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Concordance implies homotopy for classical links in M®

by DeBORAH L. GOLDSMITH

Introduction

In this paper I prove that concordance implies homotopy for classical links in
any 3-manifold. The notion of concordance was first developed by Fox and
Milnor in [2] for knots in R?, and later extended to links in R? by Fox, in Problem
25 of [1]. Homotopy of links in a 3-manifold M> was defined and studied by
Milnor in [5].

The proof is entirely geometric, and also quite simple. In fact, at this point I
would direct the reader’s attention to Figure 4, which indicates a homotopy from
a particular ribbon link to the trivial link in R>. The reader might then be led to
the proof that all ribbon links are null-homotopic (Lemma 2.3).

The result of this paper has also been obtained by Charles Giffen, indepen-
dently, and by a different method.

1. Main definitions

All maps and spaces are in the P.L. category. Choose a closed 3-cell in the
interior of every 3-manifold M?, and denote its interior by R?; let R, R® be the
xy-plane in R>. Recall that a map g: M — N of manifolds is proper if g(oM)<oN
and g(int M) <int N.

Certain definitions, where indicated, will be taken from [6] (A. J. Tristram).

DEFINITION 1.1. An oriented link of n-components in a 3-manifold M? is a
proper embedding I: |-, S;— M? of a disjoint union of n-oriented 1-spheres in
that 3-manifold. Let L; denote the oriented image I(S}), and let L =1(U-,S}) =

i=1 L

DEFINITION 1.2. Two oriented links I, I': U, S — M? in M” are ambient
isotopic, if there is an isotopy h,: M>— M? such that h,=id and h,°l=T".
347



348 DEBORAH L. GOLDSMITH

We will not distinguish between a link and its ambient isotopy class. Since
oriented links with the same oriented images are ambient isotopic, let the image
L = M? denote the link [, and let the expression L =L’ signify that L and L’ are
ambient isotopic. The trivial link of n disjoint circles in the xy-plane RZ,, will be

denoted C" = |, C!.

DEFINITION 1.3. Two oriented links L,L'c M® of n components are
homotopic if there is a homotopy h,: ", S; — M? from hy=1 to h, =1, such
that for all ¢, and i#j, h(S)HNh(S))=D.

DEFINITION 1.4, Two oriented links L, L' < M?> of n-components are con-
cordant if there is a proper, locally-flat embedding h: (|, S}) X I — M?>X I, such
that h[(Ur., SHx0]=L %0 and h[(U~,; S)x1]=L"'x1.

(Note that ambient isotopy implies condordance, but not the reverse).
Homotopy and concordance are equivalence relations on oriented, n-component
links; let L ~L' denote “L is homotopic to L"” and let L=L’" denote “L is
concordant to L"”’.

DEFINITION 1.5. (Tristram). Connecting bands and arcs.

Let L < M? be an oriented link and b:IXI— M? a proper embedding. b is

said to be compatible with L if b(I X I) N L = b(I X9 I) and if the orientations from
L on b(I XdI) induce the same orientation on b(I xI). In this case the link

[L-b(IxaD)]UbEIXI),

its orientation inherited from L, will be denoted bL (see Figure 1).
b: IXI— M? is called a connecting band for L.
b: Ix3— M? is called the associated connecting arc. (see Figure 2).

Notation. Let L', L?< M? be oriented links such that L'NL2=. Put L =
L'UL? If b(Ix0)c L' and b(Ix1)= L2, define L'+ ,L? to be bL. If the band
b(I xI) is entirely contained in the xy-plane RZ,, then define L" 4 ,L? to be bL.

D g ' C)Di%

f ——y

L L Ub(IxI)
Figure 1
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b(1x3)

Vg

L
Figure 2

DEFINITION 1.6. The graph associated to a link with connecting bands.

Let LcM? be a link, by,...,b,:IXI— M> be a collection of disjoint
connecting bands for L. The graph I is constructed as follows: there is a vertex of
I' for each component of L, and for each band b; between two (possibly identical)
components of L, there is an edge joining the corresponding vertices.

DEFINITION 1.7. The link diagram associated to a link with connecting
bands.

This is simply L U A, where A is the collection of connecting arcs associated
with the connecting bands for L (see Figure 4A and 4B).

DEFINITION 1.8. A ribbon link.

Let N be a compact, oriented 2-manifold such that every component of N has
a non-empty boundary. A ribbon map of N into M? is a map, g say, with no triple
points, satisfying: the doublepoint set consists of mutually disjoint arcs in N which
may be paired (I, I') so that g(I) = g(I;), with I, properly embedded in N and I;
contained in int N, for all i in some finite indexing set. It is also assumed that the
self-intersections of g(N) at g(I,) = g(I}) are transverse.

g(N) will be called a ribbon of type N, and g(dN), denoted by d(g(N)), a ribbon
link of type N. If N=|J¥_, B, =kB is a disjoint union of k copies of the 2-disk,
then d(g(N)) is called a ribbon link (see Figure 3A and 3B).

In definition 1.9, let kB be the disjoint union kB = | J&_; B; of k copies of the
2-disk.

DEFINITION 1.9. (Tristram). L —L'.

Let L,L' M? be oriented links. Then L — L' if for some integer k there
exists a ribbon map g:kB — M>—L such that

L'=(...((L+,0B,)+,,0B,)+,,0B;) .. )+, 3B,),
where B, = g(B)).
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Figure 3. (A) arcs of doublepoints. (B) the Ribbon. (C) the cut ribbon g(B’) (D) the trivial link C with
connecting arcs A. (E) the trivial link C (deformed into the xy-plane) with connecting arcs of A.
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Figure 3F

DEFINITION 1.10. (Tristram). Ribbon equivalence.

L is ribbon equivalent to L', denoted L=L’, if there exists a sequence of
oriented links L', ..., L™ such that L'=L, L™ =L’, and for j=1, ..., m, either

L' +——L'*' or L'*' s L'. (The equivalence relation = preserves the number of
components of L.)

2. The main theorem

The approach will be to prove that ribbon equivalence implies homotopy for
oriented links in M?>, since Tristram showed ([6]) that concordance and ribbon
equivalence are identical equivalence relations on oriented links in M?>. (He
actually shows this for oriented links in R>; however his proof goes over
unchanged for an arbitrary 3-manifold.)

LEMMA 2.1. Every ribbon link is of the form (b, - - - (by(b;C)) - - - ), where C
is a trivial link in the xy-plane RZ,cR’, by,...,b,:IXI— M> are disjoint
connecting bands for C, and the graph associated to each component of
(b, - - - (ba(b,C)) -+ ) is a tree.

Proof. Let the ribbon link d(g(N)) be the boundary of the ribbon g(N), where
N=kB=|J¥_, B, is a collection of k disjoint 2-disks (see Figure 3A and 3B). Cut
kB along each properly embedded arc I; of doublepoints (i.e., remove the interior
U; L% (0,1)= N of a closed, regular neighborhood |J; I; X[0, 1]< N of the arcs
\U; I of doublepoints). Denote the result by B’ (see Figure 3C).

Then B’ is a union of 2-disks By, ..., Bimg< B, 1=i<k,and C=4(gB’) is a
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trivial link, since g|B’ is an embedding. Put C; =d(gB;), C; = U%® ;.

Let b; be the connecting band g:I, xI — M? for C, and let by, . . ., b; a)—1 be
the subcollection of connecting bands b; such that I; = B;. Then the ribbon link
R=094(gN) is (b, -(by(b;C))---), and the ith component of R is
(bimay-1 " * (bia(b;1C)) - - - ); the graph associated to the latter is clearly a tree
(see Figure 3D). An ambient isotopy will deform C into the xy-plane RZ,< R>.

COROLLARY 2.2. If L —> L', then
L'=(---((L #lel)#ngZ)# T )#d,,Rn)

where R =\ J'_; R, is a ribbon link with components R, each ribbon knot R, is of
the form (b; )1 * * (b;2(b;1G)) - - - ) where C, is a trivial link of m(i) components
in the xy-plane (as in Lemma 2.1), and the connecting band d; joins the component
L, of L to the component C;; of C, and is contained in the xy-plane, 1<i=<n.

Proof. By Definition 1.9 we have L'=(---((L+,4R;)+ 4R+ -)+4R,),
where R =|J; R, is a ribbon link with components R;, and where R, is of the
form (b .y - - (bia(bi1G)) - - *) as in Lemma 2.1. After ambient isotopy, we may
assume each component L; of L passes through the 3-cell R?, and intersects the
xy-plane RZ, < R? in a closed subarc; further, we may assume that this subarc is
joined by the connecting band d; to a closed subarc of C;;. Now if d;ZRZ,
deform C;; by an ambient isotopy which slides the latter closed subarc across the
band d;, while fixing its endpoints; call the result Ci;. Then C;;=C,+,4C,,

where C, is a tiny circle in the xy-plane. Obviously, L; +,R; is ambient isotopic
to L;# /R;, in the complement M>— |J ;4; L; +4R;, where R is the ribbon knot

(di(bi,m(i)—l cte (biz(an{)) =), C; = C: U Cio,

L!=L, is moved just slightly to avoid G, and the connecting band d;<RZ, joins
L; to C,.

LEMMA 2.3. Ribbon links are null-homotopic (homotopic to a trivial link).

Proof. Let the ribbon link be R = U{-; R, = M* with components R;. As in
Lemma 2.1, let R; =(b; ni)-1- " - (01G)) - - +), where G is a trivial link of m(i)
components in RZ,, and the associated link diagram is a tree. Let a; be the
connecting arc associated to the connecting band by, and set A; =Y q;,
A =, A;. Thus the link diagram associated to R is CU A, with components
C,UA.,. Let C, bound the disk D; <RZ, and set D,= U9 D;, D= U}, D.
Note that the D,;’s are necessarily disjoint. Finally, let the open 3-cells B; <R> be
disjoint, regular neighborhoods of the 2-disks D;;. (See Figure 3F). Without loss of
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generality, we may assume that each arc a; meets the xy-plane transversely, and
a; N C; =aay.

For clarity, I will indicate the homotopy from R to a trivial link, by describing
a homotopy of the link diagram CU A. It will be sufficient to move CUA to a
homeomorph C'U A’'<RZ, by an appropriate kind of homotopy. The proof that
this can be done goes by induction on the components of CU A:

Induction Hypothesis. For all i<k, C,UA; <RZ,.

Now assume that the induction hypothesis is satisfied for k = m.

Proof sketch. We will first perform a homotopy h,(C|JA) to eliminate points
of intersection of A,, with int D,,. During this homotopy, the components C; | J A,,
1=i=n, must remain disjoint. Then an ambient isotopy will suffice to untangle
A, UD,, from{J;,, G UA, and carry it into the xy-plane RZ,, thereby proving
the I.LH. for k=m+1. In so doing, the arcs A;, i>m, may become more
entangled with C, j<m.

There exists an isotopy h,: M>— M?> which has support on the 3-cell R?,
which leaves the xy-plane invariant, which fixes |J;.,. D; and ;.. A;, which is
the identity outside of B,, = |J; B,,; and which fixes the endpoints dA,,, such that
h,(A,,)Nint D,, = J; then h,(A)U C is a homotopy of A U C to a homeomorph
A'UC =h,(A)UC, which satisfies A, Nint D,,=J, in addition to all of the
properties attributed to A, C and D. We will assume that A UC has been
replaced by A'UC".

Now D, UA,, is a simply-connected 2-complex, since A,, Nint D,, = J.
There exist disjoint regular neighborhoods U of D,, U A,, and V of (U;.xm G)U
(Ui<m A)), such that U is a 3-cell, and B,,;< U. There is then an isotopy
h,: M?® — M? with support in U (hence fixing V), which fixes D,,,, such that
ho=id and h,(D,, UA,,)< B,,;. There is a further isotopy whose support is in
B,.;, which is the identity on D,,,, and carries h,(D,, UA,,) to a homeomorph
D, UA, cRZ, (The details of this are omitted; however the proof is easy, and
involves an application or two of the Schoenflies theorem.) Thus, the I.H. has
been verified for k = m + 1, which completes the proof.

Figure 4 indicates a homotopy from a particular ribbon link in R? to a trivial
link.

COROLLARY 24. If L —L/', then L~L'.
Proof. By Corollary 2.2,

LIE(' ¥ » ((L# del)#ngz)# ° ')#an"), Where R = U?=1 Ri



DEBORAH L. GOLDSMITH

354

©

N




Concordance implies homotopy for classical links in M?> 355

?
35¢

(G)
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Figure 4. (A) The link R. (B) The link diagram CUA.

is a ribbon link with components R;, the connecting bands d, lie in the xy-plane
RZ,cR? and R; = (b iy)-1 ' * * (bia(b;1C)))- - ) as in Lemma 2.1. Now an inspec-
tion of the proof of Lemma 2.3 quickly reveals that the homotopy from R to a
trivial link C" <RZ, can be made to avoid both L and the connecting bands
ridcRI.Hence L'~(- - (L#¥4CD#,Ch# - )¥,C)=L.

THEOREM 2.5. Concordance implies homotopy for oriented links in M>.

Proof. It follows from Corollary 2.4 that ribbon equivalence implies
homotopy. However, by Tristram (Corollary 1.33, [6]), ribbon equivalence and
concordance are identical equivalence relations on oriented links in M>.
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