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Comment. Math. Helvetici 54 (1979) 159-172 Birkhduser Verlag, Basel

Ein Beitrag zur Whitney-Regularitait im unendlichdimensionalen
Fall

HaNs-JORG REIFFEN und HENZ WILHELM TRrRAPP

Die Theorie der Whitney-Stratifikationen hat in den letzten Jahren grof3e
Bedeutung gewonnen, vor allem in der topologischen Stabilitdtstheorie (vgl. z.B.
[2]D und in der analytischen Geometrie (vgl. z.B. [8]). Wir untersuchen in dieser
Arbeit Whitney-Stratifikationen im unendlichdimensionalen Fall, genauer: im
Falle von Hilbertraumen. Die Koordinaten- und Kompaktheitsargumente der
endlichdimensionalen Theorie ersetzen wir dabei durch eine genauere Betrach-
tung der mit der Geometrie gegebenen Operatoren.

In §1 beschreiben wir die Situation, die wir in dieser Arbeit betrachten. Wir
beschrinken uns i.w. auf die Grundsituation zweier Strata; die Betrachtungen
konnen jedoch auf allgemeinere Stratifikationen mit ‘“mehr’” Strata ausgedehnt
werden. Allerdings ist bei unseren Methoden die Forderung wichtig, da3 alle
Strata, mit Ausnahme der minimalen, eine endliche Kodimension besitzen.

In §2 folgen wir zunichst den Uberlegungen von Hironaka [3] und leiten fiir
den Fall der strikten Whitney-Regularitit eine ubersichtliche Darstellung des
Normalenkegels ab (Satz 2.5). Dabei wird insbesondere eine Verallgemeinerung
des key lemma von Hironaka bewiesen. Sodann leiten wir eine
Polarkoordinatendarstellung ab, welche die vorausgesetzte Whitney-Regularitit
respektiert (Satz 2.10). Im Falle der strikten Whitney-Regularitit mit dem
Exponenten 1 besitzt die Polarkoordinatendarstellung die schwache Form der
Lipschitz-Stetigkeit, welche Verdier [8] eingefiihrt hat. Unser Ergebnis stellt eine
unendlichdimensionale Variante des ersten Isotopie-Lemmas von Thom [2] dar.

In §3 wenden wir unsere Untersuchungen auf Banach-analytische Mengen
endlicher Definition an (vgl. [4], [5]) und erhalten unter Benutzung von Ergebnis-
sen von Schickhoff, daB die strikte Whitney-Regularitit Normal-Pseudoflachheit
und damit konstante Multiplizitat impliziert (Satz 3.1). Ferner erhalten wir eine
Variante eines Satzes von Stutz [6] iiber Aquisingularitit (3.3).

§1. Vorbereitungen

Mit %G(E) bezeichnen wir die Menge der Untervektorriume des vorgegebenen
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160 HANS-JORG REIFFEN und HEINZ WILHELM TRAPP

Banachraumes E (mit der Norm |[). Unter einem Untervektorraum von E
verstehen wir dabei stets einen direkten Summanden von E. %(E) trigt in
natiirlicher Weise die Struktur einer analytischen Mannigfaltigkeit [1].

Lineare Abbildungen werden stets als stetig, Isomorphismen als
HomoOomorphismen vorausgesetzt. Mit GL E bezeichnen wir die Menge der
Isomorphismen von E auf E. Fir M, Ne 9%(E) mit E=M®N bezeichnet py, n
die natiirliche Projektion von E auf N langs M.

1.1 Bezeichnungen. Fir jede natiirliche Zahl p bezeichnet ¢,(E) die Menge
der Untervektorriume von E der Dimension p, %°(E) die Menge der
Untervektorraume der Kodimension p. Auf3erdem sei

G*(E): ={Me%(E): {0} # M #E}.

%.(E) und ¥°(E) sind Zusammenhangskomponenten von 4(E).
Douady [1] und Whitney [9] haben folgende AbstandsgroBen eingefihrt:

1.2 DEFINITION. Seien M, Ne 9*(E), x € E mit x#0. Dann sei
> _
|x|
a(M, N):=sup{a(x, N):xe M, |x|=1},
A(M, N): =max {a(M, N), a(N, M)}.

a(x,N):=inf{ yl:yeN,|y|sl},

1.3 Es gilt:
1. aM,N)=0&McN
2. A ist eine Metrik auf 4*(E), welche die Topologie erzeugt.
3. a:9*(E)x4*(E)—R ist stetig.
Im weiteren sei E ein Hilbertraum mit dem Skalarprodukt <, >; 1 be-
zeichne die Orthogonalitit in E.

1.4 Bezeichnungen. Fir M€ 9(E) und x € E sei

Pm:= pM*iM, P =DPmomes Xt = Pu(x), Xip = padx).
Man zeigt:

1.5 SATZ. Die Parallel- uncé die Orthogonalprojektion

Y E)—>L(E,E), M+~ py,; 4 E)—L(E, E), M+>Dms

sind reell-analytisch.
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Aus 1.2 folgt sofort:
1.6 Fur M, Ne 4*(E) ist

[(x, v

(M, N):S“p{lxny\ '

xeM, x#0; ye N*, y#—O}.

Auf 4,(E) und auf 4”(E) stimmen A und « iberein (vgl. [9]).
Wir legen nun die Grundsituation fest, die wir im folgenden studieren.

1.7 Ausgangssituation. Es sei E ein R-Hilbertraum mit dem Skalarprodukt
<,>,E Ec%*E) mit E=E®E. Fur xeE gilt dann x = % + X, mit x € E und
x € E. Seien U< E, U < E nichtleere offene Nullumgebungen. Wir setzen:

U:=U+U, Y:=U+{0}=U.
Ferner sei X < U eine in U abgeschlossene Teilmenge, derart da3 X —Y eine rein
q-codimensionale direkte (C”— bzw. reellanalytische) Mannigfaltigkeit ist, und Y
im topologischen Abschluf3 jeder Zusammenhangskomponente von X —Y liegt.
Wir definieren Funktionen a:X—-Y—R,b : X—Y —R durch

a(x):=a(E, T(X, x)), b(x):=a(x, T(X, x)).

Dabei bezeichnet T(X, x) € 94(E) den Tangentialraum an X in x.

Uns interessieren nur Mengenkeime. Daher lassen wir ohne besonderen
Hinweis Verkleinerungen von U und U zu.

1.8 DEFINITION. X heif3t lings Y Whitney-regular, wenn zwei monoton
wachsende, in O stetige Funktionen e und £ mit den Eigenschaften

e(0)=e(0)=0; e()>0, e()>0V ¢>0;
auf R,:={teR:t=0} existieren, derart daf} gilt:
a(x)=<-e(x)), b(x)=e(|x]) Vxe X-Y.

Wir setzen voraus, daB X lings Y Whitney-regulir ist. Dabei diirfen wir E = E*
annehmen.
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Im folgenden sei r >0 und 0<c¢ <1 mit e(r) <c, €(r)<c. Wir setzen voraus:
|X|=<r Vxe U.
1.9 SATZ. Fiur die Abbildung
T:X-Y—L(E,E), T(x): =peeproco|E,
gilt (mit 1:=idg):

: 1
T(x)e GLE,|T(X)'—1] ST:—E e(X]) xeX-Y.

Beweis. Sei xe X—Y fest. Wir setzen dann fur ve E:

® — . = _1-
1.10 Y= pT.(x,x)U, U, = Prx.x)-
Dann ist fur ve E:

u=@-())-(), TEw=v—(v,);

I(UJ.).Iz = l <(v),v,> l Se(lXI)I(vJ_) I ‘U.LL

also
1-T(x)|=e(i])=c.

1.11 Fir yeY sei X,:=XN(y+E). X, —{y} ist eine abgeschlossene C~—
bzw. reell-analytische Mannigfaltigkeit in (y+U)—{y}. Fir xe X-Y ist

T(X,, x)=T(X, x)NE.

1.12 SATZ. Fiir die Funktion
B: X-Y—-R, B(x):=a(k, T(X,, x)),

gilt:

B(x)= (%)) Vxe X-Y.

—c?
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Beweis. Zu jedem Vektor ue T(X, x)* gibt es eine eindeutig bestimmte
Darstellung

u=.u+ umit.uecE, jueT(X, x)"
Im Spezialfall u € T(X,, x)* N E haben wir
loul®=|.ul+|ul.
Daraus folgt aufgrund der Whitney-Regularitit die Behauptung.
1.13 Fiir p>0 sei S*(E):={z€E:|z|=p},
U°:=U+S°(E), X°:=XNU"

Dann ist X* eine abgeschlossene C”— bzw. reell-analytische Mannigfaltigkeit in
U°. Fur xe X-Y ist

T(X*¥ x)=T(X, x) N (RX)*.

Gelegentlich lassen wir in 1.13 auch p =0 zu.
1.14 SATZ. Fiir die Funktion
A:X-Y-R, A(x):=a(E T(X*,x)),

gilt:

o o 2

A(x)s(1+ )e(|5c'|) VxeX-Y.

Beweis. Zu jedem Vektor ue T(X™ x)* gibt es eine eindeutig bestimmte
Darstellung

u=a,x+ umita,eR, ueT(X x)"*.

Daraus folgt mit 1.10 unter Benutzung der Whitney-Regularitat:

Lu|s|u|(1+\/li_c2>.
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Wir gehen im weiteren davon aus, daf} fir

C 1
e, A E————F
s/l—cz) 1-c¢

l:=<1+

N

gilt: I(r)<1vy, A(r)<+v, wobei 0<y<1 ist.
1.15 SATZ. ‘Fur die Abbildung
7:X-Y—>L(E E), 17(x): = D £ Do x) | E

gilt (mit 1:=1idg):

7(x)e GLE, |v(x)"' -1 sl—_l_; (%) xeX-Y.

Beweis. Sei xe X—Y fest. Wir setzen dann fiur ve E:
1.16 vl:= Prx x)Us v = prxE L.
Die weiteren Uberlegungen sind dann wie unter 1.9.

§2. Der Normalenkegel, eine Polarkoordinatendarstellung

Wir definieren zwei charakteristische Vektorfelder, eines “in Richtung” von
E, eines ‘“‘normal” zu E.

2.1 DEFINITION. Das Vektorfeld 7 auf X—(Y U X,) sei definiert durch

X

m(x): = (T(x)"l(—»"e T(X™ x).

||
Das Vektorfeld v auf X—Y sei definiert durch

|%]

- llf =2 ) .
TGP (X)e T(X;, x).

v(x):

Dabei sei fir xe X-Y, ve E

My o — R |
V= Prx,.xUs U= Prx.x)?-

»
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Im folgenden seien § >0, §>0 die Radien abgeschlossener Kugeln um den
Nullpunkt in E bzw. E, die ganz in U bzw. U liegen. Mit Standardschliissen (vgl.
[3]) zeigt man dann:

2.2 SATZ. (a) Zu jedem xe X—-Y mit 0<|x|<s, 0<|%¥|<§ gibt es einen
Weg w :[0, §]— X™! mit folgenden Eigenschaften:
1. |w()| =1t Vte[O0, s], w(lx]) = x.
2. w|]0,s] ist eine C~—bzw. reell-analytische Abbildung, und w'(t)=
w(w(t)) Vie]O0, s].
Der Weg w ist durch w' = mew, w(|x]) = x als Keim eindeutig bestimmt. Fiir w gilt
ferner:

1 .
Iw(tl)— W(tz)l S].TY— Itl - t2| tha t2€ [0, S]'

(b) Zu jedem x € X —Y mit |x| <, 0<|X|<§ gibt es einen Weg W :[0, §]— X, mit
folgenden Eigenschaften:

1 [W®|=t  Vte[0, 5], W(x) = x.

2. WI10, §] ist eine C—bzw. reell-analytische Abbildung, und

W (@) =v(W(t)) Vite]0,s].

Der Weg W ist durch W' =v W, W(|%|) = x als Keim eindeutig bestimmt. Fiir W gilt
ferner:

1 ..
\/—1——2|t1—'t2| Vi, t,€[0, §].
-Y

Die folgende Aussage ist eine unendlichdimensionale Variante des key lemma
von Hironaka [3].

|W(t)— W(t,)|=

2.3 SATZ. Es gebe Zahlen C, k>0 mit
e(t)=Ct* VielO,r].

Ist dann W ein Weg zu einem Punkt x € X —Y gemdf} 2.2,b), so gilt fiir alle Zahlen
ty, t, mit 0<t,<t,<§:

C

= t5.

kV1-c2V1-72

\W(tz) _ W(t,)
t, t

Insbesondere ist W in 0 differenzierbar.
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Beweis." Wir konnen von x =0 ausgehen. Dann ist W=0 und W= W. Wir

haben:

W) Wi |_ [ 4 W),
t, t ,, ldu u

dWwlpr_  ["Ww)
du u "W |W(u)?

und damit aufgrund von 1.12:
d W(u) - C et
du u V1-c3/1—42

2.4 DEFINITION. Ein Vektor v € E heift ein Normalenvektor an X auf Y
in ye Y, wenn es Folgen (a,),..n in R und (x,),.n in X gibt, so daB gilt:

X, =Y, a, X, —>.

Kann man die Folgenglieder a, positiv wihlen, so hei3t v ein spezieller Nor-
malenvektor.

In naheliegender Weise definiert man den Normalenkegel C(X, Y) bzw. den
speziellen Normalenkegel C*(X, Y) an X langs Y.

2.5 SATZ. Unter den Voraussetzungen von 2.3 und 0<s,<§ sei fur jedes
x € X% W, :[0,5§]> X, der Weg zu x gemdf} 2.2,b), und g: X*>—>C*(X,Y) die-
jenige Abbildung, welche jedem x € X* den Geschwindigkeitsvektor (dW,/dt) (0)
zuordnet. Fiir jedes y € Y ist dann g(X, N X%) dicht in C*(X, Y, y).

Beweis. Sei veC*(X,Y,0), |v]=1, und seien §,7m,0cR, 0<§, 0<n<s,
0 < 6 <s. Dann existiert ein Punkt x in X—Y mit

v-r— (=<8, |x|=m, |%|=0.

Nun betrachten wir einen Weg W, durch x gemiB 2.2,b), einen Weg w durch
W,(0) gemiB 2.2,a) und einen Weg W, durch w(0) gemiB 2.2,b). Es ist dann mit

1 Unser Beweis beruht auf einer Idee von S. Koenen.
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gewissen positiven Konstanten I', A:

dW, ‘ n
Ol=6+T6"+A—.
ar W|=so+Tot+ag

U_

2.6 DEFINITION. X heif3t langs Y strikt Whitney-reguliar, wenn man e und
¢ als Funktionen folgenden Typs wahlen kann:

e(t) = Ct*, e(t)=Ct~ VieR,,

wobei C, k, k positive Zahlen sind und k <1 ist. Die Zahl k heif3t Exponent der
Whitney-Regularitat.

Im folgenden setzen wir X — Y als C*-Mannigfaltigkeit voraus. Wir wollen fiir
X — X, eine Produktdarstellung von der Form (Y —{0}) X X,, herleiten.
Da die Abbildung

D:X—-Y—->RXY, x+ (%] %),
eine Submersion ist, haben wir:

2.7 Zu xe X—Y existieren eine offene Umgebung V von x in U-Y, eine
Zerlegung E=RO®E®'E®E", mit 'E, E'e 4(E), offene Kugeln V, V,'V, V! in
R, E,'E, E' und ein Diffeomorphismus

¢: Vo VxVxIvx VI
so daf gilt: $(XNV)=Vx Vx'Vx{0} und

I(¢*1)"‘2 = PEd'EoE'R> (7' = PrO'E®E' E-

2.8 SATZ. Es existiert eine stetige Abbildung P:U— L(E, E) mit folgenden
Eigenschaften:

1. P(x):E->T(U%,x) VxeU-Y,
P(x):E->T(X% x) VxeX-Y;

2. pg,eP(x)=1 VxeU, P(y)=1 VyeY;

. P{U-Y ist eine C™-Abbildung;

a. |P(x)—1|si—3—y IE)  VxeU

W
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Dabei bezeichnet 1 die Injektion von E in E.

Beweis. Wir beginnen mit lokalen Betrachtungen. Sei x € X — Y. Wir legen die
Bezeichnungen aus 2.7 zugrunde und kiirzen ab:

E':=R®E®'E, V:=Vxvxly,
Wir definieren eine C*-Abbildung Q: V— L(E, E) durch
Qu)v:=d, ¢ (dyd (=) ),  u':=d "pLpd(u).
Dann gilt fir ueV, veE und p:=|ii]: Q(u)v e T(U®, u) bzw. Q(u)v e T(X®, u)
im Falle ue XNV.
Wir diirfen annehmen, daB fir q: = ps,zQ gilt:
q(u)e GLE ueV.
Dann gelten fiir P: V—L(E, E), mit P(u): = Q(u)q(u)™* Yue V, die Aussagen

1., 2. und 3.. AuBBerdem koénnen wir V so klein wahlen, daB3 auch 4. gilt.
Die globale Aussage gewinnt man dann mit Hilfe einer C* - Partition der Eins

(vel. [7D.

2.9 DEFINITION. Die Abbildung 7 : U X SY(E)— T(U) = U X E sei definiert
durch

a(x, v):=(x, P(x)v), P(x)v e T(U* x).
Wir dirfen annehmen, daB3 t <e(t) ist fur alle teR,, und setzen:
B:={yeE:|y|<§}, B:={zecE:|z|<§};
:=B+B i= ==,
esis 1] 4]

Integration von = liefert eine eindeutig bestimmte Abbildung ®:B x SY(E)x J—
U mit

% D(x, v, t) = P(P(x, v, t))v, ®d(x, v, 0)=x.
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2.10 SATZ. Es sei
B*:=(B—{0)+B, X*:=XNB*:

Bo:={0}+B, X,:2=XNB,; JO:=]0,§[;

d) :BOX Sl(E) XJO_)B*’ (b(x, v, t) : ZQ(X, v, t)’

¥ : B*— By X SY(E) X J,, P(x):= (<I>(x, ﬁ , —I)&I), ﬁ , le)

Dann gilt:

1. ¢ und ¢ sind zueinander inverse Homoomorphismen.

2. ¢|(By—{0}) x SY(E) x J,, ¢|B*~Y sind C* - Abbildungen.
3. d(XoxSHE)XJ9)=X*,  (X*) =X, xS E)XJo.

4. Es gibt ein K> o0 mit

(0, u, s)—d(x, v, )| =K - (12|%)) +|u—v|+|s—¢])
Vx e B,, u, v e SYE), s, teJy;

() = S| = |y — %]+ 12/%D)
ly| |%]
Vye YNB¥*, x € B*.

Satz 2.10 stellt eine unendlichdimensionale Variante des ersten Isotopie-Lem-
mas von Thom [2] dar.

Ist X lings Y strikt Whitney-regular vom Exponenten k, so kann [(2|x|) in
2.10.4 durch |%|* ersetzt werden. Im Falle k =1 liegt dann eine schwache Form
der Lipschitz-Stetigkeit vor, welche Verdier [8] fur den klassischen Fall eingefiihrt
hat. In einer folgenden Arbeit wenden wir uns dem Gesichtspunkt der Lipschitz-
Stetigkeit genauer zu.

§3. Whitney — Regularitiit bei Ramisschen Mengen

Wir behandeln nun Anwendungen unserer Untersuchungen bei Ramisschen
Mengen, d.h. Banach-analytischen Mengen endlicher Definition (vgl. [4], [5]).

Dazu seien E, E, E in 1.7 C-Vektorriume und X eine Ramissche Menge.
Dann ist X—Y eine komplexe Mannigfaltigkeit der komplexen Kodimension
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p =q/2 (vgl. 4.7 in [S5]). Ferner ist X, eine p-kodimensionale Ramissche Menge in
U mit {y} als Singularititenmenge.

Der affine Normalenkegel im Sinne von [5] stimmt mit unserem Normalen-
kegel, ja sogar mit C*(X, Y) uberein (vgl. 3.14 in [5]). Aus 2.5 bzw. [5], 3.23,
folgt:

3.1 SATZ. Ist X ldngs Y strikt Whitney-reguldr, so gilt:
1. C(X) Y, y)=Cs(X,, 0) VyeY.
2. X ist ldngs Y normal-pseudoflach und besitzt insbesondere lings Y konstante
Multiplizitdt.

Wir wenden uns dem Spezialfall p =codim X =codim Y —1 zu und kdénnen
dann von folgender Situation ausgehen.

3.2 Situationsbeschreibung. Es ist E = E® E' mit E € S(E), E'e 4S(E); U=
U+ U", wobei Uc E, U'c E! offene Kugeln mit den Radien p, p >0 und dem
Mittelpunkt O sind. Wir setzen:

E:=E®E, U:=U+U

und gehen davon aus, daB auch Uc E eine offene Kugel ist mit dem Radius p
und dem Mittelpunkt 0.

Die Projektion 7': X— U’ liefert eine ausgezeichnete Darstellung von X (im
Sinne von [5]); d.h. ' ist eine verzweigte Uberlagerung und E'" schneidet C5(X, 0)
isoliert.

3.3 SATZ. Ist X ldngs Y strikt Whitney-reguldr, so gilt fiir die Darstellung
(X, 7', U") (nach einer eventuellen Verkleinerung von U):
1. (7Y (Y)=Y; Y enthilt die Verzweigungsmenge von 1r'.
2. E' schneidet C,(X, y) fiir jedes y €'Y isoliert.

Aus 3.3 folgt, daB es zu jeder irreduziblen Komponente X' von X eine Zahl
pn'eN, u'=1, und eine topologische holomorphe Abbildung ¢:UxK'— X' (mit
K':={zeC:|z|<p'*}) der Form

oy, z)=y+z* - i+ (y, 2) (i € E, a|=1)
gibt, wobei Y:UXK'—E' durch eine konvergente Potenzreihe der Form

Yo _ . ¥, (y)z” beschrieben wird. Eine solche Darstellung von X' heiB3t eine Puiseux-
Normalisierung.
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Eine einfache Rechnung zeigt:

3.4 X ist ldngs Y strikt Whitney-reguldr vom Exponenten 1.
Aufgrund von 3.1 sowie [5], 4.5, 4.2 und 3.15, geniigt es zum Beweis von 3.3
Zu zeigen:

3.5 CiX,00cE+C(X, Y, 0).

Wir setzen E, :={v"e T(X, x):ve E} fir xe X—Y. Es sei 8(r)<1 mit §:=
(1/1—+)lL. Mit einer Standardrechnung erhalten wir fiir die eindeutige Darstellung
w=wtw, W€ £, w; € T(X,, x) eines Vektors w e T(X, x):

3.6 |W,|, |w;|=max {1 ——Mz———+|w|}
x1s x ’2(1—8("))

Ist nun v e C,(X,0) und sind (x,),cn> (W,)nen Folgen in X—Y bzw. E mit
x,—0, w,—v, w,e T(X x,), so zerlegen wir:

w, =0, +u,, mit v, € Ex", u, € T(X;, x,).

Wegen 3.6 diirfen wir annehmen, daB (u,),.n und dann auch (v,), .n konvergiert.
Ein Standardargument zeigt: lim v, € E. Wir betrachten die eindeutige Darstel-
lung

U, = a,%, +y, mita,eC,y,cEy,LT(X,x,).

Es gilt:

A Dl k| max {1,520+ ]

also
lim u, =lim a,X, € C(X, Y, 0).

Satz 3.3 ist eine unendlichdimensionale Variante von Proposition 1.13 in [6].

Aus 5.6 in [5] folgt:

3.7 Sei R eine rein p-codimensionale Ramissche Menge einer Hilbertmannig-
faltigkeit, Z eine (p+ 1)-codimensionale Zusammenhangskomponente der Menge
der reguldren Punkte der Singularititenmenge von R. Dann ist R ldings Z au-
Berhalb einer abgeschlossenen vernachldssigbaren Teilmenge A von Z strikt
Whitney -reguldr vom Exponenten 1.

Im endlichdimensionalen Fall ist bekannt, daBB jede analytische Menge eine



172 HANS-JORG REIFFEN und HEINZ WILHELM TRAPP

analytische Stratifikation mit paarweise Whitney-regularen Strata zulat. Verdier
[8] hat sogar gezeigt, daB man analytische Stratifikationen finden kann, bei denen
die Strata paarweise strikt Whitney-regular vom Exponenten 1 sind. Im tbrigen
folgt, im Falle dim E <, aus Whitney-regular stets strikt Whitney-regular (vgl.
[3]. Im unendlichdimensionalen Fall sind derartige Ergebnisse nicht bekannt und
zum Teil auch gar nicht zu erwarten.
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