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Geometry of hypersurfaces and mapping theorems in C"

D. Burns, JR * and S. SHNIDER**

§0. Introduction

The intrinsic pseudoconformal, or CR, geometry of a strictly pseudoconvex
real hypersurface in C" has recently attracted a great deal of attention because of
its relation to the ‘“‘equivalence problem’ for such hypersurfaces and for the
domains which they bound. Cf., for example, [5], [6], [15]. We present here a few
applications of this geometric structure to some problems concerning mappings of
pseudoconvex domains other than the equivalence problem itself, strictly speak-
ing. The point is that auxiliary structures (measures, metrics, differential systems,
etc.) on pseudoconvex boundaries can contribute interesting information about
the behaviour of mappings of domains.

To state the main results, let D; (i =1, 2) be relatively compact manifolds with
€~ strictly pseudoconvex boundaries in complex manifolds M.

THEOREM 1. Let f: D, — D, be a proper holomorphic map.
(a) If D, = D,, then f extends smoothly up to the boundary dD;.

(b) If oD, is real analytic (i=1,2) then f extends holomorphically past the
boundary.

For D<M as above, let Aut (D) denote the biholomorphic automorphism
group of D, and Aut’(D) its identity component.

THEOREM I1. (a) Aut®(D) is compact, unless D is biholomorphic to B", the
unit ball in C* (n =dim¢ D).
(b) For n=3, Aut(D) is compact unless D =B".

Theorem 1, for f biholomorphic, is Fefferman’s theorem [7]. The case when
D,=D,=B" is due to H. Alexander [2].

* Partially supported by NSF (U.S.).
** Partially supported by NRC (Canada).
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200 D. BURNS, JR. AND S. SHNIDER

Since we first proved theorem II, more eleinentary proofs have been given by
Wong [16] and Klembeck [11], simultaneously dropping the restriction n =3 in
II(b). Webster [15] proved a less precise analogue of II(a), for compact, integra-
ble, strictly pseudoconvex CR-manifolds.

Along the way we collect some interesting structural facts about pseudoconvex
hypersurfaces. The paper is organized as follows:

§1 contains the proof of I(a). This involves the construction and properties of
an intrinsic measure on a strictly pseudoconvex hypersurface, and an analytic
continuation procedure for extending the region of boundary regularity of maps
such as our f. Some corollaries are given as well as an example of a (non-Stein)
manifold D with proper self-map f which is not biholomorphic.

§2 proves I(b). Here we use a variant of the continuation argument in §1. The
key point is to have some understanding of the domain of existence for solutions
to the ‘“‘chain’’-equations of E. Cartan, and Chern—-Moser. The lemmas providing
the needed information here are of independent interest.

§3 contains the proof of II. Here several of the auxiliary structures are used at
once. One first uses intrinsic pseudo-distances on the boundary of D to conclude
that if Aut(D) were non-compact, then dD would be spherical in the sense of [4].
Theorem II(b) follows by a development map argument, as in [4], but a topologi-
cal assumption intervenes causing the restriction n=3. Theorem II(a) analyzes
the situation directly from a fixed point on the boundary of a one-parameter
group in Aut®(D).

We wish to thank Jiirgen Moser and Bill Veech for timely questions. The first
named author thanks the Institute for Advanced Study, the Institut des Hautes
Etudes Scientifiques, and the Unversité de Paris, VI for hospitality and support
while part of this work was in preparation.

§1. Proper Self-Maps

We prove Theorem I(a) in this section. We first introduce a canonical measure
on the boundary 4D, and for this we need to recall some basic facts about
pseudoconformal geometry (cf. [5], [6] and [15]).

Let M<C" be a real hypersurface, T(M) its real tangent bundle, H(M)c
T(M) the codimension 1 subbundle invariant by the almost complex structure J
on T(C"). The Levi form ¥: HM)Q@H(M)— T(M)/H(M) is defined by
L(X, Y)=[X,JY] mod H(M). The choice of 80 in T*(M), with 6 | HM)=0
defines £, = 6 - . £, is a hermitian form on H(M), and our basic assumption is
that for properly oriented 6, &, is positive definite. Note that if we replace 6 by
A%6, A a real-valued function on M, then %2, = A\%%,.

The pseudoconformal geometry gives a structure bundle T — M and a Cartan
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connection @ on Y with values in $U(n, 1). If 2 denotes the curvature of this
connection, then the component of lowest “weight” on Y, denoted S§. 50" A @® in
[6], descends to a tensor on M, specifically, a section we’ll denote by S of the
bundle End(H(M))®@ H(M)*® H(M)*. Here, H(M)* denotes the complex linear
dual of H(M), H(M)* the conjugate bundle, and End(H(M)) the complex linear
endomorphisms of H(M).

Every choice of positively oriented 6 as above gives %,, and hence a hermitian
metric on H(M), and by the natural extension, metrics on H(M)*, H(M)*, and
End(H(M)). It was noted above that replacing 8 by A?6 scales the hermitian form
on H(M) by a factor A2, and hence, scales the form on End(H(M))® HM)*®
H(M)* by A~*. Letting ||:||p denote the norm function determined by the form %,,
we conclude ||S|lxze =X"2||S|le-

We denote by 3 ={xe M| S(x)=0} the “umbilic locus” of M. For n>2, it
follows from the Bianchi identities that if S is =0 in an open set U, then 2 =0 on
U, and M is locally CR-equivalent to the unit sphere S>" ' < C". When S# 0, the
1-form 6,=||S||s - @ is €, and independent of the choice of positively oriented 6.
The non-degeneracy of the Levi-form implies that the 2n—1 form

OOA\dOO/\ c Ad00‘= GOA(deo)n—l

n—1 times

is a strictly positive 2n—1 form. More precisely, we have:

PROPOSITION 1.1. There exists a CR-invariant measure u on M with the
following properties:

(1) If dx denotes a positive 2n—1 form on M, then w is absolutely continuous
with respect to dx

(2) du/dx =f is a non-negative, continuous function

(3) T={x|f(x)=0}

(4) If M is compact, 0=\, du = n(M) <, with equality holding if and only if
M=3,

Proof. On M — 3, we define w as the smooth measure given by 6, (df,)" . If
0 is a local non-vanishing 1-form which annihilates H(M), the formula

00~ (d6o)"~" =||Slls 6 A (dO)"~

valid on M — 3, gives an extension of w to all of M as a continuous, non-negative
(2n —1)-form which vanishes exactly along 3. The CR-invariance of u follows
from that of S and 6,. The rest is by construction and the remarks above.

(For n =2, one must use E. Cartan’s Q (as in [6]) instead of S as above.)
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We note here that 6, may be used to construct a CR-invariant Riemannian
metric on M—23 (see [15]). We'll specify this metric by specifying a particular
kind of orthonormal basis for it. The basis will consist of independent vectors
€,..., & With &,..., &, , in HM), %, (& §)=8;, 1<i,j=2n-2, and
&5,y is determined by 0y(&,,.-1) =1, and d@y(¢, -)=0.

We recall here two results needed in this and the next §.

(1.2) (PinCuk [13]). Let D; (i=1,2) be as in Theorem I and f: D,— D, a
proper holomorphic map. Then (a) f has an extension to D, which is Holder
continuous of order 1/2, and (b) the jacobian of f is bounded on D;.

(1.3) (Alexander [2]). D, (i=1,2), f as above. There exists an open subset
U < aD, of full-measure in dD, such that the extension of f to D, given in (1.2),
when restricted to f~'(U)caD,, is a 6>, d-to-1 covering which is a local
CR-equivalence (d =degree of f: D, — D,).

We remark that both theorems were originally stated for domains in C", but
both results extend to the present case by standard localization techniques.

Proof of Theorem 1(a):.

We consider two possible cases:
(i) aD#3, i.e., 2#0 on aD.
(ii) aD =3, 2=0 on 4D.

Case (i). We prove that in this case,d =1, and hence f is biholomorphic.
Thus, Fefferman’s theorem [7] applies, and f is smooth at the boundary. To
compute the degree, note

0<wu(@D)= j

(:]

du =I du (U of full-measure)
D U

1

== I du (invariance of du; (1.3))
d Y ,

1
S'-—J. du (positivity of du)
d Jp

Since 0<u(dD)<o, and d =1, this implies d = 1.

Case (ii). In this case we wish to argue more directly that f is smooth at the
boundary. By (1.3), there is a point pedD and an open neighborhood V of p
such that the boundary values of f are a €™ CR-equivalence to f(V) about f(p).
Let q be any other point in 3D, and let v : [0, 1]— dD be a continuous path with
v(0)=p, yv(1)=q. We claim that the boundary values of f are a smooth local
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CR-equivalence at any point y(t)eaD, 0<t=<1. Since q is arbitrary, and aD
connected, the theorem would follow.

Suppose the boundary values of f are a smooth local CR-equivalence at y(¢),
for all t<t, with t,>0. We have only to show that f gives a smooth local
CR-equivalence in a neighborhood of y(t,) in aD.

Since 2 =0 on dD, we may choose neighborhoods W, > y(t;), W, > f(y(t,)) in
oD, and€~ CR-equivalences of the W, with open subsets of $>*"'< C". By H.
Lewy’s extension theorem, these local CR-equivalences extend to local
biholomorphic equivalences @,, i =1, 2, of D with B", which are smooth at the
boundary. Thus there exist open neighborhoods, V,;>®,(y(t,)) and V,>3
d,(f(y(ty))) in C* such that h=d,ofoP7! is continuous from V,NB" to
V,NB", and is holomorphic from V,NB" to V,NB". By construction, h gives a
smooth local CR-equivalence of V;NS**~! with V,NS*""! at points @,(y(1)),
t <t,. Hence, by a result of H. Alexander [1], h must be given in a neighborhood
of the points @(y(t)), t <t,, by a linear fractional transformation T. Since V; B"
may be taken to be connected, we have h=T on V;NB", by analytic continua-
tion. Hence, h = T on V,NB", and, in particular, h is smoothtotheboundary near
®,(y(t)), and f=P5' - ho P, is also smooth to the boundary near y(t,), proving
the theorem.

COROLLARY 1.4. Assume D is as in Theorem 1(a), and D is Stein. Then any
proper map f : D — D is biholomorphic.

Proof. This follows from I(a) and an argument of Pincuk [13].

COROLLARY 1.5. Assume D is as in Theorem I(a), and 2#0 on oD. Then
any proper holomorphic map f : D — D is biholomorphic.

Proof. Indeed, this is just the argument given to prove case (i) of I(a).

We close this § with an example to show that the above corollaries are “sharp”
in some sense. Consider U={(z, w)eC*|Im w>|z|*}; U ={(z, w)eC?*|Im
w =|z|*} is identifiable with the Heisenberg group, the multiplication given by
(24, wy) © (2o, Wo) = (21 + 25, Wi+ Wy —2i2,Z,).T={(&, m)€dU | ¢, ne Z[i]}is a dis-
crete cocompact subgroup of % which acts holomorphically by right multiplica-
tion on 8% and 4. It is well-known (cf, e.g., [4]) that AT has a natural
compactification D which is a disk bundle over E = C/Z[i]. Now the automorph-
ism (z, w) — (2z,4w) of U descends to give a proper map f : D — D, compatible
with the projection of D to E. It is easy to compute that the degree of f is 16, and
that f ramifies along the curve E embedded in D as the zero-section of the
bundle. Note that 2=0 on D, since dD is locally CR-equivalent to d%.
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2. Proper maps, real analytic case

Before proving Theorem I(b), we need to recall some more facts from
pseudoconformal geometry. We use the (n+1)X(n+1) hermitian matrix

=2
to define
su(n, 1)={AeM,(C)|'AQ+ QA =0}.
On the structure bundle Y over the strictly pseudoconvex hypersurface M, there

is a vector field X = X,; determined by

o(X)= € su(n, 1).

oo O
o o o
OO =

(w is the Cartan connection on Y, with values in su (n, 1).) The integral curves of X
projected to M give the ‘“‘chains” of E. Cartan, Chern and Moser, and the orbits
of X in Y give a distinguished parameter (the integration parameter along X) and
parallel transport along the corresponding chains.

A parametrized chain will denote a connected chain y = y(t) with a choice of
finite distinguished parametrization. Two points p,q€ M are joined by a broken
chain if there are points q,=p,q,,...,q, in M, and parametrized chains v,
i=1,...,n—1,so that y,(a;) =g, v:(b,) = q,+1, for suitable a;, b; in the interior of
the domain of definition of the parameter along ;.

LEMMA 2.1. For M connected, any two p, q € M are joined by a broken chain.

We will prove this later.

We note that by this lemma, and remarks as in the proof of case (ii) of I(a)
above, it suffices for the proof of 1(b) to show that if the f in I(b) is holomorphic
past the boundary in a neighborhood of one point on a parametrized chain vy, then
f extends holomorphically past the boundary in a neighborhood of any point on +.

Let v = y(t) be a parametrized chain in dD,, with parameter t e (—¢, €), and let
¥(t) = f(y(t)) be the (continuous) image of y under f. (We are using (1.2) here.)
Suppose f is holomorphic past the boundary in a neighborhood of +y(t), for
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te(—¢,0). Then ¥(t) is a parametrized chain in dD,, for te(—¢, 0). The main
lemma in the proof of I(b) is the following:

LEMMA 2.2 The chain ¥ continues to a parametrized chain defined for
te(—¢, d), for some 6>0.

This, too, will be proved later.

Given lemma 2.2, the proof of I(b) is concluded much as we argued for case
(i1) of I(a) in §1. Let -y = y(t) be a parametrized chain in dD,, and suppose that f is
holomorphic past the boundary in a neighborhood of +y(t), for t<t, By re-
parametrizing y near y(t,), we may assume t,=0. Apply lemma 2.2 to conclude
that f. y(t) = ¥(t) extends to be defined as a parametrized chain for t € (-8, §), for
some 6>0. For 6 small enough, we may take Moser normal coordinates
(z',...,z" ', w) for D, centered at y(—8§), corresponding to the initial normali-
zations determined by the given parametrization ¢ of the chain vy, and a choice of
frame 0/3z', ..., d/dz""! for the space of complex tangents to dD; at y(—38). (The
frame 9/9z!,...,0/0z" ' is to be orthonormal for the Levi-form at y(—8&). For
more precision, cf. [6], §3.) This coordinate system is convergent in a neighbor-
hood of y(t), —26 <t <8, for & >0 sufficiently small.

We may also take Moser normal coordinates (Z',...,z""', w) for oD,,
centred at y(—38), corresponding to the initial normalizations determined by
the given parametrization of 9(t), and the frame at §(—8) given by
f£(8/0zY), . . ., fx(8/0z"""). These coordinates are also convergent in a neighbor-
hood of ¥(t), —28 <t <. Further, in these coordinates, the mapping f is given by

(2, w)=f(z, w)=(z, w), (2.2)

by the uniqueness of Moser coordinates with given normalizations. (2.2) gives an
analytic continuation of f to a neighborhood of +y(tf), —286<t<§, proving
Theorem I(b), modulo the lemmas.

We first prove lemma 2.2. The significance of the estimations performed in the
course of the proof are clarified by Proposition 2.3 below.

In a neighborhood U of y(0) we pick a local frame of 1-forms for aD,, 6,
6',...,0" " where 0 is a real 1-form annihilating H(M); 6%,...,0" ! are
complex linear when restricted to H(M), and

n—1
dg=y-1) 6 A6 (2.3)
i=1
We take a similar frame 6, 6',...,8" ' on D, in a neighborhood of §(0)=

f(v(0)).
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Along ¥(t), —e <t <0, f*6 = A6, where A = A(t) is a positive factor of propor-
tionality. We claim that there are positive constants c,, ¢, such that

o [JFy @) = A () = ¢, Ty (2.4)
for te(—¢, 0), where Jf is the holomorphic jacobian determinant of f computed

with respect to some holomorphic coordinates defined in neighborhoods of y(0)
and ¥(0). Indeed, write

f*6=10, f*6'=al6'+b's, (2.5)
along y(t), te(—¢, 0), and note that

c; |A det (@) ={If(y()|=c, |A det (a}). (2.6)

We compute from (2.3) and (2.5) that

YO A (A" ") =A"O A(dO)" " 2.7)

and that
FXOA O ) =AOA (nz J-1f*6' /\f*g)n_l =\ | det(a)]> 9 A(dO)""
=1

Hence, |det (a})| = A"~ 1’2; substituting this into (2.6) proves the claim.

We must next examine explicitly the systems of ordinary differential equations
defining y(t), ¥(¢t). This amounts to making the field X in (2.1) more explicit. We
will denote the Cartan connection on dD; in the local frame 6, 6°, ..., 6" ! by v/,
with

wy of of
I
) 0? of ol 1=a,B=n-1,

with
w'=20, wPf=0°w."=2i6" (2.9)
and where

0 . 5
Re (0)) =0, 0= —0f, 0 = —2iw!?, 0% =w!?°
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and Im (w?), w’?, 0?°, @’ are all of the form

A, 0% +B_6%+Co (2.10)

where A,, B,, C are smooth functions defined in a neighborhood U of y(0). To
express w on Y, we have to introduce the group variables parametrizing the fibers
of Y. These are given by the group H < SU(n, 1)/(center) of [6]; any element h is
written h=B - A, where:

cle 000
A= 0 a 0], (2.11)
0 0 pf

detA=1, [{|=1, peR*, aeUn-1),

(A is understood to be taken modulo diagonal matrices AL, ,, where_)\"+1 =1.)

1 0 0
B=| =26 I_, 0], (2.12)
s—ilb b 1

n—1
b=(b',...,b""HeC" !, |b?=) |b'’, seR.
i=1

The Cartan connection is given on all of Y by

w=h"'w'h+h ' dh (2.13)
=A"'B'w’'BA+ A 'dA+ A" (B! dB)A.

We will denote by @, h=B- A, etc., the corresponding forms, variables, etc., on
D,, constructed in terms of the frame 6, 6',..., 8" near ¥(0).

By a suitable choice of a frame for H, ) (dD;), we may lift y(¢t) to an orbit
I'(t)e Y of the vector field X i.e.,

oI(t)= (2.14)

o o O
o O O
o R

The mapping f induces an H-equivariant mapping from Y over 4D along y(t) to
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Y over aD, along (1), —e <t<0. Let I'(t) denote the image of I'(t); I['(¢) is a
lifting of ¥(¢) to Y, and we have

o(F(t) = (2.15)

S o <O
S O O
o o -

In order to show that I'(t) extends to an interval (-8, 8), it suffices to show that
['(t) remains bounded in Y as t — 0. Since 7(t) — f(y(0)) as t — 0, it suffices to
bound the fiber variables along I'(t), i.e., to bound:

log p(1) =log p(I'(1)), b(t)=b(L(t), §(r)=5(I (1))

as t — 0. Writing out (2.15) explicitly, using (2.11), (2.12) and (2.13), one arrives,
after some mildly tedious calculation, at the following system of equations (all
repeated Greek indices are summed):

an=1 (2.16)
®8+bPer=0, B=1,...,n—1 (2.17)
@ —2ipk L’E+wg(§~i|5|2)—fi;‘—3—fig=o. (2.18)
—db® + bP@d— &P — @Lb* +2ibPash* =0 (2.19)
and

d5+2 Im (B° db=)+@°—2 Im (5®%5®)—2 Re (G +i [P
+2 Re (2ib*&P)+2 Re (2i(G +i |b])@sh*) — (52 +|b|Y@n=0. (2.20)

Note that here we are abbreviating: all one forms are to be evaluated on ).
Thus, for example, d§ stands for (d/dt)5(t), and @§ stands for @3 (I(r)). We also
have omitted the equations involving dd, since a@ is automatically bounded.
Similarly, since |{|=1, we are only interested in the real part of (2.18). We
substitute (2.16) and (2.17) into (2.19), (2.20) and the real part of (2.18) to obtain
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equations
d ~\ =D
— log (p)—38p7*=0, (2.21)
dt
db® B ~0_ ~ ~Bfa 12 FBx—2
W—bﬁwo—i—wf— Bb>+2i |b]* bPp2=0, (2.22)
Z—j +&0+2 Im (BPa8) — (5%+ 615> = 0. (2.23)

From (2.22) we derive

7-d63 = _
0=Re | b*—)+Re (b*aP),
dt
or
i 12 R
d('l’; b 2 Re 530 (2.24)

Now examples show that equations (2.21), (2.23), (2.24) are not, in them-
selves, sufficient to bound by p, |b|*> and § along I'(¢), cf. [5] and [8]. We therefore
use the extra information provided by (2.4) above and PinCuk’s theorem (1.2)(b).
Note that, by construction, if f: I'(t) — I'(t), then

AP0 054) = p(L(1))%0,q),  —8<t<O.
Hence,
(LA (y(1) = p(I'(1))?,

A as in (2.4) above, and so

p(L(0)™" = A(y()) p(T (1))

Since the curve I'(t) in Y extends past I'(0), p(I'(t))"" is bounded for t e (—¢, 0).
A(y(t)"? is bounded there by (2.4) and Pincuk’s theorem. Hence, p(I"(t))™? is
bounded for te(—¢,0). This bound and the equations will bound |52, § and 5.
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Inserting (2.10), (2.16) and (2.17) into (2.24) gives

d b
d

= —2 Re (5% (A26°(7(1) + B2 8= (#(1)) + C*0(#(1)))

-

= —2Re (—1b8672b*AB—L1bBH*BEH 2 +1572CPh").

Here A®?, B2, C® are suitable smooth functions on dD, near ¥(0). Hence, using
that o~ '(I'(¢)) is bounded, and Schwartz’s inequality, one obtains

LIBP<CiIBP+Cy (-0

where C,, C, are positive constants. Hence, || remains bounded as ¢t — 0.
Next, taking (2.21) and (2.23) together, one derives

ds §dp_ _, B By 1 |F14 A
——<z—=—@,—2Im (bP&f)+|b|* p—*
a5 On2ImBRaN Bl 67

i.e.,

d (s - .

£ (3)=—5"a0-25"" m (B8 + 57 bl <,

dt \p

the last inequality by (2.10), (2.16), (2.17) and the bounds on 6~* and |b|?>. Hence,
§ is bounded as t — 0. Finally, (2.21) and the bounds already achieved imply that

log p is bounded, completing the proof of lemma 2.2.

Proof of lemma 2.1. Note that it suffices to show p may be joined to all q in
some neighborhood of p. We use the computations made in the proof of lemma
2.2. Let X denote the vector field (2.1)on Y. Let z',...,z" ', w=u+/—10v be
holomorphic coordinates centered at p, and 6, = du, 6, = dz'. Introducing group
variables in Y as above, we write

i) .0 .0
=g |—+a'—+Bi— +(vertical )
X=g (au @ -5 B P} (vertical components)

Here x'=Re z', y'=Imz,i=1,...,n—1, and u are taken as coordinates on M,
and g is a non-vanishing function in a neighborhood UXHc Y, U a neighbor-
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hood of p in M. We evaluate g, ', B' along {p}xHc Y in terms of the group
variables, using (2.16) and (2.17).

p? (2.23)

N

g:
ai+J—18' =—b (2.24)

Let 7 denote the projection 7 : Y — M, and let us consider the map sending (¢, b)
near 0eR* ! to w(®,(p, - B(b))), where &, is the exponential map for the flow
determined by X at time ¢, p, is point of {p} X H< Y determined by setting p =1,
a=I (=1, b=0, s=0, and

1 0 0]
Bb)= |-2ih I 0
12
_M b 1 *
L. 4 -

Note that if b is fixed and ¢t varies, 7(®P,(p, - B(b))) describes a parametrized chain
in M.
Write
u(t, b) = u(w(d,(po - B(b))))
x'(t, b) = x*(w(P,(po - B(b))))
y'(t, b)=y' (7 (D, (po - B(b))))

and define
—%it‘(t,m 25,0 %(t,m_
J(t)=det %)—;—j(t,O) g:—:(t,()) %(t,O)
_%—yt-j(t,O) %(LO) %(LO)_

Note that we are using (2.24) here. Note also that u(0, b)=x'(0, b)=y'(0, b) =0.
Hence, we obtain, using (2.24), that:

d2n-—2J 1/2 0 O
Prer=] 0)=det| 0 1/2I O —9-@n-D ().
0 0 1/21
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Hence, for ¢t small enough, there is a neighborhood of y(t) = 7(®,(p,)) each point
of which is joined to p by a chain. Now the computation above is clearly uniform
in a neighborhood of p, in Y. Hence, for ¢ small enough, we may apply the above
argument with p replaced by +y(t), and conclude there is a neighborhood of p
every point of which can be joined to y(t) by a parametrized chain. Hence, using
two segments of parametrized chain, one may join p to any point in a neighbor-
hood of p.

We remark that the proof of lemma 2.1 just given requires high differentiabil-
ity of the hypersurface. One may avoid this by using the Lorentz structure over
the hypersurface ([3], [8]). A more or less standard argument there will prove the
same result, using only that M is C*. Since this is not a central point, we’ll avoid
the extra formalism involved.

Finally, we’d like to close this section with an interpretive proposition which
gives the significance of the principal estimate in our argument above, viz., the
estimate of |b[>. We thank J. Moser for his insistence that such a simple
interpretation should exist. The main problem that lemma 2.2 is supposed to deal
with is the existence of spiralling chains, as exhibited in [8]. These are chains
which may be extended continuously through a limit point, but not smoothly as a
solution of the chain equations. If a chain continues smoothly through a limit
point p, then clearly the angle that its tangent vector y makes with H, (M)
remains bounded from below, since vy is transverse to H, ,(M). Conversely, we
have

PROPOSITION 2.3. Suppose y(t) is a chain (the parameter t need not be a
distinguished parameter), such that t11111 v(t)=p and such that the angle between

v(t) and H, (M) remains bounded from below. Then, after suitable smooth
reparametrization, vy extends past p as a smooth solution of the chain equations.

Proof. Introduce a local frame 6, 0%, ..., 0"

reparametrize y (smoothly) to normalize

near p as in (2.3) above. We

0(y)=1. (2.25)
We recall from [4] that with this normalization, the chain equations are given by
d . = , = , .
Lom=-v-1{T 0@Pre@+ T o@er@)+oi@)
i=1 i=1

where the notation w}, ,' is as in (2.9) above.
Note that if a is the angle between ¥ and H, (M), then sin® («) is of the exact
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order of magnitude
0(y)?
n—1
6(v)*+ X |61

Hence, to say sin” (a) = £ =0, with our normalization (2.25), is to say Y=} |0 (y)|?
remains bounded along vy(t). Hence, the standard theorem on systems such as
(2.26) implies that the given solution extends smoothly through p, proving the
proposition.

We remark that showing |b|? is bounded in the proof of lemma 2.2 shows that
sin? (a) is bounded from below on ¥(t), as t — 0. We argue further there to insure
that our given parametrization continues through t=0.

3. Compactness of automorphism groups

In this section we prove Theorem II. For this purpose, we introduce an
intrinsic, CR-invariant pseudo-distance on the non-umbilic points of a strictly
pseudoconvex hypersurface. It is closely related to the arc-length of the distin-
guished metric mentioned in §1, but its degeneration at the umbilic points is easier
to manage.

Let M be a connected, strictly pseudoconvex hypersurface. Let 3 < M denote,
as in §1, the umbilic points of M. We define, for p, qe M, the restricted
pseudo-distance dy(p, q) as

duv.0)=_int [ Vil It ae) 3.

veF(p,q)

Here 6, |- |ls, S are as in §1, and F(p, q) is the set of all piece-wise 6' paths
v :[a, b]— M, with y(a)=p, y(b)=q, and y(t)e H,,M, for all te[a, b]. Let
d(p, q) denote the distance between p and q computed with respect to some fixed
Riemannian metric on M. The basic facts about dy; are collected in the following
lemma.

LEMMA 3.1. (a) For any p,qe M, F(p, q) is non-empty.

(b) du(p, 9)=du(q, p); du(p, q)<du(p, n)+dy(n, q), for any ne M.

(c) On the compact sets, di;(p, q) <const. d(p, q)''%, where const. might depend
on the compact set.

(d) Forpe M-3, dy(p,q)=0 if and only if p=gq.
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Proof. (a) Since M is connected, it suffices to show that for each p e M, and all
q sufficiently close to p, F(p, q) is non-empty. To prove this, let X;,..., X,,,_, be
a local frame for H(M) near p, with X,,_;=[Xi, X,] independent of
X, ...,X;5,-, at all points in a neighborhood of p. This is possible by non-
degeneracy of the Levi-form. Let @. denote the flow of X, at time 7. Define a
mapping @ from a neighborhood of 0 e R?*"~! to a neighborhood of pe M by

2 1 o 42 s e2n2,... 2
¢—~/‘2n-1 ° ¢_\/‘2n—1 ¢~/t2u—1 ¢\/t2n—l (pfzr:—z ° ° ¢t2 1
¢(t1, o sy t2n—l) = ° ¢tl(p)y
‘ t2n—1 = 0
2 1 2 1 2n—2
L(D\/lfzn—|‘ ° (p\/ltzn—ll * ¢_\/‘t2u—1l ° (p_\/ltzn—ll ° (pt;—z et
1
° @, (p),

thh-1=0.

This function is well-defined for t=(t,,..., t,,_;) small enough, and is clearly
smooth for t,,_,#0. That & is actually €' along t,,_;=0 comes from the
standard fact that locally, for 7=0,

E,/-r o @l‘/.,. o @E\/.,. o (DI_JT(q) = ¢3n—1(Q)+0(73/2),
and similarly, for r=<0,
‘p?/|f| ° ‘pf/m * ‘DE,/H ° ¢I-J17|(Q) = ¢3"‘1(Q)+O(|T|3/2)-

The derivative of @ at t =0 sends 9/dt, to X;, 1=i=<2n—1, hence @ is a local €*
diffeomorphism. The image in M of a small cube about 0 R*""! is the desired
neighborhood of p € M. Indeed, if q=®(t), t=(t,,..., t,,_1), join p to q by first
taking the path @(p) to p,= @, (p), then ®I(p,) to p,=P.(p,), etc., as pre-
scribed in the definition of &.

(b) is immediate from the definitions. It suffices to show (c) for p, g€ M such
that d(p, q)<e. We first fix p. Using the map @ of part (a), we have d(p, q)=
c:(p) |t| for d(p, q) <€ = e(p), and q = P(t). The path from p to q exhibited in (a)
shows d (p, @) =< c.(p)(t:|+- * * |t2n—2| + |t2n—1]"%) Where the constant c,(p) depends
only on the size of the X; near p, and ||S|ly near p. Hence, dy(p,q)=<
c5(p) d(p, q)'?, where c;(p) depends only on c,(p), c,(p) and n. Finally, we note
that for p’ close to p, we may also use Xj, ..., X,,_; for the construction of the
map @ at p’, and c¢,(p’), c,(p"), c5(p’), e(p) depend continuously on p’, proving (c).

For (d), if p#gq, pick a positive 8<d(p,q) so that B(8 p)=
{seM|d(p, s)=8}=M—3. There is a ¢ >0 so that ¢ || X]|s,=||X]|, for X € H,(M),
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s € B(8, p), where ||X]| is the length of X with respect to the Riemannian metric
used to calculate d(p, q), and 6,=||S||, - 6, as in §1. From this it follows that
dy(p, q) = 8/c, completing the proof of the lemma.

From (a) and the definition, we know that dy(p, q) is well-defined and finite.
From (b) and (c) we know it is continuous, and from (d) we know that, if
peM-3, and M is compact, then dy(p, 3) = inf dy(p, q) is finite and positive.

qex
Set U, ={pe M—3 | dy(p, X)=¢}. For ¢ sufficiently small, we know that U, is a
compact set in M — 3, with non-empty interior, and that U, is invariant under all
smooth CR-automorphisms of M (since di; and 3 are).

LEMMA 3.2. Let D be as in Theorem I1. If Aut D is non-compact, then dD is
spherical, i.e., 3 =0D.

Proof. The proof is by contradiction. Let {f;} be a sequence in Aut(D) with no
convergent subsequence. By Montel’s theorem, a subsequence of the f; converges
uniformly on compact sets to a map f,. For qe D, let p =f,(q). If p were in D,
then the f; would converge uniformly on compact sets, with all derivatives, to a
map fe€ Aut(D): this is because the f;’s are isometries of the Bergmann metric of
D(cf. [9], IV 2.2). Hence, p € dD. By the strict pseudoconvexity of oD, f(D) ={p}.

Suppose D —3 is non-empty. By C. Fefferman’s extension theorem, every
f € Aut(D) induces a €~ CR-automorphism of D (still denoted f). Thus, on 4D,
each f; preserves the sets U, constructed above, and each f; induces an isometry
of the distinguished metric on D —3. Pick se€ U,, and pass again to a subse-
quence of the f; so that {f;(s)} is a convergent sequence. This is possible because U,
is compact. Hence, near s, the f; converge uniformly, together with all derivatives
to a local isometry f of 0D —23 in the distinguished metric ([9], loc. cit.), and f
must also be a local CR equivalence. By Lewy’s extension theorem, f is the
boundary value of a biholomorphic equivalence (still denoted f) of a neighbor-
hood of s in D with a neighborhood of f(s) in D. However, by the strict
pseudoconvexity of dD, and the maximum principle, there is a compact set K < D
such that the f; converge uniformly to f on K, and f(K)< D. This contradicts the
conclusion previously reached, that f;(K) — p, proving the lemma.

Suppose that Aut(D) is non-compact. The first part of the proof just given
shows that the homotopy groups m (D)= m, (D) are trivial, for all k. Indeed, if
v : S = D represents an element of m (D), then f. o y converges uniformly to a
point map, hence is null-homotopic for i » 0, but f; - y represents f, .(y) € m (D),
and f,, is an isomorphism. Since y was arbitrary, m (D) =0.

Now consider a segment of the homotopy sequence for (D, dD):

m,(D, dD) — m,(dD) — (D).
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By the above, m;(D)=0. On the other hand, by the Lefschetz theorem, if
n=dimec D=3, m,(D,dD)=0. Thus, if n=3, 7,(dD)=0. Since we know by
lemma 3.2 that 8D is spherical, we conclude dD is CR-equivalent to $*" ' < C",
and D is biholomorphic to B"([4], §1). This completes the proof of Theorem II(b).

We sketch the proof of the weaker statement II(a). We note first that by
lemma 2.2, aD is spherical, if Aut’(D) is not compact. Let f, be a one-parameter
subgroup of Aut’(D), not contained in any compact set. As above we conclude
that there exists a sequence {t;} so that f, (p) = q € 9D uniformly on compact sets
as t,— +o, Note, then, that each f, is smooth to the boundary, and

f@)=£.(lim £, (p)) = lim £,(£, (p)) = lim £, (£.(p)) = 4.

Now dD is spherical near g, so we may take, as in §1, a local biholomorphic
equivalence @ of D near q with the quadric 0% ={(z, w) | Im (w)=|z[>, weC,
z €C"" '} near (0, 0). The germ of one-parameter group f, at q € D is conjugated
by @ to a l-parameter group of linear fractional transformations of U =
{(z, w)| Im (w)>|z|?} which fix 0. If ¢ denotes the infinitesimal generator of this
1-parameter group on 9, one may check explicitly that there are arbitrarily small
connected open sets U, = U, with (0, 0) < U, such that the exp (t£) : U, — U, for
all t>0, and that exp (t£)(p) — (0, 0), uniformly on compact sets in U, for t >0,
t — +o, Conjugating this back to D via @, one concludes: (a) the existence of a
connected open set V in D, with qe V and V in the domain of the local
equivalence &; (b) that f,: V— V, for all t>0, and f,(p)—>q as t— +x,
uniformly on compact sets in D. Using this, we can make the local equivalence &
between D and B" a global one as follows.
For arbitrary p € D, define

@ (p) = exp (—t&)(P(f.(p))

for t sufficiently large. First of all note that for p € V, this is independent of t, and
agrees with @ as already defined there, by the definition of £ On any compact set
K< D, for t»0, f,(K)< the domain of our original @, and the definition above
makes sense on K for such t. Finally, these definitions for different ¢ will all agree,
by analytic continuation, since they all agree on V. The procedure may be
reversed, setting

@~ (p)=£" (D" (exp (t£)(p))).

Hence & gives a biholomorphism of D with B".
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