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Simplicity of the projective unitary groups defined by simple factors

P. pE LA HARPE

Let 9% be a C*-algebra with unit and let U(%) be the group of all its unitary
elements. Assume-that the center of & is reduced to the set of scalar multiples of
the identity, and identify the center of U(%) with the group S' of complex
numbers with modulus +1. The projective unitary group of % is the quotient
PU(RB) of U(B) by S' [2]. We want to find conditions on % for this group to be
simple.

Suppose 9B has a non trivial two-sided ideal $; it is easy to check that PU(%)
is not simple, and the argument runs as follows. First, $ is not dense with respect
to the norm topology (because elements near 1 are invertible in %), so that the
closure $ of $ is a non trivial self-adjoint ideal in 9 [8, prop. 1.8.2]. Then the
kernel of the natural map U(%B) — U(%/$) is neither the whole of (%), because
it does not contain all elements near 1, nor a subgroup of S', because it contains
(1—x*)"2+ix if x is self-adjoint in $ with small norm. Hence this kernel defines a
non trivial normal subgroup of PU(%).

From now on, we shall assume that & is a von Neumann factor. If B is not
countably decomposable PU(%) cannot be simple; see [7, chap. I, §1, exerc. 7].
We shall consequently assume that % is countably decomposable.

If B is infinite and semi-finite, then it has a non trivial two-sided ideal (for
example that generated by all finite projections), and PU(%) is not simple. More
can be said about normal subgroups of PU(%) in this case: see [11] for type L.
and a later note for type IL.; but this is not our main purpose here. If B is finite
and discrete, say B = M, (C) with n a positive integer, it is well-known that any
normal subgroup of PU(A) contains the simple group PSU(n). The proof follows
closely the analogous one for orthogonal groups, which seems to appear first in E.
Catan [4]; the best reference is E. Artin [1, chap. V, §2]; there is a discussion of
the unitary case in Dieudonné [6, chap. VI].

In the remaining cases, B is known to be simple. Though this will follow from
our main theorem, see [7, chap. III, §5, n®2] for type II, and [7, chap. III, §8,
exerc. 1] for type III. Kadison has shown that PU(%) is topologically simple in
these cases, with the topology defined by the norm [12, th. 2]; but he left open the
‘““algebraic” simplicity of PU(%), though asserting the interest of the problem (see
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Simplicity of the projective unitary groups 335

the final remark in [12]). Kaplansky revived the question when he proved that the
derived group of the projective general linear group of a factor of type II, is
algebraically simple; but his methods do not apply to the projective unitary group
([13, appendice IV], and [14]).

The object of the present paper is to show the following

THEOREM. If R is either of type 11, or of type 111 (and countably decomposa-
ble), then PU(RB) is a simple group.

The proof splits naturally into two parts. Let I" be a normal subgroup of U(R)
which is not contained in the center S'. The first part consists of checking that I’
contains at least one involution (namely a self-adjoint unitary) which is not trivial
(namely neither +1 nor —1); this is an elaboration of the standard proof that
PSU((2)=S0O(3) is simple. The second and easiest part consists of checking that
I'contains all involutions; this involves playing with the dimension function of the
factor %. The conclusion follows since the involutions generate all of U(%)
according to a theorem of Broise [3, th. 1], which is due independently to
Fillmore in the purely infinite case [10, corollary to th. 3, which applies indeed to
any properly infinite von Neumann algebra].

I am grateful to A. Haefliger and V. Jones for helpful conversations and to the
“Fonds national suisse de la recherche scientifique’”, who has partially supported
this work.

On the group of rotations

We recall the standard proof that SO(3) is a simple group. This will be done in
a way preparing the introduction below of a continuous parameter.

We view SO(3) as a compact group acting on the unit sphere S* of Euclidean
space. This sphere is endowed with its usual metric, which is invariant by SO(3)
and for which diametrically opposite points are at a distance of o from each
other. The distance 8§(P, Q) between two points of S? is always measured on S?,
never in R>. Any element g € SO(3)—{1} leaves fixed exactly two points called the
poles of g; any point on the corresponding equator is then moved to a point at a
distance of a,, which is the angle of the rotation g, and which is identified to a
real number in ]O, 7]. The set 2 of rotations with angle not zero and strictly
smaller than 7 is homeomorphic to the complement of a point in an open 3-cell.
The orientation on R> makes it possible to select continuously one of the two
poles fixed by a rotation in (2: this will be the north pole N, of g e (2, so that the
south pole S, =—N, is also defined.
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Given two points P and Q on S* at a distance a from each other with
a € ]0, 7| there is exactly one rotation gp, with angle a which maps P onto Q,
because P and Q are on a well-defined great circle. It is important to observe that
gp.0 depends continuously on the pair (P, Q), and that the conjugacy class of gp o
depends only on 8(P, Q).

Consider ge {2 and a point P, on the equator between N, and S,. The
Archimedean property of real numbers makes it possible to find a finite sequence
(P;)1<j<n of points in S> with P, =—P, and with 8(P,_;, P,))=a, for je{l,...,n}.
The following construction of these points fits our purpose.

Chose an odd integer n =2k +1 with na, = . Let L be the half great circle
containing P,, P, = g(P,) and P, =—P,. Divide the arc of L. between P, and P,
into k arcs of equal length; this defines Ps, Ps, . .., Py _; with 8(Pyj_q, Pyjyq) =
(1/k)(m—ay) for je{l, .. ., k}. Choose such an integer j and let Q, be the point half
way between P,;_;, and P,;,,. If na, =, define P,; to be Q,, if na, > r, there are
exactly two points on the perpendicular bisector M; of P,;_,P,;,, at a distance a,
from P,;_,, and P,; is going to be one of them. As M, is a great circle orthogonal
to L, each of these points is the image of Q; by a rotation having M; as equator
and an angle strictly less that 7; each of these rotations thus has its poles on the
great circle containing L; choose P,; to be the image of Q, by the rotation which
has its north pole nearer P, than P,. The points P,, P,,..., P, are now all
defined; they depend only on g, on P, and on n.

It is elementary to check that, given two pairs (P', P”) and (Q’, Q") of points
on S? with §(P', P")=8(Q’, Q"), there is one rotation mapping P’ to Q' and P” to
Q": consider for example the product of any rotation mapping P’ to Q' with a
rotation for which Q' is a fixed point. Moreover, if 8§(P', P”) <, this rotation is
clearly unique.

For each je{l,. .., n}, let us describe the rotation k; which maps P, onto P,_,
and P; onto P, There are well-defined segments of great circles on S between P,
and P,_, on the one hand and between P; and P; on the other hand. These have
perpendicular bisectors which intersect at exactly two points of S*. And there is
one rotation k; with these points as poles, with angle strictly less than 4, which
maps P, onto P,_,. By the existence and unicity result recalled just above, k; maps
also P, onto P,. Define then h; = k;gk; ' (with k; =1 and h, =g). Then h; is the
unique conjugate of g in 80(3) which maps P;_; onto P,. The product of the h;’s
maps P, onto —P,, and is thus a half-turn.

It follows that any normal subgroup of SO(3) containing more than one
element contains one half-turn. It is straightforward that two half-turns are
conjugate inside SO(3) and that any rotation in SO(3) is the product of two
" half-turns. Hence the (abstract) group SO(3) is simple.

Let N and S be two diametrically opposite points on S?, let £ be a real
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number with 0<e <7/2, and let @ be the subset of SO(3) consisting of those
rotations with angle in [&, w — €] and with N as north pole. If n is an odd integer
with ne =, the construction above can be made simultaneously for all rotations
in w; this provides n-tuples of continuous functions

{w — §2 {w — SO@3) {w — SO@3)
g~ Pi(g) g — hi(g) g = k;(g)
with the following properties: for each je{l,...,n}, the rotation h;(g)=

k;(g)gk;(g)"' maps P,_;(g) to P;(g). Hence the product of the h;(g)’s maps P, to
—P, for each g€ w. We have essentially proved the fact formalized in Lemma 1
below.

Consider the covering 7:S'— S' which multiplies angles by two. We assume
in Lemma 1 that the topological space T has the following property; for any
continuous map f:T — S, there is a lifting F: T — S' with 7F ={. For example,
any space with vanishing Cech cohomology group H'(T, Z) qualifies.

LEMMA 1. Let T be a compact space with the property above, let SO(3, T)
denote the group of all continuous maps from T to SO(3) with pointwise multip-
lication, and let I' be a normal subgroup of SO(3, T). Suppose I' contains an
element vy with the following properties: the angle a(t) of y(t) is in ]0, w[ for each
t € T and the north pole of y(t) does not depend on t. Then I” contains any constant
map.

Proof. The map a being continuous and the space T compact, there exists
e€]0, w/2] with e <a(t)s<w—e¢ for all te T. The argument above shows that
there exists also k € SO(3, T) with k(t) moving some point P, (independent of t)
to its opposite for each t € T. In cartesian coordinates with P, on the first axis, this
is expressed by the fact that

-1 0 0
K(t) =( 0O cos6(t) siné6(t) )
0 sin6(t) —cos 6(t)

for all te T, where 0: T — S' is some continuous function. (For each t € T, there is
one line in the plane spanned by the second and the third axis which is fixed by
k(t); if the second axis and this line define the angle ¢'(t), then 0(t) =2¢'(t); note
that there is no a priori choice between ¢'(t) and ¢'(t)+m, but that 6(t) is
well-defined.)

Let ¢ : T— S’ be a continuous function with 2¢(t) = 0(t) (here does enter the
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assumption on T). Define pe SO(3, T) by

1 0 0
p(t)= (0 cos ¢(t) sin <p(t))
0 -—sine(t) cos ¢(t)

for all te T. It is routine to check that pkp~' is the constant map onto

-1 0 O
( 01 0)'
0 0 -1
As I' contains one constant map with value a half-turn, it contains also any
constant map with value a half-turn, hence I" contains all constant maps.

The special unitary group in a homogeneous von Neumann algebra of type I,

In what follows, T is a compact space which has the property stated just
before Lemma 1, and o is the abelian C*-algebra of continuous maps from T to
the complex numbers. The C*-algebra M of continuous maps from T to the
matrix algebra M,(C) will be identified with the algebra of (2 X 2)-matrices with
entries in 4. We shall consider the subgroup SU(2, T') of the unitary group of M
which consists of all continuous maps from T to SU(2). The maps with values in
{+1, —1} define a central subgroup of SU(2, T); we do not assume that T is
connected and this group may have more than two elements. We identify the
associated quotient with the group SO(3, T) defined in Lemma 1 (this is possible
since any continuous map from T to SO(3) lifts to SU(2) by hypothesis on T).
The canonical epimorphisms SU(2) — SO(3) and SUQ2, T) — SO(3, T) are both
denoted by p.

We assume moreover that T is a stonean space; this means that the closure of
any open set is again an open set. This happens for example if T is the Gelfand
spectrum of an abelian von Neumann algebra s{; in this case, M is also a von
Neumann algebra which is called homogeneous of type 1,. It is elementary to
check that T being stonean implies HY(T, 2) ={0}, so that Lemma 1 applies.

LEMMA 2. Let I" be a normal subgroup of SU(2, T). Suppose I contains an
element ¥ such that y=p(y) maps any te T to a rotation y(t) of angle in 10, =[.
Then I" contains the constant map with value —1.
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Proof. As T is stonean, theorem 2 in [9] shows that ¥ is conjugate within
SU(2, T) to an element which maps any t€ T to a diagonal matrix. It follows then
from Lemma 1 that the image I" of I by p contains any constant map, and in
particular that which applies T onto

o2 )fl ~D)eson

Hence there is an element & € I" and a partition T'U T” of T in two disjoint open
sets such that

-2 )

if teT and

0-( )

if te T". Lemma 2 follows because k2 is in I

LEMMA 3. Let I be a normal subgroup of SU(2, T) which contains more than
one element. Then there exist pe I and X € M —{0} with pX = — X.

Proof. Let yeI" with ¥#1 and let y=p(¥).

Suppose first that -y = 1. Then there is a partition T'U T” of T in disjoint open
sets such that ¥(t)=1 if te T’ and y(t)=—1 if te T"; as y# 1 the set T” is not
empty. Define p=v and XeM by X(t)=0if te T and X(t)=1 if teT".

Suppose next that vy is such that y(t) is a half-turn for ¢ in some non empty
(open and closed) subset T, of T and is the identity for t¢ T,. One shows as at the
end of the prooof of Lemma 1 that I" contains a map K with k = p(k) having the
following properties: k(t) is a constant half-turn when t e T, and is the identity if
t& T,. Define p = k2, so that

o-(3 )

if te T,, and chose for X any non zero map which restricts to zero outside T;.
Suppose finally that there exists t,€ T with the angle of y(t,) neither O nor =.
Then there exists € € 0, 7/2[ and an open and closed neighbourhood T, of t, such
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that the angle of y(t) is in [, m —¢] for each t € T,. One may then apply Lemma 2
above T,. As there is no obstruction to extend maps defined on T, to all of T, the
assertion to be proved is again correct in this case.

Involutions in non central normal subgroups of U(%)

We shall now connect what we have established about SU(2, T) with unitary
groups defined by factors.

Consider an infinite dimensional factor B and its unitary group U(%). The
following fact is an easy corollary of the spectral theorem: let ge U(9) and let n
be a positive integer; then there exist k orthogonal equivalent projections
P,,...,P, in B commuting with g and adding up to 1.

Indeed, let g = [3™ exp (ip) dE,, be the spectral decomposition of g[15, n° 109].
Say first that & is finite. Let ¢ be the smallest number in [0, 27] with the
dimension of E, in #B being at least 1/n. If dim(E,)=1/n, let P,=E,. If
dim (E,)>1/n, let F be any projection in B of dimension (1/n)—dim (E,_o)
which is majorized by E,—E,_, and let P, =E, ,+F. Then P; commutes with g
and has dimension 1/n. Define similarly P,,..., P,, orthogonal and commuting
with g. As P,, ..., P, have the same dimension, they are equivalent in %; as their
dimensions add up to 1, their sum is the identity. One may proceed similarly when
R is infinite.

Suppose moreover that g is not a multiple of the identity and that n=2; it is
important to notice that P,, ..., P, are not all associated to the same portion of
the spectrum of g, so that P,g,..., P,g are not all unitarily equivalent. This
construction of the P,’s overlaps partly with lemmas 3 and 4 in [3].

LEMMA 4. Let I" be a normal subgroup of U(%) which is not contained in the
center S'. Then there exist keI’ and X, Y € B —{0} with kX=X and kY -Y.

Proof. Choose geI' with g¢ S'. Let P,, P,, P; be three equivalent orthogonal
projections commuting with g and adding up to the identity. Define g; = gP;
(j=1,2,3); as g is not central, one may assume that g, and g; are not unitarily
equivalent. It may help to think of g as being the matrix

g, 0 O
0 0 g
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Let W be a partial isometry in % with initial projection P; and with final
projection P,, which corresponds to

0 0 O
(0 0 1)'
0 00

If V=P,+ W+ W%* then Visin U(%) and h = g*VgV* is an element in I" which
commutes with the P;’s. Let h, = g,*Wg;W* and h,=g;*W*g,W then h,#P,
and h; # P, since g, and g5 are not unitarily equivalent; notice that h, = W*h,*W.
One may think of h as being the matrix

1 00
(O h, O) '
0 0 h,
Let &4 be the (abelian) von Neumann algebra generated by h and let
M=AQRM,(C) be as before Lemma 2. Then

(Z 3) —> aP,+ bW +cW*+dP,

defines a normal isomorphism from M onto a subalgebra of the reduction of & to
RBp,+p, (notations as in [7, chap. I, §2, n° 1]). We identify M with its image; if T is
the spectrum of o, this identifies SU(2, T) to a subgroup of U(R).

Now {yeSU(2, T) | P,+¥ €I} is a normal subgroup of SU(2, T) which con-
tains h, and the conclusion follows from Lemma 3 (with, for example, X = P,).

PROPOSITION 1. Let % be a factor (not of dimension 1 or 4), let U(RB) be the
group of all unitary elements of B, and let I" be a normal subgroup of U(®B) which is
not contained in the center S*. Then I' contains a non trivial involution.

Proof. Notice that the proposition is classical for 8 = M, (C) with n=3, and
assume from now on that % is infinite dimensional.

Let H be the Hilbert space associated to some faithful finite state on % by the
Gelfand-Naimark-Segal construction. As H is a completion of B, Lemma 4
shows that I" contains some k with both +1 and —1 in its point spectrum. The
projections from H onto Ker(k—1) and Ker(k+1) are thus non zero,
orthogonal elements of 2. It follows that there exist an integer n =3 and a family
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P,,..., P, of orthogonal equivalent projections commuting with k, adding up to
the identity, with P,(H)<Ker (k—1) and P,(H)<Ker (k +1).

One may furthermore find matrix units (E;);<ij<. in B with E;; =P,
(G=1,...,n), so that each element in B can be identified with a (n X n)-matrix
having its entries in P,3P,. In particular

'k,

Now permutation matrices are in U(%). As I" is normal, the product

VA

is also in I.
This ends the first part of the proof of the main theorem, as described in the
introduction. ‘

End of proof of the main result

Let 3B be a factor and let D be a normalized relative dimension on 3; see [7,
chap. III, §2, prop. 14]. Let J be an involution in 3B; it can be written J=1—-2E
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with E a well-defined projection. The type of J is the pair (p, q) with p=D(1—E)
and q=D(E). If B is continuous and finite, p+q=1; if B is infinite and
semi-finite, p+q =; if B is purely infinite and if J is not trivial, p=q =o.

LEMMA 5. Let B be a countably decomposable factor and let J, K be two
involutions in B. Then J and K are conjugate in U(9B) if and only if they are of the
same type.

Proof. This follows from well-known facts on projections. See [7, chap. III, §2
and corollary 5 of §8].

PROPOSITION 2. The projective unitary group of a purely infinite and counta-
bly decomposable factor is simple.

Proof. Let & be a factor of type III and let I" be a normal subgroup of U(%)
which is not contained in S'. Then I' contains a non trivial involution by

proposition 1, so that I' contains all involutions by Lemma 5. It follows that
I'=U(%B): see Broise [3, th. 1] or Fillmore [10, corollary to th. 3].

LEMMA 6. Let B be a factor of type 11 and let E be a projection in B with
E#0 and E# 1. Let r be a real number with 0<r<D(E) and r<D(1—E). Then
there exists Ve U(RB) such that F=EVEV™ is a projection with D(F)=D(E)—r
and D(1-F)=D(1—E)+r.

Proof. Let P be a projection in & with D(P)=r and P<E (such a P exists by
[7, chap. III, §2]). Let Q be a projection in B with D(Q)=r and Q<1—-E. As P
and Q are equivalent, there exists a partial isometry S in B with $*S=P and
SS*=Q; as P and Q are orthogonal, one has $*=SQ =PS =0.

Define W=E—-P+S+S8*=W*._ It is routine to check that W*=E+Q, so
that V=W+(1—-E—Q) is an involution in 3. It is again routine to check that
VEV=E—-P+Q, so that F=EVEYV is a projection of the desired type.

Notice that Lemma 6 is empty if & is of type 1L, and if both E and 1—E have
infinite dimension. But the same trick shows in this case that one can find
Ve U(RB) with F=EVEV a projection of any desired type.

PROPOSITION 3. The projective unitary group of a finite continuous factor is
simple.

Proof. Let I" be a normal subgroup of U(%) not contained in S*, with & of
type II,. Then I' contains a non trivial involution, hence an involution of any
given type by Lemma 6, hence all involutions by Lemma 5. It follows from
Broise’s theorem that I' = U(R).
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COROLLARY 1. The unitary group U(RB) of a finite continuous factor admits
no non trivial finite dimensional unitary representation.

Proof. Consider commutative sets of involutions. These sets have at most 2"
elements in U(n) but their cardinals are not bounded in U(2). It follows that any
homomorphism ¢ : U(%B) — U(n) has a non trivial kernel, and so is the trivial
homomorphism. When ¢ is moreover assumed to be uniformly continuous, see
[12, th. 1].

COROLLARY 2. Let B be a continuous, infinite and semi-finite factor; let I’
be a normal subgroup of U(RB) which is not contained in S'. Then I' contains all
unitaries g for which there exists a finite projection E, e R satisfying g—1=
E.(g—-1)E,.

Proof. The argument used above shows that I" contains an involution of type
(p, q) in B as soon as p <o, If E is any finite projection in %, it is easy to check
that the reduction of 3B to R it a factor (this follows for example from [7, chap. I,
§1, prop. 7, cor. 3]). As I'" contains an involution of {ge U(%R) | g— 1€ B} which
is neither 1 nor 1—2E, Proposition 3 shows that I" contains this group.

The analogous statement for a discrete, infinite and semi-finite factor is
proposition 3(i) of [11]. A similar statement holds with % a factor of type III
which is not countably decomposable (we are grateful to M. Broise for this
remark).

COROLLARY 3. Countably decomposable factors of types 11, and III are
simple.

Proof. See the introduction.

COROLLARY 4. Let R be the hypetfinite factor of type II,. The group of
*_automorphisms of R has exactly one non trivial normal subgroup, which is the
group of inner *-automorphisms.

Proof. Let us call a short exact sequence
1—F—>G—>H—>1

of groups and homomorphisms trivial if there exists an isomorphism ¢ such that

. .G
.] w
1—F l“’\H—»l
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commutes (with i; and p, the canonical injection and projection respectively). The
following is an exercise for pedestrians in group theory: in a non trivial short exact
sequence as above with F and H simple, the only non trivial normal subgroup of
G is F. (Indeed: let N be a normal subgroup in G with N¢ F and suppose there is
feF and ne N with fn#nf; then nfn™'f " is in (FNN)—{1}, so that F< N; as
Nd¢ F one has w(N)=H; it follows that N=G.)

Corollary 3 follows now from proposition 3 because the group of inner
*_automorphisms of R is PU(R) and because the quotient Out (R) of the group
of *-automorphisms of ® by PU(R) is simple by a theorem due to Connes [5, cor.
4]. (That the short exact sequence of concern here is non trivial is an easy fact, left
to the reader.)
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