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Some rational computations of the Waldhausen algebraic K theory

by DaN BURGHELEA"

Introduction

The purpose of this paper is to compute the rational part of the algebraic
K-theory defined by Waldhausen [W] of the following type of topological
(semisimplicial) rings R.:

(a) R.is an associative topological (semisimplicial) ring with unit and II(R.) =
Z (Z denotes the ring of integers).

(b) There exists a ring homomorphism ¢ : IT,(R.) - R. so that 7 =id where
m:R.— II, (R.)' is the canonical projection.

(¢) IL(R)®,Q=0"for i#r=1 and IIL(R.)®,Q=Q, where Q is the ring of
rationals. )

These computations provide in particular the computation of the rational part
of the Waldhausen’s algebraic K-theory of a space X, in the case X has the
rational homotopy type of a K(Z,2r)* and implicitly the computation of the
rational homotopy type of F'Wh(X), *'Wh=(X), »fWh (X)+ (see [B.L] for nota-
tions), for K(Z, 2r).

In this paper we give the results only for P#Wh, the problem of the
computation of P*Wh(X), #Wh+(X) will be contained in another paper on
automorphisms of manifolds.

The methods of this paper allow the same computations for X of the rational

homotopy type of a K(G, 2r) but more “classical invariant theory” is necessary
and the author has not yet worked it out.

The paper is organised as follows:

In section 1 we recall briefly the algebraic K-theory of Waldhausen for rings
and for topological spaces and present the main results as a consequence of
Theorem 3.1 of section 3. In section 2 we present the ‘‘invariant theory”
necessary for the proof of Theorem 3.1 and in section 3 the proof of this theorem.

! [T,(R.) denotes the ring of connected components and IT,(R.) the homotopy groups of R. with
respect to the base point “0”.

2K(G, s) denotes the Eilenberg-MacLane space corresponding to G and s.
* INCREST—Bucharest, Bd. Picii 220
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186 DAN BURGHELEA

This work has been done in the fall of 1977 while the author was visitor at the
Institute for Advanced Study and the Princeton University. I am deeply indebted
to the stimulating environment provided by these Institutes. I must also acknow-
ledge the benefit I got from private discussions with W. C. Hsiang which has
probably developed (in the meantime) parallel computations.™®

§1

Let Ring' be the category of topological (semisimplicial) rings which are
always assumed to be associative and with unit, and continuous (semisimplicial)
ring homomorphisms which are assumed to be unit preserving. Let Topy be the
category of based pointed topological spaces (semisimplicial complexes) and based
point preserving maps, Gr' be the category of topological (semisimplicial) groups
and continuous (semisimplicial) homomorphisms and O the subcategory of
Topy consisting of x-loopspaces and «-loop space maps.

Following Waldhausen [W] one defines the algebraic K-theory as a functor
K : Ring' ~ {2 which is a homotopy functor in the sense that if f,, f, are two
homotopic morphisms (homotopic by ‘“morphisms”) then K(f;) and K(f,) are
homotopic in £ and if f:R.— R. is k-connected then K(f) is (k +1)-connected.
Since we are not interested in the o-loop space structure of K we regard K as a
functor with values in Tops whose definition is the following.

For any n let GL(R., n) be the space® (semisimplicial complex) of nXn
matrices {a;}, a;€R., with {m(a;)} invertible. The composition of matrices
endows GL(R.,n) with a structure of associative H-space and the inclusion
(’}VL(R., n) — GL(R., n+1) defined by A — (3{%) is a morphism of associative
H-spaces. We take GL(R.)=GL(R., ©) =lim_, GL(R., n) which is an associative
H-space whose HO(€L(R.))=GL(7TO(R.))=lim_, GL(II,(R.); n). Applying the
“classifying space” functor to GL(R.) one obtains BGL(R.) whose IT,(BGL(R.)) =
GL(II,(R)) has the commutator a perfect group [L]. Consequently one can apply
the Kervaire—Quillen’s ‘“‘+”’-construction and the resulted space (semisimplicial
complex) will be denoted by BGL(R.),. We define K(R.)=ZXxBGL(R.), where
Z denotes the ring of integers. If f:R.—R'. is a morphism, it induces
K({): K(R.)— K(R!) with the properties we have mentioned.

The “loop space’ functor (2 : Topy~> G; in the semisimplicial case is the Kan’s
free group construction F and in topological case any ‘“‘group type’’ construction

3 With the obvious topology.
* Added in proofs: Similar results have been independently obtained by Hsiang and Staffeldt;

more recently, the author and Hsiang and Staffeldt have obtained upper bounds for dim IT, (¥ (X))®Q
for X 1-connected and with finite Betti numbers.
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of the loop space for example the Milnor’s construction [M,] or X |F(Sing X)|
where Sing denotes the singular complex and |... .| the “‘geometric realisation”.

Let Z:G,~Ring' be the functor which associates with any topological
(semisimplicial) group G the ring Z(G) the topological (semisimplicial) analogous
of the group ring; in the semisimplicial context it is actually the group ring, in
topological context we can take |Z(Sing G)| or any other functor from Gi» Ring'
which is essentially the infinite symmetric product. The composition ¥ =
K oZ - ) produces a functor defined on Topy with values in € which is a
homotopy functor and has the property that f: X — Y «-connected implies ¥ (f)
k -connected.

As we have mentioned, our purpose is to compute K(R.) for rings which

satisfy the properties (a), (b), (c) mentioned in Introduction and in fact we prove
the following theorem.

THEOREM 1.1. If R. satisfies the conditions (a), (b), (c¢) then K(R.) has the
rational homotopy of K(Z)XT,,, where T,=[I,K(Z,2si) if r=2s and T,=
-1 K(Z; 2s+1)(2i—1)) if r=2s+1.

As a consequence one obtains.

THEOREM 1.2. If X has the rational homotopy type of K(Z, 2r), r>0, then
H(X) has the rational homotopy type of K(Z)XII"., K(Z; 2ri).

COROLLARY 1.3. If X has the rational homotopy type of K(Z,2r),
DFWh(X), PAWh = (X) have the rational homotopy type of PTWh(pt) respectively
DiffWh = (pt).

Recall from [W] that P"Wh(pt)* has the rational homotopy type of
.1 K(Z; 4i) and from [F, H] that PTWh , respectively P#Wh_ have the rational
homotopy type of P"Wh(pt) respectively pt.

Proof of Theorem 1.1. Let M, (R.) respectively ., (R.) be the space (semisim-
plicial complex) of n X n matrices with entries in R., the connected component of

“0”, endowed with the composition law “+”’ respectively “*” given by M * N =
M+ N+ MN.

Consider the diagram

M, (R)—> GL(R., n) —> GL(II,(R.), n)

o/ J

M (R GLR, n+1) —SGLUT(R.), n+1)

4 Our Pf'Wh is the loop space of the one defined by Waldhausen in [W].
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A0
where o,(M)=(M+1), 7, and 7, are defined by A (—), i, by Mw(

MO)
01

010
and w, by wn{aii}={17a,-j}.
Passing to the limit in diagram (*) one obtains the fibration

** M(R)—> GL(R.) —> GL(II,(R.)

with all terms associative H-spaces and o, respectively o, homomorphisms.
Applying the “classifying space” functor to (**) one obtains the fibration

(%) BAL(R) —> BEL(R) — BGLUL,(R.))

Assume now that the ring R. satisfies our hypothesis (b), hence there exists a
morphism ¢:II,(R.)— R. so that II.. =id; ¢ induces the group homomorphism
i : GL(ITI,(R.) — GL(R.) and consequently we can define the representation p,, of
GL(IT,(R.)) on the H-space M.(R.) by p.(A;M)=i(A)-M-i(A)™" for Ae
GL(I,(R.)) Me M (R.). Clearly

pl(A; .. ): M (R)—> M (R)

is an H-space isomorphism, consequently one can apply the classifying space
functor to p.(A;...) and obtain the action

Bp..: GL(IT,(R.)) X BA(R.) = BAL.(R.).

PROPOSITION 1.4. The fibration (***) is the fibration over BGL(II,(R.))
associated with the action Bp,.

Proof of Proposition 1.4. Let us recall the definition of the semidirect product
of M (R) X, .GL(Z). This is the associative H-space structure defined on
M (R)XGL(Z) by the following composition law

M, A)# M, A)=({p(A""; M)} * M, A" - A)

where M, M’ e #.(R.) and A, A’e GL(Z). The natural projection (M, A)— A
defines an homomorphism pZ:Jttw(fl.) X, GL(Z) - GL(Z) whose kernel is exactly
M(R.).

In order to prove Proposition 1.4 it is obviously enough to show that (**) is
isomorphic to ‘

M (R) - M(R)X,_ GL(Z) - GL(Z)
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and this isomorphism is established by vy :GL(R.) = M.(R.) X . GL(Z) defined by
v(A) = (o {t(w(A)™) - A—T}, w(A)) which makes sense since

{t(w(A)) - A-TFeo(M(R)

Remark. The same proof shows that

B, (R)—BGL(R., n)—BGL(II,(R.), n)) (with the hypothesis (b) on R.) is
the fibration induced by the representation p, : GL(II4(R.), n) x M, (R)— Mn(f(.)
defined by the same formula.

Let us observe that if conditions (a), (b), (c) are satisfied then

LBAMR)®,0=TIT._,(#(R)®,0=M.(L_(R)®,Q) =] " i#r+1
ST T TETTETIMLQ) it
=r+1

and HI(BA{OO(IOI.))=H0(./ttw(f{.))=0. Consequently the fibrewise ““O-localisation”
of the fibration (***) is the fibration

KM..(Q), r+1) - E— BGL(Z)
associated with the action
P : GL(Z) X K(M..(Q), r+1) - K(M..(Q), r +1);

this action is determined by the adjoint representations p.:GL(Z)XM.,(Q)—
M..(Q) given by p.(A:M)=AM.A™L

Warning. If (a) and (b) are satisfied and BAM..(R.) has trivial rational Postnicov
invariants, we might be tempted to believe that the fibrewise ‘‘O-localisation’ of
the fibration (***) is the fibration with fibre [[7_, (K(G,®Q), s)) associated with
the action [[7_,s, where s, is the action induced by the representation
5,.: GL(Z) X ML.(G,®Q)—>M..(G,®Q) defined by s, (A,M)=A-M- A" this is
not always the case.

The proof of Theorem 1.1 follows now immediately from Theorem 3.1.

Proof of Theorem 12. If X=K(Z,2r) then 2X=K(Z,2r—1) and conse-
quently Z(X) has as homotopy groups the homology groups of 02(X) since
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Z.0(X) is essentially the infinite symmetric product of 2X. This makes clear that
Z.0O(X) satisfies (c) since X is 1-connected (a) is also satisfied and (b) is trivially
satisfied since Zpt=7Z. Consequently the theorem is true by Theorem 1.1 for
K(Z, 2r). The construction of the functor ¥ implies immediately that if X and Y

are rationally homotopy equivalent then X(X) and H(Y) are. q
q.e.

Proof of Corollary 1.3. In [W] Waldhausen defines two natural transformation
K(..)—>H(...) where X°(...) is the stabilized functor associated with ¥, which
is an unreduced homology theory, and h(...; X (pt))—>¥ (...) where h(...; H(pt))
is the reduced homology theory produced by the «-loop space ¥ (pt).

The composition h(...; X(pt)) — H*(...) is a natural transformation of homol-
ogy theory and because H(pt) — X°(pt), is rationally homotopy surjective,
h(X:¥#(pt)) > H*(X) is rationally homotopy surjective. On the other side
BPfWh(X) is the fibre of #(X)— ¥*(X). Consequently #(X) and BPTWh(X) x
X*(X) are rationally homotopy equivalent. (Waldhausen claims a much stronger
fact namely A(X) and BP#Wh(X) x A*(X) are homotopy equivalent which will
imply the mentioned rational homotopy equivalence).

§2

Let £ be one of the fields Q, R, C of rational, real or complex numbers, and
M, (£) be the Lie algebra of GL(£, n), i.e. the Lie algebra of n X n matrices over
£.

We denote by “, or p,, using #p, only when we are interested to explicit the
field, the adjoint representation of GL(#,n) on M, (£) defined by p,(A, M) =
A-M- At for A=GL(#, n) and Me M, (£), by p¥ its dual representation and by
A* p,, S* p,, A* p*, S* p* the k-times exterior respectively symmetric power of p,
respectively p¥. Denote by Inv £ the fixed point subspace of the representation &.
The following theorem contains well known facts; since the present formulation is
not easy to be found in literature we enclose the proof.

THEOREM 2.1. (1) There exists an injective linear map s<:H*(U(n): 4) —
A ME(4£)° with sk(H*(U(n): £))=1Inv A* (“p¥) such that the following diagram is
commutative.

sk

H*(U(n): £) —> A MX(£)
Ti..* TA"i:

H*(U(n+1): £) fZ;XM:+1(,s)
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in
where j¥ is induced by the canonical inclusion U(n)—> U(n+1) and i, is the
M|O0
olol
(2) There exists an injective linear map

canonical Lie algebra inclusion i,(M) =

k
qn:H*(BU(n): £) > S My(4)
with
k
qiH**(BU(n): £))=InvS “p¥
such that the following diagram is commutative

H2*(BU(n): £) —qia § M¥(#)
Ti’.’. Tski:

.., k
H?*(BU(n+1):4) — SM*,,(#)

in
where 'j¥ is induced by the canonical inclusion BU(n)— BU(n +1).

Proof. Since Rp¥ is a real form of “p¥ it is clear that the proof for £=R
implies the result for £ =C.

Proof of (1). (£=R, Q). Let 7, be the adjoint representation of U(n) on its
Lie algebra; n* is a real form of ®p¥*. Analogously let @7, be the adjoint
representation of the group

AU(n) ={A ={a; =a, +iB,}| AcU(n), oy, B; € Q}
on the Q-Lie algebra

m={M={m, = a,; +iB,}| m; +m,; =0, a,, B; € Q}
given by °n, (A, M)=A-M- A1,

5 For a £ vector we denote by V* its dual.
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Clearly it is enough to prove (1) for R n* respectively ©n., in order to have it
proved for Rp¥ respectively p¥.

Let us recall that de Rham theory permits to associate with any closed
differential form on a differentiable manifold a precise singular cohomology class
with coefficients in R.

Therefore we have the linear map ¢, : Inv (A* n¥) — H*(U(n) :R) constructed
as follows; an element of Inv (A* n¥*) is regarded as a k-form on the Lie algebra
of U(n) which by translation is extended to a k-differential form on the compact
Lie group U(n); since the element we started with is in Inv (A* n*) the obtained
differential form is biinvariant therefore closed.

It is well known (for any compact Lie group) that ¢, is an isomorphism.
Moreover t,/A* 9n¥ factors through H*(U(n) : Q) since a form in Inv (A* n¥*) with
rational coefficients (with respect to the canonical base) produces a cohomology
class with rational periods on all integral cycles. Consequently we have the
cummutative diagram

k tk
Inv ARn* — H*(U(n):R)

U U

Inv A ©n* — H*(U(n): Q)

which implies 9t is an isomorphism.

We also observe that AXi¥:A*n¥,, — A*n¥* sends Inv A*n¥,; into Inv A*n¥
where i, is the canonical inclusion of the Lie algebra of U(n) into the Lie algebra
of U(n+1), (analogously A*?i* sends Inv A*°n¥,, into Inv A*°n¥) and the

following diagram is commutative

Akn¥  — Akn¥

[+ N

H*(U(n+1); R)— H*(U(n); R)

since the correspondence ‘‘biinvariant forms” ~ ‘“‘cohomology’” is a functorial
isomorphism for the category of compact Lie groups. If we take sk=(t%)"! and
Qsk= (k)1 (1) is proved.

Proof of 2. (£=Q,R). Let us consider ¢.(£) the Lie subalgebra of M, (£)
consisting of the diagonal matrices and “@, the representation of the symmetric
group on ¢, (£).
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S* M*(£) respectively S* c¥(£) can be identified to the vector space of the
degree k homogeneous polynomials on M, (£) respectively on c,(£); let
L1 1S M¥(£) — S* c¥(£) be the linear map defined by “restriction to c,(£).”
Clearly we have the commutative diagram

§ M*(4) <= S M, (4)

k Si* k
S cX(£) «—S cii(4)

Kk
n+1™

where S* i*(InvS*p¥, )cInvS*p¥ and S*i¥(InvS*OF, ) =InvS* (0F),
;% (Inv S* p¥) < Inv S* @F; Inv S* @F is the fixed point subspace of S* OF. Let
;7% Inv (S* p*)—Inv S* @F be the same map as ,w* with the target restricted to
Inv S* @F. We will prove that ,#* is surjective checking that ,#*=®5_, 7~
% Inv Sp¥ — InvSOF where S---=@®, S*- - - is. For this purpose we define

b

peM(£)—= £ p=(p, ..., pw) with pi:M,(£)— 4

by wi(M)=the i-th coefficient of the characteristic polynomial of M. u, induces
pn*:P(£")— Inv SpX*, P(£#") is the space of polynomials defined on #', and
;% - w* is an isomorphism, hence ,7* is surjective. To check that “r* is injective
it suffices to show that S#* is, since @7* and ®#* are restrictions of $w*; S7* is
injective because there exists an open dense set in M, (C) consisting of matrices
which are conjugate to diagonal matrices. Consequently we have

mwk k
InvS*®, «—1InvS p*

Is" i * TSk i*

k k

+1 k
InvS 0,,, <—1InvS p*,,

By A. Borel’s theorem we know that for any k we have the commutative
diagram

k Si* k
InvS @* < 1InvS 0* ,

lu‘ ll.:ﬂl

H>*(BU(n): £) <— H2(BU(n+1): £)
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with X isomorphisms; consequently if we take q*=(,#%) (5 (2) is
proved q.e.d.

Passing to duals we obtain the commutative diagrams

AM, (02 Ho (U(n): £)

lA " lm

(£, )*

KM, (0 H(Um +1):4)

and

E M, (£)—5 H,, (BU(n): #)

ski, Cin)ae

K (af, )* ‘
SM,1(#) —— Hy (BU(n +1): £)

which induce (s%)*: A* M..(£) = H, (U ():£) and (q%)*:S* M..(#) = H,, (BU(); #)

(s¥)*, (q¥)* restricted to Inv A% p, respectively InvS*p, are isomorphisms
therefore (s)* and (q%)* are, since Inv Apr(k)= lim, Inv (A* p.(#£)) and
Inv S* (p¥(£)) =1im, Inv (S* p*(#)).

COROLLARY 2.2. For any l and k

(1) ms:H(GL(Z); {A*“p.}) = H(GL(Z); H,(U(®): £) and
(2) m&:H,(GL(Z):S* “p.})—H,(GL(Z); H,, (BU(x): #))° induced by (sk)* re-
spectively (q%)* are isomorphisms.

Proof of Corollary 2.2. It is enough to prove the statement for £ = R. Since the
proof of (1) and (2) are the same we give only the proof of (1). We observe that
m&=lim, ;mk with ym%:H(GL(Z; n), {A* ®p,}) = H,(GL(Z, n); H,(U(n):R))
induced by (s)* hence it suffices to check that ;m¥ is an isomorphism for n big
enough, for instance (n —1)=4l. Let us recall that if 7 is an GL(R, n) irreducible
representation, it remains irreducible if restricted to SL(R, n); by Theorem
1.1 [F,H] H,(SL(Z, n), {t)=0 if l=(n—1)/4, hence H,(GL(Z, n):{r})=0 for

SH- - - (G; {7} denotes the homology of G with coefficients in the G-module defined by the
representation 7, H - - - (G; N) the homology of G with coefficients in the trivial G-module N.
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[ <(n—1)/4 (applying Lindon’s spectral sequence [M] ch XI Theorem 10.1). Since
A* p, decomposes as sum of irreducible representations and the trivial represen-
tation on Inv A* ®p, =H, (U(n):R) we conclude that ym* is an isomorphism for
(n—1)=4l.

q.e.d.

Let V be a £-vector space, {V, r} be the graded vector space with all but r-th
components trivial (i.e. {V.r}; =0 if i#r) and the r-th component isomorphic to
V. We denote by L{V, r}) the #4-graded commutative’ algebra generated by the
graded vector space {V, r}. Clearly L{V, s}), =0 if s#0 (mod r) and L{V, r}),, =
A'V, respectively S' V if r is odd respectively even. As algebra L{V,r}) is
isomorphic to an exterior respectively symmetric algebra if r is odd respectively
even.

If p:GXV —V is a representation of G on V, p induces the representation
L(p,r) of G on L{V, r}); let Inv L(p, r) be subalgebra of L(p, r) consisting of the
invariant elements.

Clearly Inv L(p, r) is a £ free algebra therefore Inv L(p, r) = L(W) where W is
a £ graded vector space. We are particularly interested to determine the graded
vector space W in the case p=pZ. The result is contained in the following
theorem:

THEOREM 2.3. Inv L(“p¥, r)=L(W) where W is the following £ graded
vector space (n=1,2,3,...,)

0 if s=0(modr)
dim, (W,)={dimIL(U(n))® £ if risodd and s=ri
dim IL,;(BU(n))®£ if risevenands=ri

Proof. Choose a graded preserving linear injective map ¢:W—
Inv (p*, r)L(W) where W, =0 if s#0 (mod r) and W, = IT,(U(n)®£)* respec-
tively IL,(BUn)®#£)* if r is odd respectively even and , =s, - o] respectively
L =(q. " 0, where o! is a right inverse of the Hourewicz-homomorphism
H'(U(n): £) > II¥(U(n))®£. and o0, a right inverse of the Hourewicz
homomorphism H* (BU(n): £)— IT5(BU(n))® £y, is injective because o} and o0,;
are injective. Since ¢ is injective and Inv (“p*, r) is free ¢ extends to L(¢): L(W) —
Inv (*p}¥, r) which is injective. To prove it is an isomorphism it suffices to check it

7 “Commutative” should be understood in “graded sense,” namely a * b =(—1)d&e de2bp . g jf q
and b have pure degree.
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is an isomorphism in any degree or else it suffices to show dim,L(W),=
dim Inv (“p¥, r).. Or, if r is odd then

0 if s#£0(modr)

X = < e s e < <
dim;L(W)s= card {(al,az,-..,ap)/1<a‘ (s 2} Q, -n
2a1+ c +2ap—p=l,p<n
=dimH'(U(n): £) if s=ir
and if r is even
0 if s#0(modr)

) = O=ao;=n
dim,L(W), = card {(alaz-' o) .
a1+2a2+ * nan:2l

=dim H**(BU(n):£) if s=ir

For n=o the result follows from the observation that for any fixed degree
Inv L(p¥, r) < Inv L(p¥*,,, r) is an isomorphism if n is big enough. This happens
because of Theorem 2.1 and the stability property for the cohomology of U(n)
and BU(n).

§3

The restriction of the adjoint representation p, of GL(Q) on M,(Q) to the
subgroup GL(Z) defines the action p,. of GL(Z) on K(M.(Q), r) and therefore
the fibration K(V,r) - E—> BGL(Z), V=M.(Q). If r>1 then II,(E)=
IT,(BGL(Z)) = GL(Z) whose commutator is a perfect normal subgroup, hence one
can apply the Quillen “+” construction.

THEOREM 3.1. E, =BGL(Z), XT,, 7, is the projection on BGL.(Z), where
T, has the homotopy type of [li~, K(Q;(2s+1)(2i—1)) if r=2s+1 and of
=1 K(Q; 2si) if r=2s.

Proof. The proof will be given in two steps. In step 1 we will produce an
explicit construction of F,, F,, f:F, > F,, F,;, F, CW-complexes (semisimplicial
complexes), f continuous (semisimplicial) map, together with a continuous
(semisimplicial) action w:GL(Z)XF, — F, so that the following properties are
satisfied

(a) F, is homotopy equivalent to K(M..(Q), r) and F, to T,;
(b) The action p induces on the r-th homotopy group of F, the representa-
tion p...
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(c) If F, is endowed with the trivial action of GL(Z) then f is equivariant.

(d) The minimal model (in the sense of Sullivan) [S] of .F; is the commutative
graded algebra L(p¥, r) endowed with the differential 0, the minimal model of F,
is the graded commutative algebra Inv L(p¥, r) = L(W) with differential 0 and the
morphism induced by f is the inclusion L(W)=Inv L(pX, r)< L(pZ, r).

To construct F,, F,, f, u we use the “spatial realisation” functor { ) of D.
Sullivan [S]® and take F,=(L(MX(Q),r), d=0), F,={InvL(pX r), d=0) f=
(inclusion of Inv L(pX, r) into L(pX, r)=LMZX(Q), r)) and w,:F, —F, for any
A eGL(Z) is (L(p*(A): ME(Q) — M%(Q), ). (a), (b), (c) are trivially satisfied and
(d) follows simply remarking that (L(pX, r),d =0) and (Inv L(p¥%,r),d=0) are
actually minimal models. We recall from Sullivan’s theory of minimal models that
a 1-connected space X has trivial rational Postnicov invariants iff the differential
in the minimal model 5 trivial, hence F, is a product of Eilenberg MacLane’s.

Theorem 2.3 gives the homotopy equivalence of F, and T,.

Step 2. We consider the diagram

F,— E,— BGL(Z)

B

with horizontal lines the fibrations induced by the action and the trivial action of
GL(Z) on F, and observe that F,— E,— BGL(Z) is actually the fibration
K(V, r) = E— BGL(Z) while F, — E, —» BGL(Z) is the trivial fibration with F,
homotopy equivalent to T, - (f, fg, id) induces a morphism of the spectral
sequence (in homology) of the first fibration in the spectral sequence of the second
and Corollary 2.2 claims that this morphism is an isomorphism for E*. .., hence
fe induces an isomorphism on integral homology and on II, hence fg :E, — E,_
is a homotopy equivalence; this proves Theorem 3.1. q.e.d.
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