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A Landesman-Lazer alternative theorem for a class of optimization
problems

Jens Frehse

In [1] we proved an alternative theorem for the existence of minima of
functionals Ft defined by Fl(u) F(u) — (l, u) on, say, a reflexive Banach space B.
Hère leB* and F satisfies the following conditions

(1) F:B —»R U {œ} is lower semi-continuous in the weak topology of B.
(2) F is of polynomial type, Le. if for some pair v,weB

(i) sup rxF(w + tv)<oo (t>to>0) and
(ii) infF(w + to)>-oo (feR)

then F(w 4- tv) is constant in t.

(3) F satisfies a surrogate convexity condition, Le. for ail m, weB, a e[0,1],

F(l-a)w+au)<Kw+KwaF(u)

with some constant K^.
(4) F is semi-coercive, Le. there exists a continuous projection Q.B-+V onto a

fïnite dimensional subspace V such that for ail K>K0

||u||/(l + ||Qu||)|F(w)<X}<oo

(5) F is bounded from below on B.

Introducing the set

D={veB |F(w + ft>) is constant in teR for ail weB, F(w)<o°}

we obtained the following

THEOREM 0. Under the conditions (l)-(5) the functional Fx has a minimum

if and only if l±D. Furthermore, dimD<dim V.
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A simple corollary (cf. [2], §1) yields that if in addition F has a Gâteaux derivative
T:B —» B* then the range of T is linear and has finite co-dimension.

In this paper we consider pertubations Ft + G of the above functionals Fx

where G has a so called weak sub-asymptote (cf. définition below). It then turns
out that the set of leB* for which Ft + G has a minimum becomes "thicker", i.e.
is open and contains the closed set D. Under additional conditions we can
characterize thèse éléments l in the form of an alternative theorem. Our results

are in the spirit of the "classical" Landesman-Lazer-alternative theorems, cf.
Landesman-Lazer [8]. For a rather complète list of références to this subject, cf.

[9] and also [4]. Thèse theorems state that the range of perturbed semi-coercive
linear differential operators like —Au — Àu + arctgu subject to boundary conditions

is open and can be characterized by the asymptotes of the perturbation.
If Fi + G is Gateaux-differentiable our resuit yields a Landesman-Lazer-type

theorem of the usual form but covers cases with strongly non-linear principal part
of polynomial type. Our proof of this resuit is very simple. The theorem has a

non-variational analogue which was presented in [3]. A Landesman-Lazer
theorem for a class of équations with strongly non-linear principle part was

presented by Hess in [5], [6], [7]. His approach and his results are rather différent
from the setting in the présent paper.

DEFINITION. A mapping a0 : D -> R is called a weak sub-asymptote of the

mapping G : B —» R if for every séquence (m,gB, i 1,...,) with
I lui ~^veD weakly (i —» °°), v^0, we hâve

(6)

We shall also assume for the pertubation G

sup||w|rlG(M)<oo (ueB, uïO) (7)

and

F+Gis lower semi-continuous in the weak topology ofB. (8)

THEOREM 1. LetBbea reflexive Banach space and F: B -+ RU », G : B ->
R mappings such that G has a weak sub-asymptote ao:D^>R and F, G satisfy
(l)-(5), (7) and (8).

Then the functional <S>i : B -> R defined by
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fias a minimum on B for ail leB* for which

&v)<ao(v\ veD, u*0. (9)

// in addition

liminf r\G(w + tv) - G(w)) < ao(v) (t -» +0) (10)

for ail weB and veD, v + D, then (9) is also necessary for the existence of a
minimum of <tv

Proof We may assume that F4=const oo. Let (u,) be a minimizing séquence
for 4>h Suppose that (u,) were unbounded. Then we may assume that HuJI —? oo and
that HujII"1!^ : i\ —»u weakly in B(i-+°°). By (4) there is a constant C>0 such

that IKH^ C + CllQiifcll and hence 1 < C liminf ||Qut|| (i -> oo). Since dim QB <oo We

hâve Qty—»Qu strongly and, therefore, l<C||Qu||, and

t;*0.

We intend to show that veD. By the convexity condition (3)

for ail w such that F()
Since Hi^il —>°° we may set a~tIKH"1 for f>0, i>i(t). Passing to the limit

i —> oo we obtain in view of the lower semi-continuity of F.

^^-^ liminf |k||-1G^) + (Xw(U) (11)

and by (7)

t^Fiw-^ tv) ^Kwb t>l.

From (5) and (2) we then conclude that F(w + tv) is constant in t g R for ail w with
F(w)<oo and hence

veD.

Since G has a weak sub-asymptote ao:D—>R, we obtain from (11)

(F(w) )F(w + tv) < K^
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and passing to the limit t -» °° we arrive at the inequality

This contradicts (9) and hence the assumption of (u,) being unbounded leads to a

contradiction. The first statement follows in view of (8) and the reflexivity of B.
The necessity of (9) can be seen from the following simple argument: If u is a

minimum of <I>i on B and if v e D, then

F(u) + G(u) - (l u) < F(u + tv)+ G(u + tv) - (f, u + tv)

-t(l,v)

since F(u + tv) is constant in t. Hence, by (10),

as claimed. The theorem is proved.

EXAMPLES. In the following let il be a bounded connected open set in Rn
and Hlp the usual Sobolev space over 11. The corresponding Sobolev space of
r-vector functions is denoted by [Hlp]r.

(i) Let B=Hlp(ft), leB*, and

F(u) -
P

Hère and in the following J dénotes intégration over ft. Then D
{z eHlp | z const.} and ao(v) ir/2 J|u| dx. Since F and G satisfy the hypothèses
of Theorem 1, cf [1], §3, the functional Ft defined by

has a minimum when

la i)l<-in|. (12)
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The minimum u of Ft is a weak solution of the differential équation.

- Z Bl(Blu |Vw|p-2) + arctg u L (13)

It is a simple exercise to prove that the above functional G satisfies condition
(10); Hence (12) is also necessary for the existence of a minimum of Ft. The
characterization of the range of the operator on the left hand side of (13) can be
obtained using the methods of Peter Hess, cf. références.

A non-differentiable variant of this example is obtained when F(u) is replaced
by

F(u) J P|Vu|

and condition (12) remains as the necessary and sufficient condition for the
existence of minima of the functional F,.

(ii) Let JB=[Hlp(n)]2, leB* and

F(u) I [|Vu!|p + u\ + À sin ux + ux bxu2 + |Vu2|p] dx, u (ul9 u2),

G(u) | [u2 arctg u2-\ In (1 + |u2|2)] dx.

Again, F and G satisfy the hypothèses of the theorem. The surrogate convexity of
F foliows by splitting the integrand into a sum of convex and bounded functions.
The set D has the form

D={(0,c)g[H1p((î)]2|cgR}.

The functional Fl9 l (ll912)£B* has a minimum if and only if
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