Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 54 (1979)

Artikel: Tresses, monodromie et le groupe symplectique.
Autor: A'Campo, Norbert

DOl: https://doi.org/10.5169/seals-41579

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-41579
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 54 (1979) 318-327 Birkhéduser Verlag, Basel

Tresses, monodromie et le groupe symplectique

NORBERT A’CAMPO

Soit F:C*xC* — CxC* le déploiement versel de la singularité isolée de la
courbe plane {(x, y)e C*| x***—y2=0}. On choisit F de la forme

’ [
F(x,y;a4,...,a,)= (—y2+x“+1+ Z ax' ' a).

i=1

Soit X ={(x,y;a)eC*xC* | F(x,y;a)=(0, a)} et soit 7:X —C* la projection
(x,y;a)a. La fibre X,=m'(a), acC", est une courbe hyperelliptique de
genre [/2] dans C?. Elle est lisse si et seulement si le polyndme x**'+Y* , a;x' !
n’a que des racine simples. Soit A ={a € C* | X, n’est pas lisse} le discriminant des
polyndmes de degré p +1. Alors la restriction de 7 au-dessus de C* — A est une
application fibrée

@:X—m(4)—>C*—A.

Les fibres de ¢ sont difféomorphes a la surface de genre [u/2] privée de
r =(n+1, 2) points (a I'infini).

Soient beC* —A et X, une fibre type de ¢. Donc pour tout anneau k le
k-module H,(X,, k) est libre de rang u et la forme bilinéaire alternée des
intersections

I:H (X}, k) xHy(X,, k) = k

est de rang w+1—r. Lorsque w =2l est pair, la forme I est symplectique non
dégénérée. Lorsque w =21+ 1 on obtient une forme symplectique non dégénérée I
sur H,(X,, k)/K ou K est le noyau de la forme des intersections. On pose

Hl(Xb’ k) muni de I, ®H = 21,

M. (0 ={
Hl(Xb’ k)/K muni de I, = 21+ 1,

et Sp (M, (k)) est le groupe des automorphismes de M, (k).

318



Tresses, monodromie et le groupe symplectique 319

Le groupe fondamental 7,(C* — A, b) est naturellement isomorphe au groupe
des tresses a w+1 brins B(n+1). L’espace C*—A est en outre un espace
d’Eilenberg-MacLane K(m, 1), avec m = B(n +1) [FO-NE].

La monodromie de la fibration ¢ fournit une représentation symplectique du
groupe des tresses

p:B(n +1)— Sp (M, (k))=Sp,, (k)
R
m,(C*—A4,b)

On appelle I', (k) = p(B(w + 1)) le groupe de monodromie de la singularité de
la courbe x**'—y%=0.

THEOREME 1. Soit n=2. Alors on a

(1) Pour tout nombre premier p#2, I, (F,)=Sp (M, (F,)).

(2) Le groupe I',(Z) contient le sous-groupe de congruence modulo 2 dans
Sp (M, (Z).

(3) Le groupe T, (F,)<Sp (M, (F,)) est isomorphe au groupe symétrique S, .,
sauf pour u =3 ou I';(F,)=S;.

Au chapitre nous décrivons plus précisément le sous-groupe I',(F,) dans
Sp (M, (F,)) d’apres la lettre [SE] de J. P. Serre.

COROLLAIRE. Soit l =[u/2]. Alors on a
.. = Indice [Sp (M, (Z)): I',,(Z)] = Indice [Sp (M,,(F,)): I, (F,)]

et

A Cintd VI Ciidnd VR VitV
e (w+1)!

pour w#3.

Iz=1,I3=1,I4=6,IS=1,I6=288, I7=36,18=210' 34'5 * 17,' .
et

1

I2,+l=m.12, pour 21+1=5 et I,>1 pour w=6.

La valeur I, = 36 contredit ce qu’annonce A. N. Varchendo [VA] a savoir que
I5141(Z) = Sp (M3.1(Z)) (ce qui n’est vrai que pour [ =0, 1, 2).
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§1. La représentation p
Désormais on suppose que w =2l ou que w=2I+1 et que p=2. Soit
81, 0,,...,8, une chaine de cycles orientés sur X, comme dans les figures. On

oriente X, de sorte que I(8, 8,.1) = 1. Les cycles 8,, ..., 8, forment une base de
H,(X,, k). Soit

T, : H\(X,, k) = H{(X,, k)
la transformation

T:(x)=x—1I(x, §,)8, x € H,(X,, k).
Alors T, est ’effet en homologie d’une torsion de Dehn lelong le cycle §;, donc
T; € Sp (H(X,, k)).

Soient t,, t,,...,t, les générateurs standard du groupe des tresses B(u +1).
Donc B(u +1) est présenté par les relations

L1l = Gt l=i<p,
Lt = tt, l=si<j-1<p.

La représentation de monodromie est a automorphisme intérieure de
Sp (H,(X,, k)) prées ’homomorphisme

p:B(p+1) = Sp (Hi(X,, k)

t,—T..

Ceci est expliqué dans [AC, AR, LA, BR].

Figure pour la singularité x**!—y?=0, u paire, | impair.
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Figure pour la singularité x**!'—y?=0, u impaire, | paire.

Soit py, P2, ... P G1, - - -, q 12 base symplectique de M, (k) ou pour 1=<i=
[w/4]=[1/2]

P2i-1 =08, +03+ ++8,_3,

p2i = 641',
q2i—1=04i_2,
goi =—8,— 83—+ —04_1.

Dans le cas ou w =2[+1 il faut lire ces formules modulo K. Dans les figures sont
dessinées des courbes simples orientées qui représentent les cycles p,, g;.. Soit
E; € Sp (M, (k)) I’effet en homologie d’une torsion de Dehn Lelong le cycle p, ou
q; selon que i est impair ou pair. Le sens des torsions est choisi tel que

E(x)=x—I(x,p;)p, i impair
l=i=[u/2]=1
=x+1(x, q;)q; i pail',

Un calcul direct montre le
LEMME 1. E?=(T,- T, T, )€ r,(k), 1=i<[p/2]

Remarquez que l'on a aussi E;=T,el, (k) et que, si u est impair, E; =
T:'eT, (k) car g est homologue a (—1)'8,;,;.

Soit C; le systéme de racines {+2[, =1, =} < R, que nous épinglons au groupe
Sp (M, (k)) au moyen de la base symplectique py, ps, ..., P, 91, - - - » @ de M, (k)
[BO]. Pour une racine ¢ € C; on note U, le sous-groupe radiciel additif a un
parametre correspondant. On note 2U_, le sous-groupe des multiples pairs
d’éléments de U,. Alors on a le

LEMME 2. -
(i) E3; engendre 2U,, e=—(-1)"-2-1, 1=i=<l
(i) T, engendre U,, ¢=(=1)-2-1, 1=i=l
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(iii) E;in_z(TziH """ T2j~1)2(j_i) engendre 2U,, o=+ (“Diﬂilj),
l=i<j=lL

(iv) Ef?E;X(Ty -+ - T)*0 ™2 engendre 2U,, ¢ =—(-1)'(L+(-1)"']),
1=i<j=l

On peut établir ce lemme par un calcul direct.

Nous allons expliquer ce que dit le lemme 2 pour les sous-groupes G =
Sp 4(k) engendrés par l'union des sous-groupes U,, ¢ €{£2l, [ £[;} pour un
couple d’indice (i, j); 1=i<j=l

‘o_
_2l| 21!

<|>'2 ly

On a quatre cas selon la parité des indices i et j. Lorsque i est impair et j est
pair on a la situation du diagramme ou les signes O, @ et * indiquent

O: une racine ¢ telle que U, < T, (k) (partie (ii) du lemme 2),
@®: une racine ¢ telle que 2U, < T, (k) (parties (i), (iii) et (iv)),
*: une racine ¢ telle que le lemme 2 ne dit rien sur U, NI'(k).

Pour les autres parités de i et j on a un diagramme qui se déduit du diagramme
précédent par les rotations d’angle wk/4. k =1, 2, 3 autour de l’origine.

LEMME 3: Pour toute racine ¢ € C, on a 2U, < I, (k).
En effet, pour les racines due type O ou @, Cest vrai d’apres le lemme 2. Une
racine ¢ de type * peut s’écrire ¢ =a+B ou a est de type O et B de type @.
Donc 2U, =[U,, 2Ug]< T, (k).

Démonstration de la partie 1) du théoreme 1.

Lorsque 1/2€k, on a U, =2U_,<T,(k), ¢ € C. Dou I',(k)=Sp (M,(k)) car
I’union des sous-groupes radiciels U, engendre le groupe Sp (M, (k)).
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§2. Démonstration de la partie (2) du théoréeme 1
Soit Sp ™ (M, (Z)) le noyau de ’homomorphisme de réduction modulo n
R, :Sp (M, (Z)) — Sp (M, (Z/nZ)).

La proposition profonde numéro 4 de J. Tits [TI] montre que I, (Z)>
Sp® (M, (k)) car pour toute racine ¢ € C; on a 2U, < I, (Z). Donc pour connaitre
le sous-groupe I'(Z) dans Sp (M, (Z)) il suffit d’étudier le sous-groupe R,(I'(Z)) =
I, (Z/4Z) dans Sp (M, (Z/4Z)).

Soit N < Sp (M, (Z/4Z)) le noyau de I’homomorphisme de réduction modulo 2

Sp (M,.(Z/.z)) = Sp (M,,(F>)).
Alors on a le
LEMME 4. Nc T, (Z/AZ).
On note pour ¢ € G, par U,_(Z/4Z) le sous-groupe radiciel de la racine ¢ dans

Sp (M, (k)). Soit T <Sp (M, (k)), le tore maximal correspondant a I’épinglage.
Alors le noyau N est le produit direct de sous-groupe

N=Tx [] 2U,(z/4zZ).

eeC
Le lemme 4 découle donc du lemme 3 et du lemme suivant:
LEMME 5. T<cI'(Z/AZ).

On a P’inclusion du lemme 5, car les éléments E?T,,E?T,, € I'(Z) engendrent
apres réduction modulo 4 le tore T.

La partie 2) du théoréme 1 se déduit du lemme 4 et de linclusion Sp®
(M, (Z)) =T, (Z).

§3. Le sous-groupe I, (F,) dans Sp (M, (F,)) d’apres [SE]

Considérons le F,-espace vectoriel H,(X,, F,) équipé de:
(1) la forme bilinéaire I( , ) des intersections, qui est symétrique sur F,.
(2) 1a base 8,, 8,, . .., 8, du chapitre 1.
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Soit q: H,(X,, F,) = F, la forme quadratique déterminée par®

@) q(8)=1

(i) q(x+y)—qx)—q(y)=I(x,y), x,yeH(X,F,).

Alors J. P. Serre remarque dans sa lettre que les transformations T, e
Sp H,(X,, F,) sont aussi dans le groupe orthogonal O(q) de la forme q si p =21
Donc I, (F,) # Sp (M, (F,)) dés que O(q) # Sp (M,(k)), u pair. Plus précisement
nous avons le

LEMME 6. Le systéme (I',(F,), T, ..., T,) est un systeme de Coxeter de type
A, pour u#3 et le quotient par le groupe de Klein du systeme A; pour u=3. On a
I,(F)=S,,1, n#3, et I';(F,)=S;.

Preuve. On a les relations (T;T;)™ =1 de Coxeter dans I',(F,), donc I, (F,)
est un quotient du groupe symétrique S,,,. L’élément T=T,T,- - - T, per-
mute cycliquement les p éléments {T°8,};.., ce qui implique que I, (F,)=S, .,
pour pu#3. L’anomalie I'5(F,)=S; s’explique par ’homologie modulo K des
cycles p; ~—¥85. Donc T, = T; dans I'5(F,), puis I'5(F,) est un quotient de S; a au
moins 3 éléments.

Le lemme 6 et la partie 2) du théoréme 1 entrainent le corollaire du theoréeme
1.

1 1 10
Pourlecas w =2, T, = (0 1) et T,= (_1 1), donc I'5(Z) = S1,(Z) = Sp, (Z).

Pour le cas @ =4 on a montré que les matrices

1 010 1.0 00 1 -1 1 0\/1 0 0O
0100 01 0 Offo0 1 0 OHYOo 1 0 1
0 01 OJ§j-1 0 1 O 0O 01 0pO O 1 O
0 0 01 0 001 0 -1 1 1/\0 0 01

engendrent un sous-groupe I',(Z) d’indice 6 dans Sp, (Z). Par exemple on a

1

x(Ty(Z)) = {5 ,

_1——
1440

\ 1
XI's(Z)) =6 x(Sps (Z))=6 - - 240 [Ha]

MJe remercie W. Browder de m’avoir expliqué sa définition géométrique de la forme q:soit
k€ H,(X,,F,) et soit y une courbe simple sur X, qui présente k. Alsors le fibre tangent 3 C? est
trivialisé le long de y < X, = C? par le repére formé du vecteur tangent a y et du vecteur normal a X,

On définit q(x) e Z/2Z comme 'obstruction & étendre cette trivialisation au dessus d’un disque dans
C2.
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§4. Cydes quadratiques

On appelle chemin d’évanescence une partie y de C* homéomorphe a
lintervalle [0, 1] telle que {b}U(yNA) est la paire des extrémités de y. On
appelle I’homologie évanescente du chemin <y le noyau de ’'homomorphisme

H (X, k) — H1(’T"_1('Y), k)

induit par linclusion X, < 7 !(y). On appelle cycle quadratique un élément
x € H{(X,, k) tel que x engendre ’homologie évanescente d’un chemin ayant une
extrémité dans la partie lisse du discriminant A < C*. Le groupe de monodromie
agit transitivement sur les cycles quadratiques car la partie lisse du discriminant A
est connexe. Rappelons pour justifier le terme “Cycle quadratique” que la courbe
X,, ou t est un point lisse du discriminant, possede seulement un point singulier
qui est quadratique ordinaire.

En utilisant une confluence de Morse pour la singularité {x**'—y?=0} on
peut trouver une base 8., 5,, ..., 8, de H (X, Z) formée de cycles quadratiques
telle que leur configuration sur X, est une chaine comme au chaptire 1. On fixe
un tel systtme de cycles pour la courbe X,.

On appelle un vecteur non nul x € H,(X,, F,) connexe (par rapport a la base
81,85, ...,8,) si dans Iécriture

x=a;8;+---+a,d,, a,€F,,

I’ensemble {i | a;# 0} est un intervalle de {1,2, ..., u}.

Pour un vecteur non nul connexe x on a q(x)=1, mais les vecteurs x =

6,+85;+85 n’est pas connexe, bien que g(x)=1.

THEOREME 2. Soit p =21=2. Alors un vecteur non nul x € H,(X,,Z) est un
cycle quadratique si et seulement si
(i) x est indivisible,
(i1) x(mod 2) est connexe.

Preuve. Soit x; =(...0,1,1,...,1,0,...) un vecteur connexe. Alors T, (x;) =
X; si, k<i—1lou k>j+1 oui<k<j,

T (%) =% ;5 k=i—1=0,
= Xi+1,j k=i<j
= Xij—15 i<j=k,
=Xy  k=jtl=p
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Donc I'(F,) 8, est ’ensemble des vecteurs connexes de H,(X,, F,). On termine la
preuve en utilisant que I'(Z) = Sp? (Z) et I’action transitive de Sp$? (Z) sur {y | y
est indivisible et y = x(mod 2)} pour tout vecteur indivisible x € H,(X,, Z).

Pour le cas ou w =2[+1 nous avons le

THEOREME 3. Soit u=21+1. Alors un vecteur x € H{(X,,Z) est un cycle
quadratique modulo le noyau K de la forme I( , ), si et seulement, si
(i) x est indivisible,
(i) x(mod 2) est connexe.

Remarque. E. Looijenga a une démonstration des théoréemes 2 et 3 de nature
combinatoire qui n’utilise pas le théoréeme de J. Tits.

§5. Les autres singularités simples

Les chapitres 1, 2, 3 et 4 ne concernent que les singularités de la série A,.
Pour les singularités simples S des séries D,, E¢, £,, Eg on a:

(1) L’analogue de théoréme 1. Donc I's(Z) > Sp® (Ms(Z)) et I's(F,) est un
quotient du systeme de Coxeter S, S=D,, Eg, E; et Eg. On a

I, =indice [Sp(Mp, (Z)):I'p, (Z)]=
= indice [Sp(M,, (2)):Ts,_(Z)]

(Voir les exercices numéros 1, 2 et 3, chaptire 4, Ch VI de Bourbaki [BO}).

(2) On peut formuler les théorémes analogues au théorémes 2 et 3. (I1 faut
changer la définition d’un vecteur connexe).

Les singularités simples sont les seules singularités d’hypersurface pour les-
quelles le diagramme de Dynkin des intersections est un arbre [AC], et cela est
intervenu dans nos démonstrations. D’ou les questions:

A-t-on pour les autres singularités S de courbes planes I’inclusion

Sp™ (Mg (Z)) = I's(Z)? Avec N=2?
— Quels sont les cycles quadratiques dans H,(X,, Z)?
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