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Tresses, monodromie et le groupe symplectique

Norbert A'Campo

Soit F:C2xC* -»CxC* le déploiement versel de la singularité isolée de la
courbe plane {(x, y) e C2 \ x»+1 - y2 0}. On choisit F de la forme

F(x, y; alf..., aj (-y2 + x^+1+ £ a,xl1; a).

Soit X {(x, y ; a) e C2 x C" | F(x, y ; a) (0, a)} et soit ir : X -h> C* la projection
(x, y; a)*-* a. La fibre Xa 7r~1(a), aeC*, est une courbe hyperelliptique de

genre [jx/2] dans C2. Elle est lisse si et seulement si le polynôme x^+1+2*«i c^x1"1

n'a que des racine simples. Soit A {a e C*1" | Xa n'est pas lisse} le discriminant des

polynômes de degré jx +1. Alors la restriction de rr au-dessus de C* -A est une
application fibrée

Les fibres de <p sont difïéomorphes à la surface de genre [/x/2] privée de

r (/x +1, 2) points (à l'infini).
Soient beC*— 4 et Xh une fibre type de <p. Donc pour tout anneau fc le

k -module H^X^ fc) est libre de rang /ut et la forme bilinéaire alternée des

intersections

I:H1(Xb,fc)xH1(Xb,fc)^fc

est de rang /ut +1 — r. Lorsque /x 21 est pair, la forme I est symplectique non
dégénérée. Lorsque jx 214-1 on obtient une forme symplectique non dégénérée I
sur Hi(Xb, k)/K où K est le noyau de la forme des intersections. On pose

iCX,,, fc)/K muni de I, /x 21 +1,

et Sp (MpXfc)) est le groupe des automorphismes de M^(fc).

318
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Le groupe fondamental it^C** — A, b) est naturellement isomorphe au groupe
des tresses à jul + 1 brins B(/ul + 1). L'espace C^—A est en outre un espace
d'Eilenberg-MacLane K(tt, 1), avec ir BO + l) [FO-NE].

La monodromie de la fibration <p fournit une représentation symplectique du

groupe des tresses

On appelle F^Cfc) p(jB(/ul +1)) le groupe de monodromie de la singularité de

la courbe x*+1-y2 0.

THÉORÈME 1. Soit fx> 2. Alors on a
(1) Pour tout nombre premier p*2, rii(Fp) Sp(MtJL(Fp)).
(2) Le groupe F^Z) contient le sous-groupe de congruence modulo2 dans

(3) Le groupe riA(F2)<=Sp(M|Jt(F2)) est isomorphe au groupe symétrique S^+i
sauf pour /x 3 où F3(F2) — S3.

Au chapitre nous décrivons plus précisément le sous-groupe F^(F2) dans

Sp (M^(¥2)) d'après la lettre [SE] de J. P. Serre.

COROLLAIRE. Soir l [jul/2]. Alors on a

1^ Indice [Sp (M^Z)) : F^Z)] Indice [Sp (M^(F2)) : F^(F2)]

et

r 2I2(221 - 1)(22(I-1} -1) • • • (22 -1)
pour

et

27+2 ' *21 et I^>1 pour

La valeur I7 36 contredit ce qu'annonce A. N. Varchendo [VA] à savoir que
I2l+1(Z) Sp (M2l+1(Z)) (ce qui n'est vrai que pour I 0,1,2).
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§1. La représentation p

Désormais on suppose que il — 21 ou que jul 2{ + 1 et que jul>2. Soit
8l9 ô2,..., Sp, une chaîne de cycles orientés sur Xb comme dans les figures. On
oriente Xb de sorte que I(ôt, ôl+1) 1. Les cycles Sl5..., 8^ forment une base de

k). Soit

la transformation

Tt(x) x-I(x, $)*, x eH!(Xb, k).

Alors Tt est l'effet en homologie d'une torsion de Dehn lelong le cycle S,, donc

Soient tl912,..., t^ les générateurs standard du groupe des tresses B(/ui4-l).
Donc B(/ut + l) est présenté par les relations

La représentation de monodromie est à automorphisme intérieure de

Sp (HiCXb, fc)) près l'homomorphisme

Ceci est expliqué dans [AC, AR, LA, BR].

1 TT ô3 P2-04 ô5 tm ô7 PrÔ8
pi4 ; P3

Figure pour la singularité x**1 — y2 0, jul paire, l impair.
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Figure pour la singularité x^+1 —y2 0, jx impaire, l paire

Soit Pi, p2,..., ph ql9..., qt la base symplectique de M^ik) où pour 1 <i <

P21-1 8X + 83 + • • * + ô4l_3,

P2i 84l,

<Ï2i-l "4i-2>

Dans le cas où jul 21 +1 il faut lire ces formules modulo K. Dans les figures sont
dessinées des courbes simples orientées qui représentent les cycles pl? qv Soit
Ex e Sp (M^Cfc)) l'effet en homologie d'une torsion de Dehn Lelong le cycle px ou
qx selon que i est impair ou pair. Le sens des torsions est choisi tel que

Ex(x) x-I(x,px)pt, i impair

x + I(x,ql)qI, i pair,

Un calcul direct montre le

LEMME 1. Ef (7\ • T2 T2l_!)21 1 <i ^[/ut/2].

Remarquez que l'on a aussi E1 T1eFlJL(k) et que, si jx est impair, Ex

Tfer^lc) car qt est homologue à (-l)l82I+1.
Soit Q le système de racines {±21,, ±lx±^}ctf, que nous épinglons au groupe

Sp (M^ik)) au moyen de la base symplectique pl9 p2,..., ph qu ,qt de M^(k)
[BO], Pour une racine <peQ on note U^ le sous-groupe radiciel additif à un
paramètre correspondant. On note 217^ le sous-groupe des multiples pairs
d'éléments de U^. Alors on a le

LEMME 2.

(i) El engendre 2LT,, <p - (-1)1 • 2 • k 1 < i < L

(ii) T2l engendre U^ <p (-1)1 • 2 • lx, 1 < i < I.



322 NORBERT A'CAMPO

(iii) E;2E;2(T2l+t

(iv) E;2E;2(T2l

"0 engendre 2U9, <p (-l)'tt + (-

T2j)2°-°+2 engendre 217V, <p

On peut établir ce lemme par un calcul direct.
Nous allons expliquer ce que dit le lemme 2 pour les sous-groupes Gl} =*

Sp4(fc) engendrés par l'union des sous-groupes U^ <pe{±2k ±lt±lj} pour un
couple d'indice (i,j); l<i</<I.

-21,

21,

On a quatre cas selon la parité des indices i et j. Lorsque i est impair et j est

pair on a la situation du diagramme où les signes O, • et * indiquent

O: une racine <p telle que 17^ <= r^(fc) (partie (ii) du lemme 2),

#: une racine <p telle que 217^ czr^Cfc) (parties (i), (iii) et (iv)),

*: une racine <p telle que le lemme 2 ne dit rien sur U

Pour les autres parités de i et / on a un diagramme qui se déduit du diagramme
précédent par les rotations d'angle Trfc/4. k 1, 2, 3 autour de l'origine.

LEMME 3: Pour toute rarine cpeQon a 2U9 c T^(k).

En effet, pour les racines due type O ou •, c'est vrai d'après le lemme 2. Une
racine <p de type * peut s'écrire <p a + p où a est de type O et fi de type •.
Donc 217^= [U

Démonstration de la partie 1) du théorème 1.

Lorsque l/2ek, on a 17^=217^^^^), <peQ. D'où rM.(fc) Sp(M|X(fc)) car
l'union des sous-groupes radiciels L^ engendre le groupe Sp(MM,(fc)).
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§2. Démonstration de la partie (2) du théorème 1

Soit Sp(n)(MJjl(Z)) le noyau de l'homomorphisme de réduction modulo n

Rn : Sp (M^Z)) -
La proposition profonde numéro 4 de J. Tits [TI] montre que /^(Z)^
Sp(4) (M^(fc)) car pour toute racine <p 6 Q on a 21/^ c: F^CZ). Donc pour connaître
le sous-groupe T(Z) dans Sp (M^(Z)) il suffit d'étudier le sous-groupe R4(r(Z))
T^(Z/4Z) dans Sp(MJZ/4Z)).

Soit N c Sp (MtJL(Z/4Z)) le noyau de l'homomorphisme de réduction modulo 2

Alors on a le

LEMME 4. NcJ

On note pour <p e Q par [/<P(Z/4Z) le sous-groupe radiciel de la racine <p dans

Sp(M^(fc)). Soit TcSpCM^Cfc)), le tore maximal correspondant à l'épinglage.
Alors le noyau N est le produit direct de sous-groupe

N Tx n 2LTP(Z/4Z).

Le lemme 4 découle donc du lemme 3 et du lemme suivant:

LEMME 5. Tc=r(Z/4Z).

On a l'inclusion du lemme 5, car les éléments E?T2lE?T2l e F(Z) engendrent
après réduction modulo 4 le tore T.

La partie 2) du théorème 1 se déduit du lemme 4 et de l'inclusion Sp(4)

§3. Le sous-groupe r(A(F2) dans Sp (MJF2)) d'après [SE]

Considérons le F2-espace vectoriel JJ^X^F^ équipé de:

(1) la forme bilinéaire I( des intersections, qui est symétrique sur F2.

(2) la base Sl5 S2,..., 8^ du chapitre 1.
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Soit q : Hx(Xb, F2) —» F2 la forme quadratique déterminée par(1)

(i) <ï(*)=l
(ii) q(x + y)~ q(x) -q(y) I(x, y), x, y e H^X» F2).

Alors J. P. Serre remarque dans sa lettre que les transformations Tx e

Sp Hi(Xb, F2) sont aussi dans le groupe orthogonal O(q) de la forme q si jll 21.

DoncrM,(P2)^Sp(Af|il(F2)) dès que O(q) * Sp (MJfc)), jti pair. Plus précisément
nous avons le

LEMME 6. Le système (F^F^, Tl9..., TJ est un système de Coxeter de type

A^ pour jll5^ 3 et le quotient par le groupe de Klein du système A3 pour fi 3. On a
et r3(F2)-S3.

Preuve. On a les relations (T.T,)"1* 1 de Coxeter dans rjF2), donc r^QFa)
est un quotient du groupe symétrique S^+x. L'élément T=TtT2 T^
permute cycliquement les fi éléments {Tlô1}l^l ce qui implique que r^(F2) —S^+1

pour jLi^3. L'anomalie r3(F2)^S3 s'explique par l'homologie modulo K des

cycles px ~ -Ô3. Donc Tt T3 dans F3(F2), puis r3(F2) est un quotient de S3 à au
moins 3 éléments.

Le lemme 6 et la partie 2) du théorème 1 entraînent le corollaire du théorème
1.

Pour le cas p 2, I\ Q J) et T2 (_ J J), donc F2(Z) S12(Z) Sp2 (Z).

Pour le cas /ut 4 on a montré que les matrices

fl 0 1 (À / 1 0 0
0 10 011 0 10 0

ooi oll-i oiok000l/\0001
engendrent un sous-groupe F4(Z) d'indice 6 dans Sp4 (Z). Par exemple on a

X(F2(Z)) ^|, ^(F4(Z)) 6 • *(Sp4 (Z)) 6 •^ ~[Ha]

(1)Je remercie W. Browder de m'avoir expliqué sa définition géométrique de la forme q:soit
k e H1(Xb, F2) et soit y une courbe simple sur Xb qui présente k. Alsors le fibre tangent à C2 est
trivialisé le long de ycXbcC2 par le repère formé du vecteur tangent à y et du vecteur normal à Xb
On définit q(ic)eZ/2Z comme l'obstruction à étendre cette trivialisation au dessus d'un disque dans
C2.
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§4. Cycles quadratiques

On appelle chemin d'évanescence une partie 7 de C14 homéomorphe à

l'intervalle [0,1] telle que {b}\J(yHA) est la paire des extrémités de 7. On
appelle Vhomologie évanescente du chemin 7 le noyau de l'homomorphisme

induit par l'inclusion Xb <= tt~1(7). On appelle cycle quadratique un élément
x e Hx(Xb, fc) tel que x engendre l'homologie évanescente d'un chemin ayant une
extrémité dans la partie lisse du discriminant A <= C*\ Le groupe de monodromie
agit transitivement sur les cycles quadratiques car la partie lisse du discriminant A
est connexe. Rappelons pour justifier le terme "Cycle quadratique" que la courbe
Xt, où t est un point lisse du discriminant, possède seulement un point singulier
qui est quadratique ordinaire.

En utilisant une confluence de Morse pour la singularité {x^+1 —y2 0} on
peut trouver une base 8l9 ô2,..., 8^ de Hx{Xh, Z) formée de cycles quadratiques
telle que leur configuration sur Xb est une chaîne comme au chaptire 1. On fixe
un tel système de cycles pour la courbe Xb.

On appelle un vecteur non nul x e H^X^ F2) connexe (par rapport à la base

8l9 ô2,..., 8^) si dans l'écriture

x a1Ô1 + -" + aA, o1gF2,

l'ensemble {i \ a, ^ 0} est un intervalle de {1,2,..., jul}.

Pour un vecteur non nul connexe x on a q(x) — 1, mais les vecteurs x
S1 + Ô3 + Ô5 n'est pas connexe, bien que q(x) 1.

THÉORÈME 2. Soit ju, 21 > 2. Alors un vecteur non nul x e Ht(Xb, Z) est un
cycle quadratique si et seulement si

(i) x est indivisible,
(ii) x(mod2) est connexe.

Preuve. Soit xlJ 0,1,1,..., 1,0,...) un vecteur connexe. Alors
xlJ si, k<i — 1 ou fc>j + l ou i

*,_,,„ k i -1 >0,
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Donc F(F2) St est l'ensemble des vecteurs connexes de Hi(Xb, F2). On termine la

preuve en utilisant que F(Z) 3 Sp^ (Z) et l'action transitive de Sp2? (Z) sur {y | y
est indivisible et y x(mod 2)} pour tout vecteur indivisible x e Hi(Xb, Z).

Pour le cas où /ut 21 +1 nous avons le

THÉORÈME 3. Soit jll 2/ + 1. A/ors un vecteur xgH^Z) esr un cycle

quadratique modulo le noyau K de la forme I( si et seulement, si

(i) x est indivisible,
(ii) x(mod 2) est connexe.

Remarque. E. Looijenga a une démonstration des théorèmes 2 et 3 de nature
combinatoire qui n'utilise pas le théorème de J. Tits.

§5. Les autres singularités simples

Les chapitres 1, 2, 3 et 4 ne concernent que les singularités de la série A^.
Pour les singularités simples S des séries D^, E6, J57, E8 on a:

(1) L'analogue de théorème 1. Donc rs(Z)^Sp(2) (MS(Z)) et rs(F2) est un
quotient du système de Coxeter S, S D^, E6, E7 et E8. On a

ID^ indice [Sp(MD^(Z)) : T
indice [Sp(MAt_(Z)) :

1^ 28, 1^=1, 1^ 34.

(Voir les exercices numéros 1, 2 et 3, chaptire 4, Ch VI de Bourbaki [BO]).
(2) On peut formuler les théorèmes analogues au théorèmes 2 et 3. (Il faut

changer la définition d'un vecteur connexe).
Les singularités simples sont les seules singularités d'hypersurface pour

lesquelles le diagramme de Dynkin des intersections est un arbre [AC], et cela est
intervenu dans nos démonstrations. D'où les questions:

A-f-on pour les autres singularités S de courbes planes l'inclusion
Sp(N)(Ms(Z))<= rs(Z)? Avec N 2?

— Quels sont les cycles quadratiques dans Hx{Xh, Z)?
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