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Comment. Math. Helvetici 54 (1979) 224-239 Birkhauser Verlag, Basel

Quelques notions simples en géométrie riemannienne et leurs appli-
cations aux feuilletages compacts

HANskLAUS RUMMLER

0. Introduction

Soit X une variété différentiable (de classe C™) orientée, feuilletée par des
feuilles compactes orientées de maniere différentiable et orientée. Dans la suite,
nous parlerons simplement d’un feuilletage compact F de la variété X, et par le
méme symbole ¥ nous dénotons le sous-fibré vectoriel du fibré tangent X =
(TX, 7, X) dont les fibres sont les espaces tangents aux feuilles: & = (F, m, X) avec
F.=T.L,, ou L, est la feuille passant par x € X.

Bien que I'on peut introduire la notion d’une fonction de volume pour les
feuilles d’une fagon trés générale (cf. par exemple [2]), nous pensons toujours au
volume induit par une métrique riemannienne sur X. Nous dirons que le feuillet-
age est stable si le volume des feuillés est localement borné. C’est équivalent a la
finitude des groupes d’holonomie et encore a la propriété que chaque feuille a une
base de voisinages saturés. De plus, on a une description trés précise de la
structure locale du feuilletage. (Cf. [2], théoréme 4.3; nous y reviendrons dans le
paragraphe 4).

Dans [1], E. Edwards, K. Millett et D. Sullivan démontrent le théoréme
suivant:

THEOREME (EMS). Soit F un feuilletage compact orienté de la variété
compacte X, et supposons qu’il existe sur X une forme différentielle » de degré
p (= dimension des feuilles) avec dw =0 et ;| w>0 pour chaque feuille L. Alors, le
feuilletage est stable.

Un ingrédient essentiel de la preuve donnée dans [1] est la proposition
suivante (appelée ‘“moving leaf theorem’ dans [1]):

PROPOSITION (EMS). Si le volume des feuilles n’est pas borné, alors il existe
une isotopie de feuilles (L,),.g telle que le volume des L, n’est pas borné pourt — .
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Cette proposition entre de la maniere suivante dans la démonstration du
théoréme: On montre—sans utiliser la condition dw =0!—que [, ® n’est pas
bornée non plus pour ¢t — . D’autre part on a |; o =const. parceque les L, sont
homotopes et w est fermée. Cette contradiction prouve que le volume des feuilles
doit étre borné.

Pour contrdler la stabilité d’un feuilletage de X a I’aide du théoréme (EMS) il
faut donc que H?(X;R)#0 (p =dimension des feuilles). Cette condition exclut
bien des cas comme par exemple les feuilletages compacts de spheres. Nous allons
donc remplacer I’hypothése dw =0 par une condition plus faible (voir paragraphe
1) qui permet toujours ’application de la proposition (EMS) dans la preuve du
théoreme (EMS).

Dans le paragraphe 2 on démontre a I’aide de la version modifiée du théoreme
qu’un feuilletage compact d’une variété compacte est stable si I’on peut munir la
variété d’une métrique riemannienne pour laquelle toutes les feuilles sont des
sous-variétés minimales.

Il se pose maintenant deux questions: Ce criteére, est-il aussi nécessaire? Est-ce
qu’il y a une propriété topologique caractérisant les feuilletages de ce type?

Cette dernieére question m’a été posé par D. Sullivan, et dans la réponse
donnée dans les paragraphes 3-6 on retrouve quelques unes de ses idées qu’il a
developpées dans [5] et [6]. La réponse affirmative a la premiére question est une
conséquence, et cela généralise partiellement un théoreme de A. W. Wadsley (Cf.
[7D.

Le paragraphe 7 introduit la notion d’un feuilletage a feuilles parall¢les et I’'on
étudie les relations entre cette notion et d’autres notions déja connues.

Le présent travail comprend les résultats de deux preprints parus a 'LLH.E.S.
“Feuilletages compacts et métriques riemanniennes” et ‘“Une théorie de
cohomologie relative pour les variétés feuilletées et son application aux feuillet-
ages compacts.” Je dois au referee quelques remarques (notamment la formula-
tion de la proposition 7 et du théoréme 4) qui m’ont permis de racourcir les deux
articles sus-mentionnés pour en faire celui-ci.

Remarque. Dans tout ce qui suit on peut se passer de I’hypothese
d’orientabilité comme on voit par un passage a2 un revétement approprié. Nous
supposerons donc toujours sans le mentionner que les variétés et feuilletages
considérés sont orientés.

1. Formes différentielles relativement fermées

Soit X une variété différentiable de dimension n, X = (TX, m, X) son fibré
tangent et & = (F, m, X) un sous-fibré vectoriel de JX de rang p. Notons par
AP(X) I'ensemble des formes différentielles de degré p sur X.
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DEFINITION. Une forme différentielle we AP(X) est dite relativement
fermée par rapport a & ou ¥-fermée, si 'on a dw(x; &, ..., &, n)=0, quels que
soient xe X, &;,...,§,€F,neTM.

Remarque. Pour p=n—1, w est relativement fermée si et seulement si » est
fermée.

THEOREME (EMS). soit ¥ un feuilletage compact de la variété X, et
supposons qu’il existe une forme différentielle ® € A?(X) (p = dimension des feuil-
les) relativement fermée par rapport a F et telle que §; @ >0 pour chaque feuille L.
Alors, le feuilletage F est stable.

Démonstration. D’apreés notre remarque sur la démonstration du théoréme
(EMS) dans [1] a I’aide de 1a proposition (EMS) il suffit de vérifier |, o =, o si
(L¢)tcta, b7 €St une isotopie de feuilles: soit ¢:L X[a, b] » X I’application
définissant cette isotopie. On a donc

I w—J. w=L <p*w——J ¢*w
Ly L, x{b} L x{a}

=j (p*w=L dcp*w=J. ¢o*do
o(Lx[a, bD x[a, b} Lx[a, b]

et la preuve est achevée si nous démontrons ¢* dw=0. Soient donc xe€L,
£1,...,& €T.L et 3/3t le vecteur tangent canonique a [a, b] en t. Alors

d
%k . —_
¢ dw(x,tagls'-"gp’at)

) | ;

= dw(cp(x, );0'(x,t;6),...,0' (5, ;8), @ (x, t; 5;)) =0,
parce que les vecteurs ¢'(x, t; &), ..., ¢'(x, t; &) appartiennent & F,, ,, ’espace
tangent 2 1a feuille L,. O

2. Formes différentielles caractéristiques

Soit X une variété différentiable munie d’une métrique riemannienne (, ). Pour
un sous-fibré vectoriel de IX orienté et de rang p, ¥ = (F, m, X), on introduit sa

forme caractéristique xs € A°(X) en posant pour x € X

xs(x; &1, ...,4)=1 pour une base orthonormale positive (£, . . ., &) de F,
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et

Xz(x;My,...,m,)=0 sil'un des vecteurs 7, est perpendiculaire a F,.

Xs est bien définie par ces données: si (&,...,&,) est une base orthonormale
positive de F, et que my,...,n, sont des vecteurs dans T,M, on a

X@(x; LU ITERER) np) =det ((gb nj>i,j=1 ..... p)'

Si N est une variété intégrale de &% dans X, son élément de volume orienié par
rapport a la métrique riemannienne et l'orientation induites est précisément la
restriction de xg sur N.

Rappelons une caractérisation des sous-variétés minimales de la variété
riemannienne X: Soit x € N et v un champ de vecteur normal sur un voisinage de
x dans N. Pour £€ T,N on pose

Wi(é) := — pr.(D.v),

ou D,v dénote la dérivée covariante de v en x dans la direction £ et pr, ; TM—
T.N la projection orthogonale. W(§¢): TN — T,N est une application linéaire
symétrique par rapport au produit scalaire induit sur T, N, appelée I’application de
Weingarten associée a v. La trace de W) décrit la variation de I’élément de
volume pour une variation de N dans la direction de v, et N est une sous-variété
minimale de X si et seulement si toutes les applications de Weingarten sont de
trace nulle.

PROPOSITION 1. Soit ¥ un sous-fibré vectoriel orienté intégrable du fibré
tangent IX. Alors, sa forme caractéristique xz est relativement fermée par rapport &
F si et seulement si toutes les variétés intégrales de F sont des sous-variétés
minimales dans X.

Démonstration. Soient &, ..., &, v des champs de vecteur sur un ouvert U
dans X tels que les vecteurs &,(x),..., & (x) forment une base orthonormale
positive de F, et que v(x) € F; pour chaque x € U. 1 suffit de démontrer que dans
ce cas dxg(&,, . . ., &, v) est-au signe prés-la trace de ’application de Weingarten
associée a v en tant que champ de vecteur normal sur les variétés intégrales de &
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dans U:

dX@(fla ey gp’ 'V) = g (“1)i+1§i(X9;(§1, L | éis ey gpa V))

+(_1)pv(X$"(§1’ s 48y gp))
+ z (—1)i+jxg"([§i’ gj]’ §1a £ 8y éia R ] Aja L gp: V)

1=i<j=sp

+ z (_l)HpHXsc([fi, V], §17 $ 58S éia LR gp)
i=1

De par la définition méme de xg, les trois premi€res expressions sont nulles, et il
ne reste que la dernieére somme:"

dXSF(gly §emy §p, V) = ; ("DHPHst([fu V]’ gls RS éi’ = =y gp)
=17 ¥ @01, 6)= (17 ¥ (DD &)
=(-1)r '21 <D5,V, §,> = (_1)p+1t" w?,

car D, § est perpendiculaire a & et pour une variété intégrale N de &% passant par
xeUona

(Dgv, &)(x) =(Dgxyv, &(x))
= (prx (Dgi(x)V), gi (x)> = —'<W;(§|(x))’ gi(x)>' D

Remarque. Un calcul supplémentaire simple prouve que xg est fermée si et
seulement si xg est F-fermée et son complément orthogonal ¥ est intégrable.

THEOREME 1. Soit % un feuilletage orienté de la variété X, et supposons qu’il
existe sur X une métrique riemannienne pour laquelle toutes les feuilles de F sont des
sous-variétés minimales dans X. Alors, le feuilletage % est stable.

Démonstration. La forme caractéristique xg satisfait aux hypothéses pour la
forme w dans le théoreme (EMS)’ du paragraphe 1.

Remarques. (1) La démonstration peut encore étre simplifiée dans le sens
suivant: Pour une feuille L, §; xs est précisément son volume. L’énoncé de la
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proposition (EMS) est donc dans ce cas équivalent a la premiére conclusion que
’on en tire, c’est-a-dire {; w n’est pas bornée pour t — . (Dans le cas général ou
® ne représente pas ’élément de volume la preuve de cette conséquence de la
proposition (EMS) n’est pas du tout triviale! Cf. [1] et [5], paragraphe 7.)

(2) Si les feuilles d’un feuilletage compact orienté de la variété X sont
totalement géodésiques par rapport a une métrique riemannienne de X, ce sont a
fortiori des sous-variétés minimales de X. Par conséquent le feuilletage est-il
stable.

(3) Pour une variété compacte Kahlérienne X, chaque feuilletage compact
holomorphe est stable. C’est une conséquence du théoreme (EMS) (cf. [1]); mais
cela suit aussi du théoreme 1.

3. Cohomologie de de Rham %-relative d’une variété feuilletée

Soit X une variété différentiable de dimension n et soit ¥ un feuilletage
différentiable de X de dimension p.

Disons qu’une r-forme différentielle w € A"(X) est F-triviale siig ., 0 =0
quels que soient les vecteurs &,,...,&,€F,, x€ X.(ig,.. . .,@ est la (r-p)-forme
sur T, X obtenue a partir de w(x) en fixant les p premiers arguments &, ..., &,).
L’ensemble des r-formes %-triviales est noté Ag(X). On a AZ(X)=A"(X) pour
r<p.

Nous posons A% 4(X):=AHX)Nd '(AF(X)). Cest un sous-espace vec-
toriel de A'(X) avec d(A%4X))cAFi(X). En définissant A'(X/F):=
A"(X)/A%4(X) on obtient un complexe A (X/F)= D;_, A"(X/F) avec opérateur
différentiel induit par d. Ses groupes d’homologie sont appelés groupes de
cohomologie de de Rham %-relative et notés H (X/%),r=0,...,n.

On calcule facilement H' (X/%) =0 pour r <p, et des groupes qui restent c’est
surtout le premier, H?(X/%), que nous étudierons dans la suite, car il sera
important pour la stabilité d’un feuilletage compact. Mais d’abord nous
démontrons que la technique de Mayer-Vietoris s’applique a cette théorie de
cohomologie %-relative:

PROPOSITION 2. Soit X=X,UX, la réunion de deux ouverts invariants
X1, X,, et supposons qu’il existe pour le recouvrement (X,, X,) une partition de
Iunité (h,, h,) avec des fonctions h; constantes sur chaque feuille. (Précisons encore
que supp (k) = X,, Uintérieur de X, par rapport a la topologie de X; on n’exige pas
que supp (h;) soit compact!) Alors il y a une longue suite exacte de Mayer- Vietoris

o> H'(XIF) - H( X /F)PH (X, /F) > H(X N X, /|F) —>
— H* Y (XIF) —> -« -
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induite par les applications
a:A'(X) > AT (X)BA'(X,) et
B:A'(X)DPA'(X,) > A"(X.NX,) définies par

a(w):= (wlx,a w!XZ)’ Bo, ¥):= ‘P‘xlnxz" ll“xmxz-

Démonstration. 11 faut démontrer que les suites
*) 0 > A"(X/F) = A"(X,/F)D A’ (X,/F) —2> A"(X, N X,/F) — 0

sont exactes o1 @ et B sont induites par « et B respectivement. L’exactitude de
(*) découle de celle des suites correspondantes pour A" et A%, et ce n’est que la
surjectivité de B: A"(X))DA(X;) > A'(XiNX,) et B:AF(X)DAZ,L (X)) —

%4 (X1NX5) qui n’est pas évidente. Soit donc we A"(X; N X,). Alors h, - @
peut étre continuée de fagon triviale sur X, pour obtenir une forme w,c A"(X;)
avec ®, | x,nx,=h; * w. La construction analogue nous fournit w,€ A"(X;) avec
01| x,nx,=h," @, et on a w=B(w;,—w,). Si weAL,(X;NX,), alors ;€
AG4(X), i=1,2, et c’est précisément ici qu’on utilise I'invariance des fonctions
h,, h,. O

4. Dualité de Poincaré

Dans la suite on supposera que les feuilles de & sont compactes. Rappelons la
notion d’une p-form %-fermée introduite dans le paragraphe 1. C’est une forme
weAP(X) avec dweAL™(X), c-a-d un représentant d’une classe de
cohomologie dans H? (X/%). Soit L une feuille; un calcul simple montre que pour
une p-forme F-fermée w l'intégrale sur cette feuille {; @ ne dépend que de la
classe de cohomologie [w]e H? (X/%).

PROPOSITION 3. Soit F un feuilletage stable, c’est-a-dire tel que le volume
des feuilles soit une fonction localement bornée sur X. Alors, une p-forme F-fermée
w représente la classe nulle dans H® (X/|%) si et seulement si §; @ =0 pour chaque
feuille L.

Démonstration. L’implication ‘“=>”’ étant claire supposons que [; w =0 et
montrons [w]=0! Nous traitons d’abord le cas spécial ou X peut étre considéré
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comme voisinage tubulaire d’une feuille L de sorte que X est représentable
comme produit de Seifert (cf. [2], Théoréme 4.3). Pour la projection w: X — L et
I'injection canonique j;, :L — X il existe une homotopie h:XXI — X avec
ho=j_om et hy=idx et telle que h, applique chaque feuille dans une autre
feuille. L’opérateur de contraction correspondant K: A"(X) = A" }(X) a alors la
propriété que l'image d’une forme différentielle %-triviale est de nouveau %-
triviale. On a donc

o—7*(j.*w) = Kdw + d Ko,
ou Kdw est F-triviale et d Kw exacte, ce qui implique
[w]=[7*(j. *o)]e H*(X|F).

Mais ’hypothese f; @ =0 implique que j; *w est exacte, et on a [w]=0.

Nous remarquons ici que nous n’avons utilisé 1a condition [; @ =0 que pour la
feuille centrale L du produit de Seifert. En effet, ’égalité [w]=[7*(j. *w)]
prouve bien le résultat suivant que nous formulons comme lemme, car il nous sera
utile plus bas:

LEMME 1. Soit le feuilletage  de X stable et de sorte que X est un voisinage
tubulaire d’une feuille L et que X peut étre représenté comme produit de Seifert. Si w
est une p-forme F-fermée, alors

sz,.Lw

pour chaque feuille L, oui r est le degré de la projection 7w |L — L associée a la
représentation de X comme voisinage tubulaire de L.

Continuons avec la preuve de la proposition 3 dans le cas général: Soit (X;);;
un recouvrement localement fini de X par des ouverts invariants et représentables
comme produit de Seifert, et soit (h;);.; une partition de 'unité subordonnée a ce
recouvrement et telle que les h; sont constantes sur chaque feuille (voir lemme 2
ci-dessous). D’aprés ce que nous venons de démontrer plus haut, ’hypothése
fr @ =0 pour chaque feuille implique [w | x,]=0 dans H?(X,/%), ie L 1l existe
donc des élément a; € AP~(X,) tels que les formes | x, +d a; sont F-triviales, et
o +da est également F-triviale, donc[w]=0, si nous posons a :=Y ;. ha;:

wt+da=) h(w+da)+ Y dh ra,

iel iel
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et les termes de la premiére somme a droite sont -triviaux par hypothese. Pour
les formes dh; A a; 1a F-trivialité découle du fait que «; est une (p— 1)-forme et
que i, dh; =0 pour chaque é€ F,,xe X. [

LEMME 2. Soit % un feuilletage compact stable de la variété X, et soit (X,);c;
un recouvrement localement fini de X ou chaque ouvert X; est représenté comme
produit de Seifert X,-'=*f,i><G'Di avec D, compact dans X. Alors il existe une
partition de ’unité différentiable (h;);.; subordonnée au recouvrement (X;);; et telle
que h; =0, h, | L =const. pour chaque feuille L.

Démonstration. L’ensemble K; =D, \U,;,; W, est compact dans D; et stable
pour l'opération de G,. Il existe donc une fonction k;: D, — R, différentiable
non-négative, G;-invariante et a support compact avec k; | ¢ >0. On peut donc
continuer k; sur W, de sorte que k; | , = const. pour chaque feuille L dans W,.. En
posant encore k; : =0 en dehors de W, on définit h;: = k;/3 ., k;, et ces fonctions
constituent la partition de I'unité cherchée. [J

Soit toujours ¥ stable, c-a-d le volume des feuilles est une fonction localement
bornée. L’espace des feuilles B muni de la topologie quotient est donc une variété
différentiable généralisée (V-manifold) dans le sens de Satake, et I’application
canonique 7:X — B est différentiable et propre. B est de dimension q=n—p
(=codimension du feuilletage). Pour w € A**/(X) et e A7 (B) (c-a-d ¢ est a
support compact), 0 <j=gq, on définit un produit (w, ) par I'intégrale

(w, ¥) :=j w ATEY.

X

Si w est F-fermée et que ¢ est fermée, ce produit ne dépend que des classes de
cohomologie [w]e H*"(X/%) et [¢]e H ' (B).

LEMME 3. Le produit {,): A"(X)X A3(B)—R, induit un monomorphisme
H"(X/%) — HXB)*.

Démonstration. Soit [w]#0 dans H”(X/%). La proposition 2 nous garantit
I’existence d’une feuille L, avec |, w#0, donc ; >0, sans restriction.
Pour un voisinage U de w(L,) dans B son image réciproque W :=7"'(U) est
un voisinage tubulaire de L, représentable comme produit de Seifert, et on a
fL@w>0 pour chaque feuille L dans W d’aprés le lemme 1. Posons f(y):=
fa@p@ pour yeU. Cest une fonction intégrable et partout positive,
et pour Y€ AYB) avec support compact dans U on prouve facilement la
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formule de Fubini

wAw*t{;=J

w

(w0 |

X

wAr*¢=L f

Un choix approprié de ¢ nous garantit donc {w, ¢)= [, - ¢ >0, c-a-d la forme
linéaire induite sur HY(B) par [w] n’est pas nulle. O

LEMME 4. Si le feuilletage & donne lieu a une représentation comme produit
de Seifert pour X, alors H°(X/%) — H%B)* est un isomorphisme.

Démonstration. X est connexe (c’est sous-entendu pour un produit de Seifert),
alors B aussi, et H(B)=R. Il suffit donc de vérifier H?(X/%)#0, ce qui est
immédiat pour un produit de Seifert. [J

LEMME 5. Soit B=B,UB,, X,:=7n""'(B;) avec des ouverts B; tels que
H*(X,/F)=H4B,)*. Alors, H°(X/%)= H(B).

Démonstration. En appliquant la technique de Mayer-Vietoris aux deux
théories de cohomologie nous obtenons le diagramme commutatif

0 — H?(X/%)— H°(X,|/F)DH"(X,/F)— H* (X, N X,/|%)

l 1

0 —> HX(B)* — H¥B,)*® HXB,)* — H¥B, N By)*

dont les deux lignes sont exactes. Les trois homomorphismes verticaux sont
injectifs (cf. lemme 3), celui du centre est bijectif par hypothese. Cela implique
que le premier est également un isomorphisme. [J]

LEMME 6. Soit B=U;_, B, la réunion disjointe d’ouverts B, tels que
H*(X,/%)=H4B,)* pour X,:=w"'(B,), i=1,2,.... Alors, H°(X|/%)= HYB)*.

Démonstration. Le fait que les B; sont disjoints nous fournit avec I’hypothese
ces isomorphies canoniques:

Hr i) = [1 1 (/%)= [] (B =( HB))* =HABF. O

PROPOSITION 4. Soit X une variété différentiable munie d’un feuilletage F a
feuilles compactes et stable, de dimension p et de codimension q. Si B est I’espace
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des feuilles avec sa structure canonique de variété différentiable de Satake, alors le
produit {,): AP(X)x A¥B)— R induit un isomorphisme H?(X/ %)= H¥B)*.

Démonstration. Nous suivons les traces de la preuve pour la dualité de
Poincaré en cohomologie de de Rham ordinaire qu’on trouve dans [3]: Soit O une
famille d’ouverts de B, et soit 0; I'’ensemble des réunions finies d’éléments de O,
O, celui des réunions dénombrables disjointes d’éléments de O. Si
H? (' (U)/F)=H¥U) pour chaque ouvert Ue0, alors c’est également vrai
pour chaque ouvert dans 0; et dans O, en vertu des lemmes 5 et 6, donc aussi
pour chaque ouvert U €((0;),);. Or B a une base de la topologie 0, de sorte que
7~ '(U) est un produit de Seifert pour chaque Ue€®. Alors, H” (7w '(U)/%) =
HX(U) pour chaque U€® par le lemme 4 et méme pour chaque U e((0;),)s
d’apres ce que nous venons de dire. Mais ((0;),); contient chaque ouvert de B si
O est une base, ce qui achéve la démonstration. [

La proposition 4 nous garantit surtout I’existence d’une p-forme #-fermée Ay
dont la classe de cohomologie [Ag]e HP(X/%) correspond a la forme linéaire
fs: HY(B) — R. Appelons cette classe [A5] la classe de volume canonique pour les
feuilles de %, car [; Ag définit un volume pour chaque feuille L, etl’'on a §; 4z =1
pour les feuilles génériques. Cependant il faut remarquer que la restriction Ag |
de Az a une feuile L n’y définit pas nécessairement un élément de volume, car
Ag | . peut avoir des zéros bien que [; Ag>0. Cest dans le paragraphe suivant
que nous allons réparer cette faute de Ag.

5. Un critere de stabilité

Soit toujours ¥ un feuilletage a feuilles compactes de la variété X. Une
p-forme w € AP(X) est dite F-positive si w(x; &, ..., & )>0 chaque fois que les
vecteurs &;,...,¢, € F, forment une base de cet espace qui est positive par
rapport a l'orientation donnée. D’aprés le paragraphie 1, I’existence d’une p-
forme w a la fois F-positive et F-fermée implique la stabilité du feuilletage si la
variété X elle-méme est compacte. Ici nous allons démontrer que ’existence
d’une telle forme est aussi nécessaire. En effet, une p-forme %-positive et
F-fermée représente une classe [w] # 0 dans H?(X/%), et la classe [Ag ] introduite
a la fin du paragraphe précédent est un bon candidat pour en trouver un
représentant Ag F-positif et F-fermé. _

Rappelons quelques notions introduites par D. Sullivan et duales dans un
certain sens aux notres, car elles concernent ’homologie de 1a variété feuilletée et
sont formulées dans le langage des courants. Cette dunlité s’exprime surtout dans

*”

la proposition 5 ci-dessous. ooy
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Soit f:M — X une application différentiable d’une variété différentiable
quelconque M dans X. On dit que f est tangente a ¥ si pour chaque x € M.

f,(x)(TxM) + Ff(x) = f'(x)(TxM) U Ff(x)-

(f'(x) est la dérivée de f au point x.) Le feuilletage % admet une homologie
F-tangente s’il y a une suite (¢;);.n de (p+1)-chaines singulieres différentiables
tangentes a ¥ et telles que la suite (d¢;);cn des bords converge vers un cycle de
feuilletage z. Quant a la definition précise d’un cycle de feuilletage, voir [5], §1.

PROPOSITION 5. Pour un feuilletage # de X ou la variété X et les feuilles
sont compactes il existe une p-forme F-positive et F-fermée si et seulement si F
n’admet pas d’homologie ¥-tangente.

C’est le théoreme de Sullivan mentionné plus haut, et I'on en trouve la
démonstration dans [6]. (Une autre version concernant I’existence d’une p-forme
F-positive et fermée se trouve déja dans [S].) Le referee m’a fait remarquer que
cette proposition s’énonce également pour une vari€té non-compacte si ’'on se
restreint aux homologies %-tangentes a support compact.

THEOREME 2. Pour que le feuilletage % a feuilles compactes de la variété
compacte X soit stable il faut et il suffit qu’il existe sur X une p-forme w a la fois
F-positive et F-fermée. Cette condition est aussi nécessaire dans le cas d’une
variété non-compacte.

Démonstration. 11 faut encore prouver la nécessité du critere. Soit donc F
stable, et soit w une p-forme F-fermée représentant la classe de volume canoni-
que pour les feuilles (voir aprés proposition 4). Cette forme vérifie donc {; @ >0
pour chaque feuille L, ce qui est une conséquence immédiate de sa définition et
du lemme 1. Mais ceci implique aussi (z, @) # 0 pour chaque cycle de feuilletage z.

Supposons maintenant que (c;);cn €st une suite de (p + 1)-chaines %-tangentes
et telles que lim dc; existe. On a notamment pour notre forme

<lim ac;, w> =lim I w = lim j' dw =0,
i—>o0 i—o0 Jac, i—e J,

parce que les ¢; sont %-tangentes et que do est F-triviale. Ceci prouve que
lim;_,.. dc; ne peut pas étre un cycle de feuilletage, c-a-d que ¥ n’admet pas
d’homologie #-tangente. D’apres la proposition 5 il existe une p-forme a la fois
F-positive et F-fermée. O
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Il est clair que cette p-forme F-positive et F-fermée peut etre choisie comme
un représentant Az de la classe de volume canonique pour les feuilles. Sa
%-positivité garantit que la restriction Ag |, est bien un élément de volume pour
chaque feuille L. Ce qui manque toujours a cette forme Ag, C’est la propriété
d’étre la forme de volume pour les feuilles induite par une métrique riemannienne
sur X. Dans le paragraphe suivant nous allons encore améliorer Az dans ce sens.

6. Stabilité et minimalité

Nous revenons maintenant au critere de stabilité du paragraphe 2 en posant la
question si ce critére suffisant est aussi nécessaire. En essayant de trouver la
réponse a I'aide du théoréme 2, Nous considérons donc un feuilletage compact
stable & de la variété X, mais nous ne supposons pas que X soit compacte.

Existe-t-il une métrique riemannienne pour laquelle toutes les feuilles sont des
sous-variétés minimales? Le théoréme 2 nous garantit déja I’existence d’une
p-forme w = Az F-positive et F-fermée. Si cette forme w est en outre pure, on
trouve facilement une métrique riemannienne pour laquelle w = x5, la forme
caractéristique de %, et la réponse a la question posée plus haut est affirmative.
Pour le cas o w n’est pas pure, D. Sullivan a proposé I'opération suivante de
“purification” de cette forme.

On en trouve la description dans [6]. La forme purifiée ws est de nouveau
%-positive (on a méme wg |, = |, pour chaque feuille L) et #-fermée.

Comme nous avons expliqué bricvement au début du paragraphe, cela nous
permet de tirer du théoreme 2 la conclusion suivante:

THEOREME 3. Le feuilletage % a feuilles compactes de la variété compacte X
est stable si et seulement si il existe sur X une métrique riemannienne pour laquelle
toutes les feuilles sont des sous-variétés minimales. L’existence d’une telle métrique
est aussi nécessaire si X n’est pas compacte.

Ce théoreme généralise celui de A. W. Wadsley qui dit qu’un feuilletage F
dont les feuilles sont des cercles est stable si et seulement si il existe sur la variété
une métrique riemannienne pour laquelle ces cercles sont des géodésiques (cf.
[7]. 1l faut cependant mentionner que le théoréme de Wadsley ne suppose pas la
compacité de la variété dont nous avons besoin pour une partie du théoreme 3. 1l
reste donc la question si le théoreme 3 est valable sans cette hypothese.

7. Feuilletages a feuilles paralleles

Soit X une variété riemannienne et & un sous-fibré vectoriel du fibré tangent
IX.
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DEFINITION. a) On dit que % est géodésique si pour chaque champ de
vecteurs m sur un ouvert de X a valeurs dans & ses dérivées covariantes dans les
directions de % sont également dans %:

nel'(U, &),xeU, écF,>DmeF,.

b) On dit que & est paralléle si pour chaque champ de vecteurs n sur un ouvert
de X a valeurs dans & ses dérivées covariantes dans les directions perpen-
diculaires a % sont également dans %:

nel'(U,%),xeU, (e Fx>DmeF,.

Remarques. (1) Si & est géodésique, c’est un sous-fibré vectoriel intégrable de
TX, et ses variétés intégrales sont des sous-variétés totalement géodésiques dans
X.

(2) Pour un feuilletage on parle de feuilles géodésiques ou paralleles respec-
tivement. Quant aux feuilletages a feuilles géodésiques, voir la remarque (2) a la
fin du paragraphe 2.

(3) Soit G un groupe de Lie muni d’une métrique riemannienne invariante par
translations a gauche et ad-invariante sur l’algéebre de Lie g=T,G. Alors les
classes a gauche modulo un sous-groupe connexe H sont géodésiques. Elles sont a
la fois paralleles et géodésiques si H est un sous-groupe invariant.

PROPOSITION 6. & est géodésique si et seulement si son complément or-
thogonal F+ est paralléle.

Démonstration. Pour un ouvert U de X avec deux champs de vecteur ne
I'U,%) et LeI'(U, ") et un vecteur tangent £€ F,, xe U, on a

(Dgn, £(x)) = =(n(x), DL).

F est géodésique si et seulement si le terme a gauche de cette égalité est toujours
nul (£ 7, { étant choisis comme indiqué), tandis-que %+ est parallele si ¢a vaut
pour le terme a droite. []

Pour illustrer cette proposition nous rappelons 'exemple de R"\{0}, ou les
sphéres avec centre 0 sont paralleles tandis que les rayons issus de 1’origine sont
géodésiques.

Rappelons brievement la notion d’une ‘““bundle-like’” métrique, introduite par
B. L. Reinhart dans [4]. C’est une métrique riemannienne sur la variété feuilletée
X ayant la propriété suivante: Chaque point de X a un voisinage W difféomorphe
a un produit UXV d’ouverts dans R” et R? respectivement de sorte que les
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composantes connexes des intersections des feuilles avec W correspondent aux
plaques U x{v}, ve V, et que V peut étre munie d’une métrique riemannienne
pour laquelle la projection 7: W — V induit des isométries m:Fy — T,,V,
xeW.

Une telle ‘““bundle-like” métrique induit une métrique riemannienne transverse
au feuilletage %, c-a-d une métrique riemannienne sur chaque sous-variété de X
de codimension p et transverse aux feuilles, de sorte que ces métriques sont
invariantes par le pseudo-groupe d’holonomie. Cette métrique transverse induit
sur I’espace des feuilles une structure naturelle d’espace métrique, ce qui implique
la stabilité de & si toutes les feuilles sont compactes.

PROPOSITION 7. Soit & un feuilletage paralléle de la variété riemannienne X.
Alors la métrique de X est “bundle-like” .

Démonstration. Soit xoe X et soit L:=L, la feuille passant par x,. Pour un
voisinage ouvert W de x, dans X on trouve des coordonnées u', ..., u" satisfais-
ant aux conditions suivantes:

(i) Les composantes connexes des intersections des feuilles avec W sont les
plaques {u"*'=const.,...,u" =const.}, et LNW={uP*'=-..-=y"=0}.

(i) Les sous-variétés {u'=const.,..., u” =const.} sont perpendiculaires aux
feuilles, et D:={u'=-:-=u” =0} contient le point x,. (Pour réaliser (ii), on
utilise le fait que F* est géodésique).

Avec &:=d/du' onapouri=1,...,petj=p+1,...,n

&(§, §)=2D.§;, &)
= 2<D£,§is §1)+ 2([§v g;]’ gj) = 0:

car [£,£]=0 et D & est dans F par I’hypothese de parallélité.

Les conditions £(§;, &)= 0 impliquent que les vecteurs &(x) ont tous la méme
longuer pour x dans une plaque {u®*'=const.,...,u" =const.}. Il s’agit donc
d’une “‘bundle-like”” métrique. [J

Par conséquent, la métrique riemannienne de X pour laquelle le feuilletage %
est parallele induit une métrique riemannienne transverse au feuilletage et
implique donc la stabilité si les feuilles sont compactes. Mais cette existence d’une
métrique transverse ou encore la stabilit¢ du feuilletage n’est certainement pas
une condition nécessaire pour qu’il y ait une métrique riemannienne rendant %
parallele: La parallélité de ¥ implique I’intégrabilité de #*, donc ’existence d’un
complément intégrable de ¥ dans JX. Or il existe des feuilletages compacts

stables sans aucun complément intégrable! (Par exemple, la fibration de Hopf de
S3).
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Mais avec I’hypothése supplémantaire de I’existence d’un complément
intégrable on a le théoréme suivant:

THEOREME 4. Soit % un feuilletage de la variété X avec une métrique
riemannienne transverse. Alors cette métrique dérive d’une métrique riemannienne
sur X pour laquelle les feuilles sont paralleles si et seulement si ¥ admet un
complément intégrable.

Démonstration. 11 faut encore construire la métrique riemannienne sur X a
partir d’'une métrique riemannienne transverse a ¥ et d’un complément intégrable
%. D’abord, la métrique transverse induit une métrique riemannienne sur le fibré
vectoriel # et donc sur chaque variété intégrable de %, et ces métriques sur ces
variétés intégrales de % sont invariantes par le pseudo-groupe d’holonomie du
feuilletage %. Considérons un voisinage W d’un point x de X difféomorphe a un
produit U X V de deux boules ouverts dans R” et R? respectivement de sorte que
les feuilles correspondent aux plaques U X{v}, v eV, et les variétés intégrales de
% aux transversales {u}x V, ue U. Prenons sur U une métrique riemannienne
arbitraire et sur V celle induit par V={u} X V et la métrique sur la sous-variété
intégrale {u}x V de %. (Cette derni¢re ne dépend pas du choix de ue U!), et
munissons W= U X V avec la métrique produit.

De cette fagon, on obtient des métriques riemanniennes pour des ouverts W,
d’un recouvrement ouvert localement fini (W,),.; de X, qui rendent & géodésique
et orthogonal a & tout en induisant sur chaque W, la métrique transverse donnée.
En recollant toutes ces métriques riemanniennes locales a I’aide d’une partition de
'unité on en obtient une sur ’ensemble de X ayant les mémes propriétés. O
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