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Comment. Math. Helvetici 54 (1979) 159-172 Birkhâuser Verlag, Basel

Ein Beitrag zur Whitney-Regularitàt im unendlichdimensionalen
Fall

Hans-Jôrg Reiffen und Heinz Wilhelm Trapp

Die Théorie der Whitney-Stratifikationen hat in den letzten Jahren groBe

Bedeutung gewonnen, vor allem in der topologischen Stabilitàtstheorie (vgl. z.B.

[2]) und in der analytischen Géométrie (vgl. z.B. [8]). Wir untersuchen in dieser
Arbeit Whitney-Stratifikationen im unendlichdimensionalen Fall, genauer: im
Falle von Hilbertràumen. Die Koordinaten- und Kompaktheitsargumente der
endlichdimensionalen Théorie ersetzen wir dabei durch eine genauere Betrach-

tung der mit der Géométrie gegebenen Operatoren.
In §1 beschreiben wir die Situation, die wir in dieser Arbeit betrachten. Wir

beschrânken uns i.w. auf die Grundsituation zweier Strata; die Betrachtungen
kônnen jedoch auf allgemeinere Stratifikationen mit "mehr" Strata ausgedehnt
werden. Allerdings ist bei unseren Methoden die Forderung wichtig, daB aile

Strata, mit Ausnahme der minimalen, eine endliche Kodimension besitzen.

In §2 folgen wir zunàchst den Ùberlegungen von Hironaka [3] und leiten fur
den Fall der strikten Whitney-Regularitât eine ùbersichtliche Darstellung des

Normalenkegels ab (Satz 2.5). Dabei wird insbesondere eine Verallgemeinerung
des key lemma von Hironaka bewiesen. Sodann leiten wir eine

Polarkoordinatendarstellung ab, welche die vorausgesetzte Whitney-Regularitât
respektiert (Satz 2.10). Im Falle der strikten Whitney-Regularitât mit dem

Exponenten 1 besitzt die Polarkoordinatenclarstellung die schwache Form der
Lipschitz-Stetigkeit, welche Verdier [8] eingefùhrt hat. Unser Ergebnis stellt eine
unendlichdimensionale Variante des ersten Isotopie-Lemmas von Thom [2] dar.

In §3 wenden wir unsere Untersuchungen auf Banach-analytische Mengen
endlicher Définition an (vgl. [4], [5]) und erhalten unter Benutzung von Ergebnis-
sen von Schickhoff, daB die strikte Whitney-Regularitât Normal-Pseudoflachheit
und damit konstante Multiplizitât impliziert (Satz 3.1). Ferner erhalten wir eine
Variante eines Satzes von Stutz [6] ùber Àquisingularitât (3.3).

§1. Vorbereitungen

Mit %E) bezeichnen wir die Menge der Untervektorrâume des vorgegebenen
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160 HANS-JORG REIFFEN Und HEINZ WILHELM TRAPP

Banachraumes E (mit der Norm ||). Unter einem Untervektorraum von E
verstehen wir dabei stets einen direkten Summanden von E. <S(E) trâgt in
natùrlicher Weise die Struktur einer analytischen Mannigfaltigkeit [1].

Lineare Abbildungen werden stets als stetig, Isomorphismen als

Homôomorphismen vorausgesetzt. Mit GL E bezeichnen wir die Menge der
Isomorphismen von E auf E. Fur M, Ne<S(E) mit E M(BN bezeichnet pMN
die natûrliche Projektion von E auf N lângs M.

1.1 Bezeichnungen. Fur jede natûrliche Zahl p bezeichnet %(E) die Menge
der Untervektorrâume von E der Dimension p, <SP(E) die Menge der
Untervektorrâume der Kodimension p. AuBerdem sei

(E) und <SP(E) sind Zusammenhangskomponenten von
Douady [1] und Whitney [9] haben folgende AbstandsgrôBen eingefùhrt:

1.2 DEFINITION. Seien M, Ne<S*(E), xeE mit x^O. Dann sei

a(M, N) : sup {a(x, N) : x e M, |x| 1},

A(M, N) : max {a (M, N), a (N, M)}.

1.3 Es gilt:

2. A ist eine Metrik auf ^*(E), welche die Topologie erzeugt.
3. a:«*(E)x^*(E)^R ist stetig.

Im weiteren sei E ein Hilbertraum mit dem Skalarprodukt < > ; _L be-
zeichne die Orthogonalitàt in E.

1.4 Bezeichnungen. Fur Me^iE) und xeE sei

Man zeigt:

1.5 SATZ. Die Parallel- und die Orthogonalprojektion

sind reell-analytisch.
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Aus 1.2 folgt sofort:

1.6 Fur M,N€»*(E) ist

Auf ^(jE) und auf ^P(E) stimmen A und a ùberein (vgl. [9]).
Wir legen nun die Grundsituation fest, die wir im folgenden studieren.

1.7 Ausgangssituation. Es sei E ein R-Hilbertraum mit dem Skalarprodukt
< > È, Ëg <8*(E) mit E È®Ë. Fur x e E gilt dann x x + x, mit xeÊ und
xeË. Seien Ù^Ê, Û^Ë nichtleere offene Nullumgebungen. Wir setzen:

17: 1/4-17, Y: [/+ {0}=[>.

Ferner sei Xc JJ eine in [/ abgeschlossene Teilmenge, derart daB X-Y eine rein
q-codimensionale direkte (C°°-bzw. reellanalytische) Mannigfaltigkeit ist, und Y
im topologischen AbschluB jeder Zusammenhangskomponente von X-Y liegt.
Wir definieren Funktionen a :X- Y—»R, b : X- Y—>R durch

a(x) : a(È, T(X, x)), b(x) : a(Jc, T(X, x)).

Dabei bezeichnet T(X, x)g ^§q(E) den Tangentialraum an X in x.

Uns interessieren nur Mengenkeime. Daher lassen wir ohne besonderen
Hinweis Verkleinerungen von Ù und Ù zu.

1.8 DEFINITION. X heiBt lângs Y Whitney-regulâr, wenn zwei monoton
wachsende, in 0 stetige Funktionen e und e mit den Eigenschaften

e(0) e(0) 0; e(f)>0, e(f)>0Vf>0;

auf R+:={f eR:t>0} existieren, derart daB gilt:

a(x)<e(|x|), b(x)<e(|x|) VxeX-Y.

Wir setzen voraus, daB X lângs Y Whitney-regulâr ist. Dabei dùrfen wir Ë Éx
annehmen.
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Im folgenden sei r >0 und 0< c < 1 mit e(r)<c, e(r)<c. Wir setzen voraus:

|x|<r Vxel/.

1.9 SATZ. Fur die Abbildung

T:X-Y^L(É,É), T(x): pE,EpT(x,x)|É,

gilt (mit l: idE):

T(x)GGLÉ,|T(Xr1-l|<-4- e(|x|) xeX-Y.

Beweis. Sei xeX—Y fest. Wir setzen dann fur veE:

1.10 vf pT(x,x)U, v± : Pnx,x)V.
Dann ist fur veÈ:

u v - (v±) ;

also

1.11 Fur yeY sei Xy: Xn(y + Ë). Xy-{y} ist eine abgeschlossene C°
bzw. reell-analytische Mannigfaltigkeit in (y + Û)—{y}. Fur xeX-Y ist

,x) T(X,x)nË.

1.12 SATZ. Fur die Funktion

B:X- Y-+R, B(x): a(x, T(XX, x)),

B(x)<
1

e(lx|) VxeX-Y.
Vl-C2
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Beweis. Zu jedem Vektor u g T(XX, x)x gibt es eine eindeutig bestimmte
Darstellung

u .u + ±u mit .m g JE, xm e T(X, x)1.

Im Spezialfall u g T(Xx, x)1- H Ë haben wir

\±u\2 \.u\2 + \u\2.

Daraus folgt aufgrund der Whitney-Regularitât die Behauptung.

1.13 Fur p>0 sei SP(Ë): ={z eJE:|z| p},

[/p : [) + SP(Ë), Xp : X H l/p.

Dann isf Xp eine abgeschlossene C°°— bzw. reell-analytische Mannigfaltigkeit in
Up. FùrxeX-Yist

T(X|x|, x) T(X, x) Pi (Rx)-1.

Gelegentlich lassen wir in 1.13 auch p 0 zu.

1.14 SATZ. Fur die Funktion

A : X- Y^R, A(x) : a(É, T(X|x|, x)),

gilt:

A(x)<(l+ J- )e(lJc|) VjcgX-Y.

Beweis. Zu jedem Vektor mgT(X|x|, x)x gibt es eine eindeutig bestimmte

Darstellung

u aux + ±u mit au e R, ±u g T(X, x)x.

Daraus folgt mit 1.10 unter Benutzung der Whitney-Regularitât:
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Wir gehen im weiteren davon aus, daB fur

'l-c2' ' Vl-(

gilt: I(r)<7, À(r)<7, wobei 0<7<l ist.

1.15 SATZ. Fur die Abbildung

T v\ X —^jL^jC, J_i), T\X) — Pe,ePt(X|x| x) I *-J

gilt (mit 1: idE):

xeX-Y.(xrl| I(|
1-7

Beweis. Sei x gX— Y fest. Wir setzen dann fur veE:

1.16 ull: Pr(xw.*)u> U'l: Pt(xw.x)U-

Die weiteren Ûberlegungen sind dann wie unter 1.9.

§2. Der Nonnalenkegel, eine Polarkoordinatendarstellung

Wir defînieren zwei charakteristische Vektorfelder, eines "in Richtung" von
É, eines "normal" zu É.

2.1 DEFINITION. Das Vektorfeld tt auf X-(YUX0) sei definiert durch

Das Vektorfeld v auf X— Y sei definiert durch

Dabei sei fur xeX- Y, veE
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Im folgenden seien s>0, s>0 die Radien abgeschlossener Kugeln um den
Nullpunkt in Ê bzw. Ê, die ganz in Ù bzw. Ù liegen. Mit Standardschlûssen (vgl.
[3]) zeigt man dann:

2.2 SATZ. (a) Zu jedem xeX-Y mit 0<|x|<s, 0<|x|<s gibt es einen
Weg w :[0, s]—>X|x| mit folgenden Eigenschaften:
1. |w(t)| f Vfe[0,s], w(|x|) x.
2. w|]0, s] ist eine C^-bzw. reell-analytische Abbildung, und w'(t)

tt(w(0) Vre]O,s].
Der Weg w ist durch w' 7r°w, w(|x|) x als Keim eindeutig bestimmt. Fur w gilt
ferner:

\w(t1)-w(t2)\<YZ-\ti-t2\ Vt!,r2€[O,i].

(b) Zu jedem x e X- Y mit |x| < s, 0 < |ic| < s gibt es einen Weg W : [0, s]->Xx mit
folgenden Eigenschaften:
1. \W(t)\ t Vf € [0,5], W(|x|) x.
2. W|]0, s] ist eine C°°-bzw. reell-analytische Abbildung, und

W'(t) v(W(t)) Vre]0,s].

Der Weg W ist durch W' v°W, W(\x\) x als Keim eindeutig bestimmt. Fur W gilt
ferner:

it2| Vtl9t2e[0,§lT|t1t2Vl-72
Die folgende Aussage ist eine unendlichdimensionale Variante des key lemma

von Hironaka [3].

2.3 SATZ. Es gebe Zahlen C,k>0 mit

Vte[0,r].

Ist dann W ein Weg zu einem Punkt xeX-Y gemàfi 2.2,b), so gilt fur aile Zahlen
tl9 t2 mit 0<t1<t2^'s:

W(t2)

Insbesondere ist W in 0 differenzierbar.
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Beweis.1 Wir kônnen von x 0 ausgehen. Dann ist W
haben:

und W=W. Wir

W(t2) W(tt) d W(u)
du u

du,

d W(u)
du u

und damit aufgrand von 1.12:

d W(u)

du u 'l-cVl-72
u

2.4 DEFINITION. Ein Vektor veE heiBt ein Normalenvektor an X auf Y
in y g Y, wenn es Folgen (an)neN in R und (xn)neN in X gibt, so daB gilt:

Kann man die Folgenglieder an positiv wâhlen, so heiBt v ein spezieller
Normalenvektor.

In naheliegender Weise definiert man den Normalenkegel C(X, Y) bzw. den
speziellen Normalenkegel C+(X, Y) an X làngs Y.

2.5 SATZ. Unter den Voraussetzungen von 2.3 und 0<so<s sei fur jedes
xeXs° Wx:[0,s]-*Xx der Weg zu x gemâfi 2.2,6), und g:Xs°-»C+(X, Y) die-
jenige Abbildung, welche jedem x e Xs° den Geschwindigkeitsvektor (dWJdt) (0)
zuordnet. Fur jedes y g Y ist dann g(Xy HXS°) dicht in C+(X, Y, y).

Beweis. Sei v e C+(X, Y, 0), |t>| l, und seien 8, y\, 0eR, 0<ô, 0<tj<s,
s. Dann existiert ein Punkt x in X— Y mit

Nun betrachten wir einen Weg Wt durch x gemâB 2.2,b), einen Weg w durch
Wt(e) gemâB 2.2,a) und einen Weg W2 durch w(0) gemâB 2.2,b). Es ist dann mit

1 Unser Beweis beruht auf einer Idée von S. Koenen.
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gewissen positiven Konstanten F, À:

0'

2.6 DEFINITION. X heiBt lângs Y strikt Whitney-regulâr, wenn man e und
e als Funktionen folgenden Typs wâhlen kann:

e(f) Cf\ e(t) CtK VfGR+,

wobei C, k, k positive Zahlen sind und fc < 1 ist. Die Zahl k heiBt Exponent der
Whitney-Regularitât.

Im folgenden setzen wir X— Y als C°°-Mannigfaltigkeit voraus. Wir wollen fur
X-Xo eine Produktdarstellung von der Form (Y—{0})xXo herleiten.

Da die Abbildung

D :X- Y-*Rx Y, x-^(|x|2, x),

eine Submersion ist, haben wir:

2.7 Zu xeX—Y existieren eine offene Umgebung V von x in U—Y, eine

Zerlegung E R©É©IIE©E11, mit "^E11 €«(£), offene Kugeln V, V,!IV, V11 in
R, É, "E, E11 und ein Diffeomorphismus

so

2.8 SATZ. Es existiert eine stetige Abbildung P:U->L(Ê,E) mit folgenden
Eigenschaften:

gilt: <f>(Xn V)= Vx Vx"Vx{0} und

,x) Vxel/-Y,
P(x) : É-* TCX130', x) Vx e X- Y;

2. Pé,éP(x) 1 Vx g U, P(y) 1 Vy g Y;
3. P| [/- Y isr eine CT-Abbildung;

4. |P(x)-l|<-^-K2|x|) VxgU.
1-7
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Dabei bezeichnet 1 die Injektion von Ê in E.

Beweis. Wir beginnen mit lokalen Betrachtungen. Sei x e X- Y. Wir legen die
Bezeichnungen aus 2.7 zugrunde und kûrzen ab:

V': Vx Vx"V.

Wir definieren eine C°°-Abbildung Q : V-»L(É, E) durch

Q(u)v : ^-'(^((Tidr'vf)) ul :

Dann gilt fur u e V, v e Ê und p : \ù\ : Q(u)v e T(UP, u) bzw. Q(u)v g T(Xp, u)
im Falle ueXHV.

Wir dûrfen annehmen, da8 fur q : çe,eQ gilt:

q(u)eGLÈ ueV.

Dann gelten fur P:V^L(È,E), mit P(u): Qi^qiu)'1 Vue V, die Aussagen
1., 2. und 3.. AuBerdem kônnen wir V so klein wàhlen, da8 auch 4. gilt.

Die globale Aussage gewinnt man dann mit Hilfe einer C°° - Partition der Eins
(vgl. [7]).

2.9 DEFINITION. Die Abbildung <n : UxS^Ê)-*T(U) =UxÈsei definiert
durch

tt(x, v) : (x, P(x)v), P(x)v e T(UM, x).

Wir dûrfen annehmen, daB f <e(0 ist fur aile t£R+, und setzen:

B :={zeË:\z\<s};

Intégration von tt liefert eine eindeutig bestimmte Abbildung
U mit

— 4>(x, v, t) P(d>(x, u, t))v, O(x, », o) x.
at
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2.10 SATZ. Es sei

B*: (B-{0}) + B, X*: XHB*:

Bo:={0} + B, X0:2

<t>:BoxS\È)xJo^>B*9

Dann gilt:

1. </> und i/f sind zueinander inverse Homôomorphismen.
2. 4>\(Bo-{0})xS1(È)xJo,*l,\B*-Y sind C°°- Abbildungen.
3. <^(XoxS1(È)x/o) X*, * 1É
4. Es gibt ein K>o mit

\<t>(0,u,s)-<t>(x,v,t)\<K'(l(2\x\

VxeB0, UtVeS^È), s,teJ0;

VyeYHB*, xeB*.

Satz 2.10 stellt eine unendlichdimensionale Variante des ersten Isotopie-Lem-
mas von Thom [2] dar.

Ist X lângs Y strikt Whitney-regulâr vom Exponenten fc, so kann /(2|ic|) in
2.10.4 durch \x\k ersetzt werden. Im Falle k 1 liegt dann eine schwache Form
der Lipschitz-Stetigkeit vor, welche Verdier [8] fur den klassischen Fall eingefùhrt
hat. In einer folgenden Arbeit wenden wir uns dem Gesichtspunkt der Lipschitz-
Stetigkeit genauer zu.

§3. Whitney - Regularitât bei Ramisschen Mengen

Wir behandeln nun Anwendungen unserer Untersuchungen bei Ramisschen

Mengen, d.h. Banach-analytischen Mengen endlicher Définition (vgl. [4], [5]).
Dazu seien E, Ê, Ë in 1.7 C-Vektorrâume und X eine Ramissche Menge.

Dann ist X—Y eine komplexe Mannigfaltigkeit der komplexen Kodimension
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p q/2 (vgl. 4.7 in [5]). Ferner ist Xy eine p-kodimensionale Ramissche Menge in
Û mit {y} als Singularitâtenmenge.

Der affine Normalenkegel im Sinne von [5] stimmt mit unserem Normalen-
kegel, ja sogar mit C+(X, Y) ùberein (vgl. 3.14 in [5]). Aus 2.5 bzw. [5], 3.23,
folgt:

3.1 SATZ. Ist X làngs Y strikt Whitney-regulâr, so gilt:
1. C(X,Y,y) C3(Xy,0) VyeY.
2. X ist làngs Y normal-pseudoflach und besitzt insbesondere làngs Y konstante

Multiplizitàt.
Wir wenden uns dem Spezialfall p codim X codim Y-l zu und kônnen

dann von folgender Situation ausgehen.

3.2 Situationsbeschreibung. Es ist Ë É®El] mit Ée«?(E), E!Ig^(E); Ù
Û + ifl, wobei t/<=É, L^'ciE11 offene Kugeln mit den Radien p, p>0 und dem

Mittelpunkt 0 sind. Wir setzen:

und gehen davon aus, daB auch Ù^Ê eine offene Kugel ist mit dem Radius p
und dem Mittelpunkt 0.

Die Projektion tt1 : X—» l/1 liefert eine ausgezeichnete Darstellung von X (im
Sinne von [5]); d.h. tt1 ist eine verzweigte Ûberlagerung und E11 schneidet C3(X, 0)
isoliert.

3.3 SATZ. Ist X làngs Y strikt Whitney-regulàr, so gilt fur die Darstellung
(X, tt1, U1) (nach einer eventuellen Verkleinerung von U):
1. (tti)~1(Y) Y; Y enthàlt die Verzweigungsmenge von tt1.

2. E" schneidet C3(X, y) fur jedes y g Y isoliert.

Aus 3.3 folgt, daB es zu jeder irreduziblen Komponente X1 von X eine Zahl
fx'>l, und eine topologische holomorphe Abbildung <f>:ÙxKl—>X! (mit

: {z eC : \z\ <p1"*}) der Form

gibt, wobei ^ÛxK'-^E11 durch eine konvergente Potenzreihe der Form
Zv=m.' 0v(y)^v beschrieben wird. Eine solche Darstellung von X1 heifit eine Puiseux-

Normalisierung.
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Eine einfache Rechnung zeigt:

3.4 X ist làngs Y strikt Whitney-regulàr vom Exponenten 1.

Aufgrund von 3.1 sowie [5], 4.5, 4.2 und 3.15, genùgt es zum Beweis von 3.3

zu zeigen:

3.5 C4(X, 0) c È + C(X, Y, 0).
Wir setzen Êx:={v{leT(X,x):veÊ} fur xeX-Y. Es sei Ô(r)<l mit 8:

(1/1-y)l. Mit einer Standardrechnung erhalten wir fur die eindeutige Darstellung
w vvx+ wx, wx g f^, vvx g T(XX, x) eines Vektors w g T(X, x):

f |w|2 1

3.6 |wx|,|wx|<max]l,——rTT7 + |w|

Ist nun ugC4(X, 0) und sind (xn)neN, (wn)neN Folgen in X-Y bzw. E mit
xn^0, wn-^>v, wnGT(X, xn), so zerlegen wir:

wn un + un, mit vneÊXn, i^e^xj.
Wegen 3.6 dùrfen wir annehmen, daB (un)neN und dann auch (un)neN konvergiert.
Ein Standardargument zeigt: lim vn g Ê. Wir betrachten die eindeutige Darstellung

un anxn + yn, mit an g C, yn g Ë, yn 1 T{X^ xj.

Es gilt:

also

lim i^ lim a^ g C(X, Y, 0).

Satz 3.3 ist eine unendlichdimensionale Variante von Proposition 1.13 in [6].
Aus 5.6 in [5] folgt:
3.7 Sei jR eine rein p-codimensionale Ramissche Menge einer Hilbertmannig-

faltigkeit, Z eine (p + l)-codimensionale Zusammenhangskomponente der Menge
der regulàren Punkte der Singularitàtenmenge von R. Dann ist R làngs Z au-
Rerhalb einer abgeschlossenen vemachlâssigbaren Teilmenge A von Z strikt
Whitney-regulâr vom Exponenten 1.

Im endlichdimensionalen Fall ist bekannt, daB jede analytische Menge eine
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analytische Stratifikation mit paarweise Whitney-regulâren Strata zulaBt. Verdier
[8] hat sogar gezeigt, daB man analytische Stratifikationen finden kann, bei denen
die Strata paarweise strikt Whitney-regulâr vom Exponenten 1 sind. Im ubrigen
folgt, im Falle dim JE<o°, aus Whitney-regulâr stets strikt Whitney-regulâr (vgl.
[3]). Im unendlichdimensionalen Fall sind derartige Ergebnisse nicht bekannt und

zum Teil auch gar nicht zu erwarten.
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