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Quelques notions simples en géométrie riemannienne et leurs
applications aux feuilletages compacts

Hansklaus Rummler

0. Introduction

Soit X une variété diflférentiable (de classe C°°) orientée, feuilletée par des

feuilles compactes orientées de manière différentiable et orientée. Dans la suite,
nous parlerons simplement d'un feuilletage compact SF de la variété X, et par le
même symbole 2F nous dénotons le sous-fibré vectoriel du fibre tangent 3~X

(TX, 7T, X) dont les fibres sont les espaces tangents aux feuilles: 3F (F, tt, X) avec
Fx TJL*, où Lx est la feuille passant par x e X.

Bien que l'on peut introduire la notion d'une fonction de volume pour les

feuilles d'une façon très générale (cf. par exemple [2]), nous pensons toujours au
volume induit par une métrique riemannienne sur X. Nous dirons que le feuilletage

est stable si le volume des feuilles est localement borné. C'est équivalent à la
finitude des groupes d'holonomie et encore à la propriété que chaque feuille a une
base de voisinages saturés. De plus, on a une description très précise de la
structure locale du feuilletage. (Cf. [2], théorème 4.3; nous y reviendrons dans le

paragraphe 4).
Dans [1], E. Edwards, K. Millett et D. Sullivan démontrent le théorème

suivant:

THÉORÈME (EMS). Soit & un feuilletage compact orienté de la variété

compacte X, et supposons qu'il existe sur X une forme différentielle œ de degré

p dimension des feuilles) avec d<o 0 et JL <o > 0 pour chaque feuille L. Alors, le

feuilletage est stable.

Un ingrédient essentiel de la preuve donnée dans [1] est la proposition
suivante (appelée "moving leaf theorem" dans [1]):

PROPOSITION (EMS). Si le volume des feuilles n'est pas borné, alors il existe

une isotopie de feuilles (Lt)teR telle que le volume des 1^ n'est pas borné pour t -* œ.

Supporté par une bourse du Fonds National Suisse de la Recherche.
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Cette proposition entre de la manière suivante dans la démonstration du
théorème: On montre—sans utiliser la condition do> 0!—que J^co n'est pas
bornée non plus pour t -» °°. D'autre part on a J^ <o const. parceque les Lt sont
homotopes et <o est fermée. Cette contradiction prouve que le volume des feuilles
doit être borné.

Pour contrôler la stabilité d'un feuilletage de X à l'aide du théorème (EMS) il
faut donc que HP(X;R)^O (p dimension des feuilles). Cette condition exclut
bien des cas comme par exemple les feuilletages compacts de sphères. Nous allons
donc remplacer l'hypothèse do) 0 par une condition plus faible (voir paragraphe
1) qui permet toujours l'application de la proposition (EMS) dans la preuve du
théorème (EMS).

Dans le paragraphe 2 on démontre à l'aide de la version modifiée du théorème

qu'un feuilletage compact d'une variété compacte est stable si l'on peut munir la
variété d'une métrique riemannienne pour laquelle toutes les feuilles sont des

sous-variétés minimales.
Il se pose maintenant deux questions: Ce critère, est-il aussi nécessaire? Est-ce

qu'il y a une propriété topologique caractérisant les feuilletages de ce type?
Cette dernière question m'a été posé par D. Sullivan, et dans la réponse

donnée dans les paragraphes 3-6 on retrouve quelques unes de ses idées qu'il a

développées dans [5] et [6]. La réponse affirmative à la première question est une
conséquence, et cela généralise partiellement un théorème de A. W. Wadsley (Cf.
[7]).

Le paragraphe 7 introduit la notion d'un feuilletage à feuilles parallèles et l'on
étudie les relations entre cette notion et d'autres notions déjà connues.

Le présent travail comprend les résultats de deux preprints parus à l'I.H.E.S.
"Feuilletages compacts et métriques riemanniennes" et "Une théorie de

cohomologie relative pour les variétés feuilletées et son application aux feuilletages

compacts." Je dois au référée quelques remarques (notamment la formulation

de la proposition 7 et du théorème 4) qui m'ont permis de racourcir les deux
articles sus-mentionnés pour en faire celui-ci.

Remarque. Dans tout ce qui suit on peut se passer de l'hypothèse
d'orientabilité comme on voit par un passage à un revêtement approprié. Nous

supposerons donc toujours sans le mentionner que les variétés et feuilletages
considérés sont orientés.

1. Formes différentielles relativement fermées

Soit X une variété différentiable de dimension n, 5"X (7X, tt, X) son fibre

tangent et & (F, tt, X) un sous-fibré vectoriel de S~X de rang p. Notons par
AP(X) l'ensemble des formes différentielles de degré p sur X.
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DÉFINITION. Une forme différentielle o>eAp(X) est dite relativement

fermée par rapport à SF ou ^-fermée, si l'on a do>(x; £1, • • IP, v)= 0> quels que
soient xeX, &, ...,§,gFx, tjg TxM.

Remarque. Pour p n-1, <*> est relativement fermée si et seulement si (o est
fermée.

THÉORÈME (EMS)'. soit & un feuilletage compact de la variété X, et

supposons qu'il existe une forme différentielle (oeAp(X) (p dimension des feuilles)

relativement fermée par rapport à 3* et telle que JL <o > 0 pour chaque feuille L.
Alors, le feuilletage & est stable.

Démonstration. D'après notre remarque sur la démonstration du théorème
(EMS) dans [1] à l'aide de la proposition (EMS) il suffit de vérifier JLa eu Jj^ o> si

(Lt)te[a b] est une isotopie de feuilles: soit <p:Lx[a,6]->X l'application
définissant cette isotopie. On a donc

co— <o= <p*û>— <p*co

(p*(o d(p*(o (p*
4(Lx[a,b]) JLx[a,b] JLx[a,b]

dû)

et la preuve est achevée si nous démontrons <p* d<o 0. Soient donc xeL,
&,...,£,€ TXL et d/dt le vecteur tangent canonique à [a, b] en t. Alors

; <p'U, t; «i), • • •, <p'(x, r; fe), <p'(x, t; ^)) 0,

parce que les vecteurs <p'(x, t; ^)9..., <p'(x, t; 4) appartiennent à Fv(x> t), l'espace

tangent à la feuille £(. D

2. Formes différentielles caractéristiques

Soit X une variété différentiable munie d'une métrique riemannienne <, Pour

un sous-fibré vectoriel de ÏÏX orienté et de rang p, 9 — (F, tt, X), on introduit sa

forme caractéristique x^eAp(X) en posant pour xeX.

> €u • • • » £p) 1 pour une base orthonormale positive (&,..., ^) de Fx
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et

X&(x> Tjx,..., tjp) 0 si l'un des vecteurs tj, est perpendiculaire à Fx.

X& est bien définie par ces données: si (£1?..., £p) est une base orthonormale
positive de Fx et que i\ly..., tjp sont des vecteurs dans TXM, on a

Si N est une variété intégrale de @> dans X, son élément de volume oriente par
rapport à la métrique riemannienne et l'orientation induites est précisément la
restriction de x& sur N.

Rappelons une caractérisation des sous-variétés minimales de la variété
riemannienne X: Soit x e N et v un champ de vecteur normal sur un voisinage de

x dans N. Pour £ € TXN on pose

où DçV dénote la dérivée covariante de v en x dans la direction £ et prx ; TXM —»

TXN la projection orthogonale. WJ(f) : TxiV -» TXN est une application linéaire
symétrique par rapport au produit scalaire induit sur TXN, appelée Vapplication de

Weingarten associée à v. La trace de Wx décrit la variation de l'élément de
volume pour une variation de N dans la direction de v, et N est une sous-variété
minimale de X si et seulement si toutes les applications de Weingarten sont de

trace nulle.

PROPOSITION 1. Soit & un sous-fibre vectoriel orienté intégrable du fibre

tangent ÏÏX. Alors, sa forme caractéristique x& est relativement fermée par rapport à
3* si et seulement si toutes les variétés intégrales de 9< sont des sous-variétés
minimales dans X.

Démonstration. Soient £1?..., £p, v des champs de vecteur sur un ouvert U
dans X tels que les vecteurs ^i(x),..., ^p(x) forment une base orthonormale
positive de Fx et que v(x) e Fx pour chaque x e U. Il suffit de démontrer que dans

ce cas dx&(€u • • • »
£P> *>) est-au signe près-la trace de l'application de Weingarten

associée à v en tant que champ de vecteur normal £ur les variétés intégrales de ^
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dans U:

H, &,..., L...,

De par la définition même de x&> les tro*s premières expressions sont nulles, et il
ne reste que la dernière somme:

vl fi,. •., L...,
1 1

(-Dp È <[6,v],4> (-Dp Z (D^v-
1=1 1=1

(-Dp \1 1

car DV4 est perpendiculaire à 4 et pour une variété intégrale N de 9 passant par
x g U on a

<prx(D€i(x)v), fi(x)>= -<WÎ(fi(x))f 4U)). D

Remarque. Un calcul supplémentaire simple prouve que x& est fermée si et
seulement si x& est ^-fermée et son complément orthogonal 9^ est intégrable.

THÉORÈME 1. Soit 9> un feuilletage orienté de la variété X, et supposons qu'il
existe sur X une métrique riemannienne pour laquelle toutes les feuilles de 3* sont des

sous-variétés minimales dans X. Alors, le feuilletage 2F est stable.

Démonstration. La forme caractéristique x& satisfait aux hypothèses pour la
forme a) dans le théorème (EMS)' du paragraphe 1.

Remarques. (1) La démonstration peut encore être simplifiée dans le sens
suivant: Pour une feuille L, JLx^ est précisément son volume. L'énoncé de la
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proposition (EMS) est donc dans ce cas équivalent à la première conclusion que
l'on en tire, c'est-à-dire J^ co n'est pas bornée pour t —> ». (Dans le cas général où
a) ne représente pas l'élément de volume la preuve de cette conséquence de la

proposition (EMS) n'est pas du tout triviale! Cf. [1] et [5], paragraphe 7.)

(2) Si les feuilles d'un feuilletage compact orienté de la variété X sont
totalement géodésiques par rapport à une métrique riemannienne de X, ce sont a

fortiori des sous-variétés minimales de X. Par conséquent le feuilletage est-il
stable.

(3) Pour une variété compacte Kâhlérienne X, chaque feuilletage compact
holomorphe est stable. C'est une conséquence du théorème (EMS) (cf. [1]); mais
cela suit aussi du théorème 1.

3. Cohomologie de de Rham ^-relative d'une variété feuilletée

Soit X une variété différentiable de dimension n et soit SF un feuilletage
différentiable de X de dimension p.

Disons qu'une r-forme différentielle <o € Ar(X) est SF-triviale si i€iA Aêp o> 0

quels que soient les vecteurs £l5..., |p e Fx9 xe X.(i€lA A€po) est la (r-p)-forme
sur TXX obtenue à partir de <o(x) en fixant les p premiers arguments £i,..., £p).

L'ensemble des r-formes ^-triviales est noté A£(X). On a A£(X) Ar(X) pour
r<p.

Nous posons A&td(X): Ar3F(X)nd~1(Ar&1(X)). C'est un sous-espace
vectoriel de Ar(X) avec d(AyX))çAr^(X). En définissant Ar(X/&):
Ar(X)/A^>d(X) on obtient un complexe A(X/f) ©?=0 Ar(X/^) avec opérateur
différentiel induit par d. Ses groupes d'homologie sont appelés groupes de

cohomologie de de Rham ^-relative et notés Hr(X/^), r 0,..., n.

On calcule facilement Hr(X/2F) 0 pour r <p, et des groupes qui restent c'est

surtout le premier, HP(X/^), que nous étudierons dans la suite, car il sera

important pour la stabilité d'un feuilletage compact. Mais d'abord nous
démontrons que la technique de Mayer-Vietoris s'applique à cette théorie de

cohomologie ^-relative:

PROPOSITION 2. Soit X XtUX2 la réunion de deux ouverts invariants
Xl9 X2, et supposons qu'il existe pour le recouvrement (Xl9 X2) une partition de

l'unité (hl9 h2) avec des fonctions ht constantes sur chaque feuille, (Précisons encore

que supp (JOçX,, l'intérieur de Xt par rapport à la topologie de X; on n'exige pas

que supp (fi,) soit compacté) Alors il y a une longue suite exacte de Mayer-Vietoris
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induite par les applications

a : Ar(X) -* Ar(X1)0Ar(X2) et

P :Ar(Xx)®Ar(X2) -? Ar(Xt HX2) dénies par

a((û): (o>|Xl, û>|x2), |3(<p, i/0 : <p|Xlnx2~ ^kn

Démonstration. H faut démontrer que les suites

(*) 0 -» Ar(XI&) -^* Ar( ^
sont exactes où â et P sont induites par a et ($ respectivement. L'exactitude de

(*) découle de celle des suites correspondantes pour Ar et Ar9td, et ce n'est que la
surjectivité de p:Ar(X1)®Ar(X2) -+ Ar(X1HX2) et 0 : A^td'(X1)©A^d(X2) -*
Agptd(X1nX2) qui n'est pas évidente. Soit donc 0)eAr(XlnX2). Alors hx - co

peut être continuée de façon triviale sur X2 pour obtenir une forme û>2g Ar(X2)
avec o>2\Xtnxi — hi 'w- L0 construction analogue nous fournit a)1eAr(X1) avec

û>i |

Xlnx2 h2 - (û, et on a co 0(<ol9 -<o2). Si w€Ai>d(X1nX2), alors eu, g

A^d (X,), i 1,2, et c'est précisément ici qu'on utilise l'invariance des fonctions
hi, h2. D

4. Dualité de Poincaré

Dans la suite on supposera que les feuilles de & sont compactes. Rappelons la
notion d'une p-form 9-fermée introduite dans le paragraphe 1. C'est une forme
ct>eAp(X) avec dtaeA^1 (X), c-à-d un représentant d'une classe de

cohomologie dans IFiXffi). Soit L une feuille; un calcul simple montre que pour
une p-forme ^-fermée w l'intégrale sur cette feuille JL eu ne dépend que de la
classe de cohomologie [û>]€Hp(X/^).

PROPOSITION 3. Soit 9 un feuilletage stable, c'est-à-dire tel que le volume
des feuilles soit une fonction localement bornée sur X. Alors, une p-forme &-fermée
ù> représente la classe nulle dans tFiX/SF) si et seulement si JL o) 0 pour chaque
feuille L.

Démonstration. L'implication "z>" étant claire supposons que JL<o 0 et
montrons [<o] 0! Nous traitons d'abord le cas spécial où X peut être considéré
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comme voisinage tabulaire d'une feuille L de sorte que X est représentable
comme produit de Seifert (cf. [2], Théorème 4.3). Pour la projection n :X -» L et
l'injection canonique jL:L -+ X il existe une homotopie h : X x I —? X avec
ho — Îl ° it et hi idx et telle que fi, applique chaque feuille dans une autre
feuille. L'opérateur de contraction correspondant K:Ar(X) -> Ar"1(X) a alors la
propriété que l'image d'une forme différentielle ^-triviale est de nouveau &-
triviale. On a donc

û) ~ /n-*(iL*û>) Xdw + d Ko),

où l&feo est ^-triviale et d K<o exacte, ce qui implique

Mais l'hypothèse JL û> 0 implique que jL *co est exacte, et on a [<o] 0.
Nous remarquons ici que nous n'avons utilisé la condition JL co 0 que pour la

feuille centrale L du produit de Seifert. En effet, l'égalité [co] [tt*(jl *û>)]

prouve bien le résultat suivant que nous formulons comme lemme, car il nous sera
utile plus bas:

LEMME 1. Soit le feuilletage 9 de X stable et de sorte que X est un voisinage
tubulaire d'une feuille L et que Xpeut être représenté comme produit de Seifert. Si w
est une p-forme 9-fermée, alors

ù)

pour chaque feuille L, où r est le degré de la projection tt\L —» L associée à la
représentation de X comme voisinage tubulaire de L.

Continuons avec la preuve de la proposition 3 dans le cas général: Soit (Xt)ieI
un recouvrement localement fini de X par des ouverts invariants et représentables
comme produit de Seifert, et soit (ht)ieI une partition de l'unité subordonnée à ce
recouvrement et telle que les hx sont constantes sur chaque feuille (voir lemme 2

ci-dessous). D'après ce que nous venons de démontrer plus haut, l'hypothèse
JLco 0 pour chaque feuille implique [co |x] 0 dans Hp(Xtl3f!)9 iel. H existe
donc des élément at e Ap~1(Xl) tels que les formes eo |

Xi + d at sont ^-triviales, et
(o + da est également ^-triviale, donc[û>] 0, si nous posons a: £ieiMi«

iAO,,
tel tel
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et les termes de la première somme à droite sont ^-triviaux par hypothèse. Pour
les formes dht a a, la ^-trivialité découle du fait que a, est une (p - l)-forme et

que iç dhx 0 pour chaque ÇeFx,xeX.

LEMME 2. Soit SF un feuilletage compact stable de la variété X, et soit

un recouvrement localement fini de X où chaque ouvert Xt est représenté comme
produit de Seifert Xl=LlxGDl avec D, compact dans X. Alors il existe une

partition de Vunité différentiable (ht)lfEl subordonnée au recouvrement (Xt)ieI et telle

que ht >0, ht \ L =const. pour chaque feuille L.

Démonstration. L'ensemble Kt Dl\LJJîél W, est compact dans Dt et stable

pour l'opération de G,. Il existe donc une fonction kl:Dl -» R, différentiable
non-négative, G,-invariante et à support compact avec kt Ik^O- On Peut donc
continuer fc, sur W, de sorte que K\L= const. pour chaque feuille L dans Wt. En
posant encore k, : 0 en dehors de Wt on définit hx : kj^i^i kp et ces fonctions
constituent la partition de l'unité cherchée.

Soit toujours 3< stable, c-à-d le volume des feuilles est une fonction localement
bornée. L'espace des feuilles B muni de la topologie quotient est donc une variété
différentiable généralisée (V-manifold) dans le sens de Satake, et l'application
canonique tt:X —> B est différentiable et propre. B est de dimension q n-p

codimension du feuilletage). Pour weAp+J(X) et ^gAJ"j(B) (c-à-d $ est à

support compact), 0</<q, on définit un produit <<o, \fr) par l'intégrale

Si o> est ^-fermée et que ifr est fermée, ce produit ne dépend que des classes de

cohomologie [û)]eHp+J(X/f) et MeH^1 (B).

LEMME 3. Le produit <,): Ap(X)x A^(B)-»R, induit un monomorphisme

Démonstration. Soit [<o]#0 dans Hp(X/êF). La proposition 2 nous garantit
l'existence d'une feuille Lo avec Ji^co^O, donc JLoco>0, sans restriction.
Pour un voisinage U de tt(L0) dans B son image réciproque W:=7r~1(t/) est

un voisinage tubulaire de Lo représentable comme produit de Seifert, et on a

JLco>0 pour chaque feuille L dans W d'après le lemme 1. Posons /(y) :

ta i(y) co pour y g U. C'est une fonction intégrable et partout positive,
et pour ipeA^(B) avec support compact dans U on prouve facilement la
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formule de Fubini

Jx J\v Ju

Un choix approprié de $ nous garantit donc (co, i/r) $v f • i/r > 0, c-à-d la forme
linéaire induite sur H%B) par [eu] n'est pas nulle.

LEMME 4. Si le feuilletage $F donne lieu à une représentation comme produit
de Seifert pour X, alors Hp(X/&) -> H«(B)* est un isomorphisme.

Démonstration. X est connexe (c'est sous-entendu pour un produit de Seifert),
alors B aussi, et H?(B) R. Il suffit donc de vérifier Hp(X/^)^0, ce qui est
immédiat pour un produit de Seifert.

LEMME 5. Soir B BXUB2, X, := tt~x (B() avec des ouverts Bt tels que
H^Bl)*. Alors,

Démonstration. En appliquant la technique de Mayer-Vietoris aux deux
théories de cohomologie nous obtenons le diagramme commutatif

0 > HP(XI&) > Hp(X1/^)0Hp(X2/^) > Hp(Xx H X

I
0 > H«{B)* > H^(B1f®H%B2):¥ > H?(Bl D B2)*

dont les deux lignes sont exactes. Les trois homomorphismes verticaux sont
injectifs (cf. lemme 3), celui du centre est bijectif par hypothèse. Cela implique
que le premier est également un isomorphisme.

LEMME 6. Soit B UT=i Bt la réunion disjointe d'ouverts Bt tels que
r^TT-'iBX » 1, 2, Alors,

Démonstration. Le fait que les Bt sont disjoints nous fournit avec l'hypothèse
ces isomorphies canoniques:

2(t))3().
PROPOSITION 4. Soit X une variété différentiable munie d'un feuilletage & à

feuilles compactes et stable, de dimension p et de codimension q. Si B est Vespace
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des feuilles avec sa structure canonique de variété différentiable de Satake, alors le

produit <, : AP(X) x Aqc{B) -? R induit un isomorphisme Hp(X/&) s H«(B)*.

Démonstration. Nous suivons les traces de la preuve pour la dualité de

Poincaré en cohomologie de de Rham ordinaire qu'on trouve dans [3]: Soit 0 une
famille d'ouverts de B, et soit 0f l'ensemble des réunions finies d'éléments de 0,
Cd celui des réunions dénombrables disjointes d'éléments de 6. Si

Hp(it~1(U)I&)^H«(U) pour chaque ouvert UeO, alors c'est également vrai

pour chaque ouvert dans 6f et dans €d en vertu des lemmes 5 et 6, donc aussi

pour chaque ouvert Ue((€f)d)f. Or B a une base de la topologie 0, de sorte que
ir~l(U) est un produit de Seifert pour chaque UeO. Alors, IF(ir~\U)l&)
H*(U) pour chaque UeC par le lemme 4 et même pour chaque Ue((Ûf)d)f
d'après ce que nous venons de dire. Mais ((Cf )d)f contient chaque ouvert de B si

6 est une base, ce qui achève la démonstration.
La proposition 4 nous garantit surtout l'existence d'une p-forme ^-fermée A&

dont la classe de cohomologie [A&]eHp(X/3F) correspond à la forme linéaire
JB ' H^(B) —» R. Appelons cette classe [A&] la classe de volume canonique pour les

feuilles de 9, car JL A& définit un volume pour chaque feuille L, et l'on a JL A& 1

pour les feuilles génériques. Cependant il faut remarquer que la restriction A& | L
de A9 à une feuile L n'y définit pas nécessairement un élément de volume, car
&9 I l Peut avoir des zéros bien que JL4^>0. C'est dans le paragraphe suivant

que nous allons réparer cette faute de A9.

5. Un critère de stabilité

Soit toujours 9 un feuilletage à feuilles compactes de la variété X. Une
p-forme <o e AP(X) est dite ^-positive si a>(x; £i> • • • > £p)>0 chaque fois que les

vecteurs £,,..., £P€FX forment une base de cet espace qui est positive par
rapport à l'orientation donnée. D'après le paragraphie 1, l'existence d'une p-
forme co à la fois ^-positive et ^-fermée implique la stabilité du feuilletage si la
variété X elle-même est compacte. Ici nous allons démontrer que l'existence
d'une telle forme est aussi nécessaire. En effet, une p-forme ^-positive et
^-fermée représente une classe [w] ^ 0 dans HP(X/SF), et la classe [A&] introduite
à la fin du paragraphe précédent est un bon candidat pour en trouver un
représentant A& ^-positif et ^-fermé.

Rappelons quelques notions introduites par D. Sullivan et duales dans un
certain sens aux nôtres, car elles concernent l'homotogie de la variété feuilletée et
sont formulées dans le langage des courants. Cette <itiàttté s'exprime surtout dans

la proposition 5 ci-dessous. * *
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Soit / : M —» X une application différentiable d'une variété différentiable
quelconque M dans X. On dit que / est tangente à 2F si pour chaque x e M.

f'(x)(TxM) + F/(x) f(x)(TxM) U Ff(x).

(/'(x) est la dérivée de / au point x.) Le feuilletage 9 admet une homologie
SF-tangente s'il y a une suite (c,)ieN de (p + l)-chaînes singulières différentiables

tangentes à 3F et telles que la suite (dCi)ieN des bords converge vers un cycle de

feuilletage z. Quant à la définition précise d'un cycle de feuilletage, voir [5], §1.

PROPOSITION 5. Pour un feuilletage & de X où la variété X et les feuilles
sont compactes il existe une p-forme 9-positive et 3*-fermée si et seulement si 9
n'admet pas d'homologie 9-tangente.

C'est le théorème de Sullivan mentionné plus haut, et l'on en trouve la
démonstration dans [6]. (Une autre version concernant l'existence d'une p-forme
^-positive et fermée se trouve déjà dans [5].) Le référée m'a fait remarquer que
cette proposition s'énonce également pour une variété non-compacte si l'on se

restreint aux homologies ^-tangentes à support compact.

THÉORÈME 2. Pour que le feuilletage 9 à feuilles compactes de la variété

compacte X soit stable il faut et il suffit qu'il existe sur X une p-forme <o à la fois
9-positive et 9-fermée. Cette condition est aussi nécessaire dans le cas d'une
variété non-compacte.

Démonstration. Il faut encore prouver la nécessité du critère. Soit donc 9
stable, et soit œ une p-forme ^-fermée représentant la classe de volume canonique

pour les feuilles (voir après proposition 4). Cette forme vérifie donc JLo>>0
pour chaque feuille L, ce qui est une conséquence immédiate de sa définition et
du lemme 1. Mais ceci implique aussi (z, œ) ^ 0 pour chaque cycle de feuilletage z.

Supposons maintenant que (c,)ieN est une suite de (p + l)-chaînes ^-tangentes
et telles que lim de, existe. On a notamment pour notre forme <o

< lim de,, û)> lim <o lim da> 0,
V-*» / (-*x> JBCi i-wo JCi

parce que les ct sont ^-tangentes et que da> est ^-triviale. Ceci prouve que
lim.^oodc, ne peut pas être un cycle de feuilletage, c-à-d que 9 n'admet pas
d'homologie ^-tangente. D'après la proposition 5 il existe une p-forme à la fois

^-positive et 9-fermée.
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II est clair que cette p-forme ^-positive et ^-fermée peut être choisie comme
un représentant A& de la classe de volume canonique pour les feuilles. Sa

^-positivité garantit que la restriction A& \

L est bien un élément de volume pour
chaque feuille L. Ce qui manque toujours à cette forme A&, c'est la propriété
d'être la forme de volume pour les feuilles induite par une métrique riemannienne

sur X. Dans le paragraphe suivant nous allons encore améliorer A& dans ce sens.

6. Stabilité et minimalité

Nous revenons maintenant au critère de stabilité du paragraphe 2 en posant la
question si ce critère suffisant est aussi nécessaire. En essayant de trouver la
réponse à l'aide du théorème 2, Nous considérons donc un feuilletage compact
stable 9 de la variété X, mais nous ne supposons pas que X soit compacte.

Existe-t-il une métrique riemannienne pour laquelle toutes les feuilles sont des

sous-variétés minimales? Le théorème 2 nous garantit déjà l'existence d'une
p-forme <o — A& ^-positive et ^-fermée. Si cette forme <o est en outre pure, on
trouve facilement une métrique riemannienne pour laquelle <o x&, la forme
caractéristique de 99 et la réponse à la question posée plus haut est affirmative.
Pour le cas où o> n'est pas pure, D. Sullivan a proposé l'opération suivante de

"purification" de cette forme.
On en trouve la description dans [6]. La forme purifiée (O& est de nouveau

^-positive (on a même <o& |
L <o | L pour chaque feuille L) et ^-fermée.

Comme nous avons expliqué brièvement au début du paragraphe, cela nous

permet de tirer du théorème 2 la conclusion suivante:

THÉORÈME 3. Le feuilletage 9 à feuilles compactes de la variété compacte X
est stable si et seulement si il existe sur X une métrique riemannienne pour laquelle
toutes les feuilles sont des sous-variétés minimales. L'existence d'une telle métrique
est aussi nécessaire si X n'est pas compacte.

Ce théorème généralise celui de A. W. Wadsley qui dit qu'un feuilletage 9
dont les feuilles sont des cercles est stable si et seulement si il existe sur la variété
une métrique riemannienne pour laquelle ces cercles sont des géodésiques (cf.

[7]). Il faut cependant mentionner que le théorème de Wadsley ne suppose pas la

compacité de la variété dont nous avons besoin pour une partie du théorème 3. Il
reste donc la question si le théorème 3 est valable sans cette hypothèse.

7. Feuilletages à feuttles parallèles

Soit X une variété riemannienne et 9 un sous-fibré vectoriel du fibre tangent
ÏÏX.
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DÉFINITION, a) On dit que 2F est géodésique si pour chaque champ de

vecteurs r\ sur un ouvert de X à valeurs dans 9 ses dérivées covariantes dans les

directions de 2F sont également dans &:

b) On dit que 2F est parallèle si pour chaque champ de vecteurs r\ sur un ouvert
de X à valeurs dans 2F ses dérivées covariantes dans les directions
perpendiculaires à 2F sont également dans 2F\

Remarques. (1) Si 2F est géodésique, c'est un sous-fibré vectoriel intégrable de

2TX, et ses variétés intégrales sont des sous-variétés totalement géodésiques dans

X
(2) Pour un feuilletage on parle de feuilles géodésiques ou parallèles

respectivement. Quant aux feuilletages à feuilles géodésiques, voir la remarque (2) à la
fin du paragraphe 2.

(3) Soit G un groupe de Lie muni d'une métrique riemannienne invariante par
translations à gauche et ad-invariante sur l'algèbre de Lie g TeG. Alors les

classes à gauche modulo un sous-groupe connexe H sont géodésiques. Elles sont à

la fois parallèles et géodésiques si H est un sous-groupe invariant.

PROPOSITION 6. 2F est géodésique si et seulement si son complément
orthogonal 2F1- est parallèle.

Démonstration. Pour un ouvert U de X avec deux champs de vecteur r\ e

F(l/, 9) et Çer(U, 91-) et un vecteur tangent £eFXJ xe U, on a

3* est géodésique si et seulement si le terme à gauche de cette égalité est toujours
nul (£, tj, £ étant choisis comme indiqué), tandis-que ^ est parallèle si ça vaut

pour le terme à droite.

Pour illustrer cette proposition nous rappelons l'exemple de Rn\{0}, où les

sphères avec centre 0 sont parallèles tandis que les rayons issus de l'origine sont
géodésiques.

Rappelons brièvement la notion d'une "bundle-like" métrique, introduite par
B. L. Reinhart dans [4]. C'est une métrique riemannienne sur la variété feuilletée
X ayant la propriété suivante: Chaque point de X a un voisinage W difféomorphe
à un produit 1/xV d'ouverts dans Rp et Rq respectivement de sorte que les
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composantes connexes des intersections des feuilles avec W correspondent aux
plaques Ux{v}, veV, et que V peut être munie d'une métrique riemannienne

pour laquelle la projection 7r:W—» V induit des isométries 7r*:F* —» Tw(x)V,

xeW.
Une telle "bundle-like" métrique induit une métrique riemannienne transverse

au feuilletage 9, c-à-d une métrique riemannienne sur chaque sous-variété de X
de codimension p et transverse aux feuilles, de sorte que ces métriques sont
invariantes par le pseudo-groupe d'holonomie. Cette métrique transverse induit
sur l'espace des feuilles une structure naturelle d'espace métrique, ce qui implique
la stabilité de 9 si toutes les feuilles sont compactes.

PROPOSITION 7. Soit 9 un feuilletage parallèle de la variété riemannienne X.
Alors la métrique de X est "bundle-like".

Démonstration. Soit xoeX et soit L: LXo la feuille passant par x0. Pour un
voisinage ouvert W de x0 dans X on trouve des coordonnées u\ un satisfaisant

aux conditions suivantes:

(i) Les composantes connexes des intersections des feuilles avec W sont les

plaques {up+1 const.,..., un const.}, et L H W {up+1 • • • un 0}.
(ii) Les sous-variétés {w1 const.,..., up const.} sont perpendiculaires aux

feuilles, et D : {ul • • • up =0} contient le point x0. (Pour réaliser (ii), on
utilise le fait que 91- est géodésique).

Avec 4 : d/dul on a pour i 1,..., p et j p +1,..., n

car [4, £j 0 et D€4 est dans 9 par l'hypothèse de parallélité.
Les conditions 4(£j> £j)= 0 impliquent que les vecteurs £,(x) ont tous la même

ionguer pour x dans une plaque {up+1 const.,..., un const.}. Il s'agit donc
d'une "bundle-like" métrique.

Par conséquent, la métrique riemannienne de X pour laquelle le feuilletage 9
est parallèle induit une métrique riemannienne transverse au feuilletage et
implique donc la stabilité si les feuilles sont compactes. Mais cette existence d'une
métrique transverse ou encore la stabilité du feuilletage n'est certainement pas
une condition nécessaire pour qu'il y ait une métrique riemannienne rendant 9
parallèle: La parallélité de 9 implique l'intégrabilité de 91-, donc l'existence d'un
complément intégrable de 9 dans ÏÏX. Or il existe des feuilletages compacts
stables sans aucun complément intégrable! (Par exemple, la fibration de Hopf de
S3).
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Mais avec l'hypothèse supplémantaire de l'existence d'un complément
intégrable on a le théorème suivant:

THÉORÈME 4. Soir 2F un feuilletage de la variété X avec une métrique
riemannienne transverse. Alors cette métrique dérive d'une métrique nemannienne

sur X pour laquelle les feuilles sont parallèles si et seulement si 9* admet un
complément intégrable.

Démonstration. Il faut encore construire la métrique riemannienne sur X à

partir d'une métrique riemannienne transverse à SF et d'un complément intégrable
SF. D'abord, la métrique transverse induit une métrique riemannienne sur le fibre
vectoriel SF et donc sur chaque variété intégrable de 9y et ces métriques sur ces
variétés intégrales de 9* sont invariantes par le pseudo-groupe d'holonomie du
feuilletage 5F. Considérons un voisinage W d'un point x de X difféomorphe à un
produit U x V de deux boules ouverts dans Rp et Rq respectivement de sorte que
les feuilles correspondent aux plaques U x {u}, v e V, et les variétés intégrales de
# aux transversales {u}x V, ueU. Prenons sur U une métrique riemannienne
arbitraire et sur V celle induit par V {u}x V et la métrique sur la sous-variété
intégrale {u}x V de 5F. (Cette dernière ne dépend pas du choix de ue [/!), et
munissons W=[/xV avec la métrique produit.

De cette façon, on obtient des métriques riemanniennes pour des ouverts Wt
d'un recouvrement ouvert localement fini W,)l€l de X, qui rendent 5F géodésique
et orthogonal à 5F tout en induisant sur chaque W, la métrique transverse donnée.
En recollant toutes ces métriques riemanniennes locales à l'aide d'une partition de
l'unité on en obtient une sur l'ensemble de X ayant les mêmes propriétés.
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