2, p. 154]), there is an associated cofibre sequence

Y '(BJA)—>A—B,

in Ho*. The morphism Y ' (B,/A) — A is clearly an [E, J«-equivalence, so it
suffices to show Y ' (B,/A) is [E, J-colocal. For this is suffices to show induc-
tively that B/A is [E, J--colocal for all s. If B/A is [E, J«-colocal, then so is
B,../A because there is a cofibre sequence

BJA — B,,,/A — B,.,/B, cHo®

where B,,,/B; is equivalent to a wedge of iterated (de)-suspensions of E. If B,/A
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is [E, J«-colocal for all s <A where A is a limit ordinal, then B,/A is [E, J+-colocal
because there is a cofibre sequence

\V B/A —% \/ BJA — B,/A cHo®

s<A s<A

where g is induced by the maps B,/A — B,.,/A. This completes the induction
and the proof 1.5.

For each A eHo® let ¢: FA — A eHo® denote the [E, J.-colocalization given
by Y7 '(B,/A) — A above, and note that it is functorial and idempotent in the
obvious sense. To clarify the nature of [E, J.-colocal spectra, we let Class-E
denote the smallest class of spectra in Ho® such that: (i) E € Class-E; (ii) if {X_} is
a set of spectra in Class-E, then v X, € Class-E; and (iii) if W —> X — Y is a
cofibre sequence in Ho® and any two of W, X, Y are in Class-E, then so is the
third.

PROPOSITION 1.6. Class-E equals the class of [E, }«-colocal spectra in Ho".

Proof. Class-E is contained in the class of [E, J«-colocal spectra by (1.1)—
(1.3). Conversely, if X is [E, J+-colocal, then X € Class-E because *X =X and
EX e Class-E by the proof of 1.5.

We call a spectrum WeHo* [E, J-trivial if [E, W]«=0, and we note that
[V, W} =0 whenever V is [E, J-colocal and W is [E, Js-trivial. Each spectrum A
can be canonically built from [E, J«-colocal and [E, J.-trivial spectra as follows.
Extend ¢: EA — A to the cofibre sequence

1.7) EA 25 A -5 AFcHo¢*
given by > ' (B,/A)— A — B, above, and observe that A® is [E,]«-trivial.
Indeed, v is clearly the [E, J--trivialization of A, i.e. v is the initial example of a
map from A to an [E, }«-trivial spectrum. It is useful to observe:

(1.8) If V> X — W is a cofibre sequence in Ho®* with V [E, }-colocal and
with W [E, )-trivial, then V-— X — W is equivalent to the cofibre sequence

ExX*5> X Y5 XE

It is straightforward to check that the [E, J-colocalization and [E, ]«-
trivialization functors on Ho® commute with suspension and preserve cofibre
sequences. In [Bousfield 3] we will show that for each E € Ho" there exists a
spectrum aE € Ho® such that the E.-localization and E.-acyclization functors are
respectively equivalent to the [aE, }-trivialization and [aE, }.-colocalization
functors on Ho". Thus, many examples of trivialization and colocalization functors
will be implicity studied in [Bousfield 3].
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§2. On the structure of A (Ho")

We now examine the structure of the class A(Ho®) of “acyclicity types” of
spectra, and we establish the results mentioned in the introduction concerning the
distributive lattice DL(Ho®) < A(Ho*) and the Boolean algebra BA(Ho®)c
DL(Ho").

A(Ho®) has the following relations and operations:

(2.1) For (X), (Y)e A(Ho"), define (X)=(Y) if each Y«-acyclic spectrum is
Xs-acyclic. This is a partial order relation. Clearly (0) is the smallest element of
A(Ho") and (S) is the largest. Note that if X is [Y, J--colocal (or equivalently, if
X e Class-Y), then (X)=(Y).

(2.2) For a set {(X,)} of elements in A(Ho®*), define v, (X,)e A(Ho*) by
Vo (X, )=(v,X,). Note that v (X,) is the least upper bound of {(X,)} in
A(Ho%), and v is associative, commutative, and idempotent. Of course, (0) v (X)
and (S)Vv(X)=(S).

(2.3) For {X), (Y)e A(Ho°) define (X)A(Y)e A(Ho®) by (X)A(Y)=(XAY).
This is well-defined: if (X)=(X;) and (Y)=(Y;), then clearly (XAY)=
(XiAY)=(X;AnY,). Note that (X)A(Y) is a lower bound of (X), (Y)ec A(Ho"),
and that if (X)=<(X,) and (Y)=(Y,) then (X)A(Y)=(X,)A(Y;). Clearly A is
associative and commutative, with (S)A(X)=(X) and (0)A(X)=(0). Also the
distributive law  (X)A(v (Y ) =v (X)A(Y,)) and absorption law
(X)v((X)A(Y))=(X) hold.

(2.4) For each (X)e A(Ho°) there is an element a(X) e A(Ho®) such that a(X)
is the greatest member of A(Ho®) with (X) A a({X)=(0). Moreover, aa{X)=(X)
for each (X)e A(Ho°%), and (X)=(Y) if and only if a(Y)=<a(X). This will be
shown in [Bousfield 3], and we remark that a(X)=(aX) where aX is the
spectrum mentioned at the end of §1. It turns out that DL(Ho®) is not closed
under a( ), although a( ) gives the complement in BA(Ho®). We won’t use a( )
in this paper.

So far, A(He") resembles a Boolean algebra with complement a( ), but the
following lemma shows that A is not idempotent in A(Ho").

LEMMA 2.5. Let XeHo"® be a finite CW-spectrum with H.X finite, and let
cXeHo® be the Brown-Comenetz dual of X. If X#0, then (cX)A{(cX)=
0) # (cX).

Proof. Using [Brown-Comenetz, 1.14] it is easy to show H«(cX; Z)=0, and
thus (H)A{(cX)=(0) where H is the spectrum for integral homology. Since mcX
is the Pontrjagin dual of =_X, it vanishes for sufficiently large i. Hence
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(cX)(n, ) e Class-H for each n where (cX)(n, ) is the (n — 1)-connected section
of cX. The cofibre sequence

V (eX)(n,©) = V (cX)(n,®) - cXeHo

n=0 n=0
now shows cX € Class-H, and thus (cX)<(H). The lemma now follows since
(XA {cX)=(H)A{cX)={(0) and since (cX)+(S) # 0= 0.(S).

To avoid the pathological spectra revealed by 2.5, we introduce

2.6 The distributive lattice of spectra DL(Ho")

Let DL(Ho®) consist of all (X)e A(Ho®) with (X)A(X)=(X). For instance, if
E is a ring spectrum, then (E)e DL(Ho") because E is a retract of EAE in Ho®.
Also, if E a Moore spectrum or a finite CW spectrum, then (E) e DL(Ho") by 2.9
and 2.13 below. Many other examples can be derived from the preceding, since
DL(Ho°) is closed under the operation v (with any number of summands) and
under A; the proof for v uses the equality (X)v({(X)A(Y))=(X). With the
operations v and A, DL(Ho") is clearly a distributive lattice with 0,1 as defined in
the next paragraph.

We refer the reader to [Dwinger] or [Grétzer] for an exposition of distributive
lattice theory, but for convenience we recall that a class L with binary operations
Vv, A Is a distributive lattice with 0,1 if:

(i) xAx=x and xvx=x for xeL.
(i) xAy=yAax and xvy=yvx for x,ye L.

(iii)) xA(yanz)=(xAy)Anz and xVv(yvz)=(xvy)vz for x,y,z€ L.

@iv) xA(xvy)=x and xv(xAy)=x for x,yeL.

(V) xA(yvz)=(xAy)v(xaz)and xv(yaz)=(xvy)a(xvz) for x,y,ze L.

(vi) There exist elements 0, 1€ L such that 0vx=x and 1Ax=x for all xe L.
(Clearly, 0 and 1 are unique.) Now let L be a distributive lattice with 0,1. For
x, y €L one writes x =<y if the equivalent conditions xAy=x and xvy=y are
satisfied. Then = is a partial order relation on L, and x vy (resp. xAy) is the
Lu.b. (resp. g.1.b.) of x, y € L, cf. [Dwinger, p. 44] or [Gritzer, p. 6]. We also recall
that L is called a Boolean algebra if for each x € L there exists ye L with xAy =0
and xvy=1.

For (X), (Y)e DL(Ho") we conclude that (X)A(Y) is the g.l.b. of (X) and (Y),
where DL(Ho®) has the partial ordering inherited from A(Ho®). Of course, we
previously observed that (X)v(Y) is the Lu.b. of (X) and (Y). Thus the algebraic
structure of DL(Ho®) is contained in its partial ordering.

We call (Y)e A(Ho") the complement of (X)e A(Ho") if (X)A(Y)=(0) and
(X)v(Y)=(S). Note that if (Y,) is also the complement of (X), then (Y)=(Y})
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because
(Y)=(MAX) V(YD) =AY =((X)VY) ALY ) =(Y)).

If (X) has a complement (Y), then (X)eDL(Ho*) because (X)=
(X)A(X)v(Y)) =(X)A(X), but the members of DL(Ho") need not have comple-
ments.

LEMMA 2.7. (H)e DL(Ho"), but (H) does not have a complement.

Proof. (H)e DL(Ho°) since H is a ring spectrum. Suppose (H) has a comple-
ment (L). Let (¢cX) be as in 2.5, and recall that (c¢X)#{(0)=(H)A{(cX) and
(cX)=(H). Thus '

(eX) = ((H)V(LY A {cX) = (L) A{cX)=(L)A(H)=(0)

and this contradicts (cX) # (0). Therefore (H) cannot have a complement.

We now introduce

2.8 The Boolean algebra of spectra BA (Ho")

Let BA(Ho°) consist of all (X)e A(Ho®) such that (X) has a complement
(written (X)°), and note that BA(Ho*) =« DL(Ho"). If E is a Moore spectrum or a
(possibly infinite) wedge of finite CW spectra, then (E) e BA(Ho") by 2.9 and 2.13
below. Many other members of BA(Ho*) can be derived from the preceding, since
BA(Ho") is clearly closed under ( )° and the binary operations v, A; indeed, for

(X), (Y)eBA(Ho")

(X)* =(X)
(XOV(Y))® =(X)* A(Y)
(XA Y =(X)* v(Y)".

With these operations, BA(Ho") is clearly a Boolean algebra.
As promised, we now prove

PROPOSITION 2.9. If EcHo® is a (possibly infinite) wedge of finite CW-
spectra, then (E)c BA(Ho"). Moreover, (E)=(ES) and (E)* =(SF).

Proof. Assume E = v, B, where each B, is a finite CW spectrum. A spectrum
YecHeo® is [E, }-trivial iff (DB,)AY=0€Ho* for all a, where DB, is the
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Spanier-Whitehead dual of B,. Thus if Y is [E, J«-trivial, then so is XA Y for all
X eHo®. In particular, S ASF is [E, J--trivial as well as [E, J.-colocal (by 1.4),
and thus ESASE=0cHo*. Using the cofibering ES — § — S* of (1.7), we
conclude that (ES)v(SE)=(S), so (S) e BA(Ho") with (ES)° =(S*). It remains to
show (E)=(ES). Applying (1.8) to the cofibre sequence

XAES - XAS — XASE,

we find that XAES=EX and XASE=XF for all XeHo". Since E is [E, ]+
colocal, this implies E AES = E, and thus (E)=<(FS). Since S is [E, J.-colocal, we
know (ES)=<(E), and therefore (E)=(ES).

We remark that the above spectra £S and SF satisfy the strong idempotency
conditions ESAES=ES and SEASF=SE. Indeed SF is a commutative ring
spectrum whose multiplication map S* AS® — SF is an equivalence. We next
observe

PROPOSITION 2.10. If EcHo® is a finite CW spectrum, then (E)=(DE).
Consequently, for any G e Ho*, G«(E)=0&G*(E)=0.

Proof. Since [E, S¥]+=0, we have (DE)ASF =0 and thus (DE)A®S=DE.
Since (ES)=(E), this implies (DE)A(E)=(DE). Dually one shows (E)A(DE)=
(E), and therefore (DE)=(E). The last statement is deduced using G*(E)=
G+«(DE).

We next prove ‘‘triangle (in)equalities’ for cofibre sequences. Call a map
f:A = X eHo® smash nilpotent if the m-fold smash product

fAa-Af:AA--AA > XA AXeHo

is the 0 map for some m = 1. Note that the smash nilpotent maps form a subgroup
of [A, X], and a composite fg is smash nilpotent if either f or g is. Moreover, if
i#0 then each map S' — S°cHo® is a smash nilpotent by [Nishida].

PROPOSITION 2.11. If A L .X—>Bisa cofibre sequence in Ho®, then:

() (A)=(X)Vv(B), (X)=(A)Vv(B), and (B)=<(A)Vv(X).
(i) If A, XeDL(Ho®) and f is smash nilpotent, then (B)=(A)Vv(X).

Proof. Part (i) is obvious. For (ii) we assume fA - - - Af=0 in Ho®* and form a
cofibre sequence

An- - AALSX A L AX > CeHO®
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Then
(CO)=(AA- - ANAIWXA - AX)=(A)Vv(X)

and also (C)<(B) because C is [B, ]J«-colocal (i.e. C € Class-B). Thus (A)v(X)=<
(B) and the opposite inequality is given by (i).

COROLLARY 2.12. If n#1 and a :S" ' — S° in Ho®, then (S°U_ e™)=(S).

Because of Nishida’s theorem, this follows from 2.11; or instead of using 2.11,
we could have used the easy result that if Y™ A —L 5 A — B is a cofibre sequence
in Ho® with f nilpotent in [A, A]+, then (B)=(A). By combining 2.12 with R.
Wood’s result K =(S°U, e*) A KO, we recover the result (K)=(KO), cf. [Meier],
[Ravenel].

Of course, 2.12 fails when n =1, and we now consider (SG) where G is an
abelian group and SG e Ho is a Moore spectrum of type (G, 0) (i.e. mSG =0 for
i<0, H,SG = G, and H;SG =0 for i>0). There is a short exact sequence

00— GQmX — m,(SGAX)— Tor (G, m,_,X) — 0.

Thus

($)=(SQ)v V <(SZ/p)

(SQ)A(SZ|p) =(0)=(SZ/p) r(SZ|q) for primes p# q.

It follows that BA(Ho®) has a sub-Boolean algebra MBA(Ho"*) whose members
are the wedges of subsets of

I={(SQ), (SZ/2),(SZ[3),(SZ]5), . . .}.

Moreover, there is an obvious Boolean algebra isomorphism between MBA (Ho")
and the power set P(I). Note that for any set J of primes

(SZy)) =(SQ)v V (SZ|p)

pelJ

where Z;, is the localization of Z at J. More generally,

PROPOSITION 2.13. For each abelian group G, (SG)c MBA(Ho").
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Proof. Let C be the class of all abelian groups A such that G®A =0=
Tor(G, A), and note that (SG)«X =0 if m,X e C for all i. The result now follows
easily from [Bousfield 1,2.3] since C is a “special’’ class.

We conclude by noting that BA(Ho®) contains many elements outside
MBA(Ho"). For p prime let

A(p):X"SZ/p — SZ/p cHo"

be the K«-equivalence of [Adams 1, §12] where m =2p—2 for p odd and m =8
for p=2. It is easy to check that the cofibre of A(p) represents an element of
BA (Ho") outside MBA (Ho®). In [Bousfield 3] we will show that (K)=(E)° where
E is the wedge of the cofibres of all the A(p).
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