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A note on groups with torsion-free abelianization
and trivial multiplicator

RALPH STREBEL

1. Introduction

1.1. A basic result on free groups F asserts that the factors {F/F,}i<j<. of
successive terms of the lower central series are free abelian (Mégnus [4], Witt
[11]). This can be proved using Lie algebra techniques and a proof (e.g. [1], pp.
35-39; or [7], LA 4.10-4.13) will then rely on three corner stones:

* The canonical Lie algebra homomorphism o : Ly — Assy from the free Lie
Z-algebra on the set X into the Lie algebra of the free associative Z-algebra
on X is injective.

* To every group G is associated a graded Lie algebra gr G. Its underlying
additive group is the direct sum & G;/G;.., of the factors of successive terms
of the lower central series of G. Its Lie bracket is on homogeneous
components induced by commutation in the group, sc.

(8 Gis1, h - Gy (g'h~'gh) - Giik+1 (geG; he Gy)
and then extended linearly.

Reverting to free algebras and groups, let y: Ly — gr Fx denote the Lie algebra
homomorphism defined by the assignments

XBxHx 'ergrl Fxgngx.

* There exists a Lie algebra homomorphism « : gr Fyx, — Assy.
making the triangle

o
LX ———)ZASSX

-
P
Y -
PRl 4
.
.
.

gr Fx
commute.
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1.2. In this note it is shown that the proof sketched above can be adapted to
the more general situation in which Fx gets replaced by a group G whose
abelianization G, is torsion-free and whose multiplicator H,(G,Z), i.e. whose
second homology group with integral coefficients, is a torsion group. Such a group
will be referred to as being TFT. The place of the free associative Z-algebra Assx
will be taken by the tensor algebra T G,,. The main problem is the existence of a
Lie algebra homomorphism

a:gr G- TG,
extending the identification gr G = T G,, in degree 1.

THEOREM 1. If G is TFT then the identification gr' G = T' G, taking
g G,egrG to g G,e TGy, extends (necessarily uniquely) to a Lie algebra
isomorphism «a :gr G = T G, from the graded Lie Z-algebra gr G associated with
G onto the Lie subalgebra of T G,, generated by G, = T* G,,. Moreover, a induces
an isomorphism Ua : U(gr G) = T G,, between associative Z-algebras, thus pro-
viding a model for the universal algebra of gr G.

1.3. Since the additive group underlying the tensor algebra T G,, is torsion-
free if G,, is so, Theorem 1 immediately entails the approved.

COROLLARY 1. The factors Gj/G;.,, j=1,2,..., of the lower central series
of a TFT group G are torsion-free.

An application of Corollary 1 can be found in [10] (cf. 4.1.).

The next corollary indicates that even in the special case of a TFT group the
finer commutator structure gets lost in the passage from G to gr G. (Examples
testifying the loss will be given in 4.6.ff.) -

COROLLARY 2. The Lie algebra gr G of a TFT group is determined by its
first homogeneous component G,

1.4. Our second main result deals with subgroups of TFT groups. We state it
as

THEOREM 2. Let ¢ : G — G be a homomorphism for which ¢': G, — G, is
injective. Suppose G is TFT and H,(G,Z) is a torsion group. Then gr ¢ :gr G —
gr G is injective. Put differently, ¢ induces injective homomorphisms ¢4:G/IG; —
G/G, for all j=2.
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If G and G in Theorem 2 are both free the claim reduces to a well-known
result of Malcev on subgroups of free nilpotent groups ([5]; cf. [6], 42.51).
Theorem 2 may also be compared with the following result:

THEOREM (Stallings [8], Stammbach [9]). Let ¢ :G — G be a homomorph-
ism inducing an isomorphism ¢':G,, — G, and a surjection Hy(¢): Hy(G,Z) —
H,(G,Z). Then gr ¢ :grt G — gr G is an isomorphism of graded Lie algebras.

2. The proof of Theorem 1

2.1. Let R be a non-trivial commutative ring with 1. If G is a group, let RG
denote its group algebra (over R) and €: RG — R the associated augmentation,
i.e. the R-algebra homomorphism sending every g € G to 1€ R. The kernel of ¢ is
called the augmentation ideal I=I(RG) and, as an R-module, it is freely
generated by the elements g—1 (ge G\{e}). The powers {I'};j~, form an
integral filtration of RG whose associated graded R-algebra will be denoted by
gr RG.

Define a descending chain of subsets of G by setting

R(G)={geG|g—1el} (1=sj<w).

Then Di(G) =G, each DR(G) is a (normal) subgroup and for every pair (j, k)€
N2 the commutator [ D(G), D&(G)] is contained in DF*(G) (see, e.g., [2], §4.5,
Prop. 2, p. 42). Hence {DR(G)};<;<., is a central series of G and we can form the
associated graded Lie Z-algebra gr {Dg(G)}. The function g+— g—1 induces then
an injective Lie algebra homomorphism

B :gr{Dr(G)}— gr RG.

(It is clear that B is actually a natural transformation between functors from the
category of groups to the category of graded Lie Z-algebras.)

2.2. We specialize now to the case R =Z. Then D3(G)= G, =G’ and B gives
an isomorphism B':G/G,= I/I?, gG,— (g—1)+I>. If TG, is the tensor
algebra on G, =G/G’ the isomorphism B' will extend uniquely to a
homomorphism w:TG,, — grZG of graded associative Z-algebras, given in
degree j by

8:G>R®8,G,RQ - RgG,—> (g —1)(g,—1) -+ (g —1+I"*".
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Clearly p is always surjective. For TFT groups it is even bijective according to the
following

LEMMA. If G, is torsion-free and H,(G,Z) is a torsion group then
w: TG, = grZG is an isomorphism of graded associative Z-algebras.

2.3. Proof. For every j=0 the short exact sequence I'*' = ' Z» [i/['*! o

right G-modules induces a long exact sequence. In dimensions 2, 1 and 0 it looks
like this:

([ Ha(G, IIF*") <= Hy(G, I
SHL(G.I™) — Hy(G,T) = Hy(G, I/ ) (M)
O €« (IJ/I]+1)®GZ G—'L I] ®G Z D Ij+l®G Z

One readily verifies that the composite
a: PRI/ =H(G,Z)Qr I — H,(G, I’/
93 Ij+1®GZ s Ij+1/Ij+2

is the obvious multiplication map. Taking into account that I'Qs;Z —
(I/T*Y)®gZ is an isomorphism and using the universal coefficient theorem, the
sequence (1) can be rewritten as

(HxG, )R /T @ Tort (Gap, I'/T))
% 2

H,(G, I''"Y — H,(G, I') —> I/IZ<X)I’/I’+1 ~t I+ —0.

This exact sequence allows, first of all, to prove that all homology groups
H(G,I') (0=j<w) are torsion groups. To see this recall that H,(G,Z) is a
torsion group by hypothesis and Tor? (?, ?) by nature, and that H,(G,ZG)=0;
then use the exactness of (2). Secondly, (2) implies that all multiplication maps
i PQI/I* — [*1/[*? are bijective. As all H (G, I') are torsion groups it will
do to show inductively that I/I?’QI/I'*! is torsion-free. This follows from the
hypothesis that G,, =I/I* be torsion-free and the fact that the tensor product
(over Z) of torsion-free groups is again torsion-free. The proof is now easily
completed.
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2.4. The proof of Theorem 1. Assume G, is torsion-free and H,(G,Z) is a
torsion group. By Lemma 2.2 the map u: T G,, — gr ZG is bijective so that we
can define a Lie algebra homomorphism « as the composite

or G —— gr {Dy(G)} —>gr ZG < TG,,.

Here . denotes the Lie algebra homomorphism stemming from the inclusions
G, < D%(G). Note that gr G is generated by its first homogeneous component and
that a':gr' G— T' G,, is the identity on G,,. These facts, together with the
universal property of T G,,, imply that a:gr G— T G,, is the canonical map of
gr G into its universal algebra and so prove the addendum to Theorem 1.

2.5. We are left with proving that « is injective. If Fyx is free on the set X
then (Fy),, is free-abelian and H,(Fx, Z)=0. Hence « is defined and gives the
classical Lie algebra homomorphism

a :gr Fxx — T(Fx),, = Assy, x-F,—>x (xe X).

The theory of basic sequences (see, e.g. [1]) or the Poincaré-Birkhoff-Witt
theorem (see e.g. [7]) can then be used to prove that « is injective.

Now let ¢':F,, <> G,, be a finitely generated free-abelian subgroup of our
torsion-free abelianization G,,. Lift the inclusion to a group homomorphism
¢ : F— G. The lift gives rise to the commutative square

grF —> TF,,

lﬂ'ﬂ" lT(pl

ng-ff%TGa,,.

In it af is injective, and because F,, and G,, are both torsion-free abelian groups
and ¢! is injective, T ¢ is likewise injective. Consequently the restriction of ag
to the image of gr ¢ is injective. But gr G is generated by its first homogeneous
component G,, and G,, being torsion-free, is a union of finitely generated
free-abelian subgroups. This proves that « is injective and establishes the claim of
Theorem 1. The proofs of the corollaries present no problems.

2.7. Remark. The injectivity of a could also have been inferred from a
(rather difficult) theorem of M. Lazard [3] asserting that the canonical map of a
Lie R-algebra into its universal algebra is injective if R is a principal ideal
domain.
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3. The proof of Theorem 2

3.1. We first return to the set-up of Subsection 2.1 and choose R to be the
rational numbers Q. The commutative square

G/D(G) B L IP

lm l

G/D%(G) 25 ¢r' QG = I I’®Q
shows that D%(G) equals ker {G — G, ®Q} whence

Bo®Q:G,,®Q=G/DH(G)RQ— gr' QG
is an isomorphism. It extends unfquely to a homomorphism
mo: T(G,, ®Q)— gr QG

of graded associative Q-algebras. Clearly ug is onto. An easy modification of the
proof of Lemma 2.2 reveals that ug is also injective provided merely that
H,(G,Z) is a torsion group. For a group G whose multiplicator is a torsion group
one can therefore define a homomorphism

ao:gr {Do(G)} 22> gr QG <*=- T(G,, ®Q)

of graded Lie Z-algebras.

3.2. Now let G be TFT, let G be a group with H,(G, Z) a torsion group and
let p:G—>Gbea group homomorphism. Then the canonical maps a(G), ag(G)
and aQ(G) are all three defined and they combine to produce the following
commutative diagram .

erG 29, TG,
l; lTx
gr{Do(G)} 2% T(G,, ®Q)

ls'cw lT(to'@Q) .

gr{Do(G)}-25T(6,, ®Q)

In it ¢ denotes the canonical Lie algebra homomorphism stemming from the
inclusions G; < D(G), and « : G,, — G,, ®Q is the obvious canonical Z-module
homomorphism.
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By assumption G, is torsion-free. Therefore k and Tk are injective. By
Theorem 1 the same is true for a(G). If, as is required in the hypotheses of
Theorem 2, ¢': G,, — G, is injective T(¢'®Q) will also be injective. Hence the
composite t°grg ¢ :gr G — gr{De(G)} is seen to be injective and the claim of
Theorem 2 follows upon noting that ¢ © grq ¢ factors through gr ¢ :gr G — gr G.

4. Examples and counter-examples

4.1. E-groups. Let G be a group having torsion-free abelianization and trivial
multiplicator. If G, is even free-abelian the Stallings—Stammbach theorem
quoted in 1.4 applies and proves that each G;/G;,, is isomorphic with the
corresponding factor F/F;,, of a suitable free group F and so, in particular,
torsion-free.

This argument breaks down if G, is not free abelian, as it usually happens
when G is the derived group of a knot group or, more generally, when G is an
E-group in the sense of [10]. A group G is there called an E-group if G,, is
torsion-free and if the G-trivial module Z admits a ZG-projective resolution
«++— P, % P, — P,—Z — 0 for which the induced differential 1®9,:Z Qs P, —
ZQ; P, is injective. The condition on 1®4d, implies that H,(G, Z) is zero; the
converse, however, is false (see 4.2).

E-groups have the following stability property: if GEE and N<aG is a normal
subgroup with torsion-free, abelian factor group then N €E. In particular, the
terms of the derived series of an E-group are E-groups and so are the terms of the
lower central series.

4.2. Groups G with G, torsion-free, H,(G,Z)=0 but GE¢E. It suffices to
prove that G does not have the stability property enjoyed by E-groups. Let A be
an abelian group possessing an automorphism 7 for which 7—1:A—> A is
bijective and TAT—1A1: AAA —> A AA is onto. Let C=(t) be an infinite cyclic
group and define G to be the split extension A>dC where t induces on A the
given 7. Then A = G,, G,, =Z and H,(G, Z) =0, although A is in general neither
torsion-free nor has it trivial multiplicator (take e.g. A = (Z/5Z)®D(Z/5Z) and let 7
operate by multiplication by 2).

4.3. We give next two examples demonstrating that «:gr G — T G, need
not exist if the hypotheses of Theorem 1 are weakened. Consider first an abelian
group A. Then gr A is a commutative graded Lie algebra concentrated in degree 1
and its universal algebra is the symmetric algebra S A of A. Hence a:grA—TA
can only exist if TA is commutative. The commutativity of & A, in turn, is
equivalent with the vanishing of the exterior square A?A = H,(A,Z); for the
canonical map AANA —> AQA taking anb to a®b—bQ®a is injective. For a
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torsion-free abelian group we thus get the following conclusion: The identification
gr' A= T' A extends to a Lie algebra homomorphism « :gr A — T A if and only
if H,(A,Z)=0.

4.4. Groups G with H,(G, Z) =0 but G, not torsion-free. The exact sequence

H,(G,Z) — I/I’QI/I’~> IP/IP—0

(cf. sequence (2) in 2.3.) shows that u?:® G,, => I?/I? is bijective. Consequently
the identification gr' G = T'G,, extends to

a?:G,/Gy—> PP <~& G,,

taking [g, h]- G5 to g - G,®h - G,—h - G,®g - G,. (The existence of a? can also
be deduced from the 5-term sequence associated with the extension G, G —»
G,p, namely

Hz(G, Z) - HZ(Gab’ Z) l) G2/G3 - Gab - Gab - 0, (3)
and from the facts that H,(G,,, Z)= G, A G,,, that under this isomorphism y
becomes the obvious commutator map and that A*G,, maps canonically into
®2 Gab~)

However, it is in general not possible to extend the identification a’:gr! G =
T' G,, to a Lie algebra homomorphism

a*:G/Gz®GzlG3@G3/G4'—) ab®®2 Gab®®3Gab

of nilpotent Lie algebras of class two. To see this let G be a one-relator group of
the form

G={(a,t;t at=a™)={(a, t;[a,t]=a™ ") (meZ\{0, 1, 2)}).

Then G,, = gp(aG,) X gp(tG,)=(Z/|lm—1|Z)xZ and H,(G,Z)=0. The iterated
commutator [a,[a, t]] represents the trivial element in G,;/G,, whereas the
corresponding Lie bracket in ®* G,,, namely

[an, [an, th]] = aG2® an® th 2 - aG2® th® an + tG2® aG2® an

has order jm—1|>1.
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4.5. Groups G, G with trivial multiplicator, ¢ : G — G with ¢ injective but G,
not torsion-free. Our goal is to show that ¢2:G,/G;— G,/G; is not always
injective. Let G be the one-relator group (a, t; t~'at = a™) considered before and
let G arise out of G by adjoining a k™ root of ¢, i.e.

G=G *k(u)=(a,u;u“"au"=a"‘) (k=2),

t=u

and let ¢: G — G be the canonical injection. Then H,(G, Z)= H,(G,Z)=0 and
¢':G,, — G,, is injective. The map ¢?:G,/G;— G,/G; can be identified with
the exterior square A2%¢':A%G,, — A%2G,, (consult (3) above). Both A%>G,, and
A%G,, are cyclic of order [m—1| and A%’ takes the generator aG,AtG, to
aG,Au*G,=k(aG,AuG,). Hence ¢* is injective if and only k and m are
relatively prime.

This example shows that the conclusion of Theorem 2 becomes false if G, is
not assumed to be torsion-free, everything else remaining unchanged. It is clear
that a strong assumption on H,(G,Z) is necessary to exclude cases like the
abelianization ¢ : F — F,, of a free group. But I have not been able to determine
to what extent the hypothesis on H,(G, Z) could be weakened without jeopardiz-
ing the claim. (The theorem of Stallings—Stammbach quoted in 1.4. bears also on
the issue.)

4.6. A family of 2% non-isomorphic groups with trivial multiplicator having all
the same torsion-free abelianization. Let {| F},.n be a sequence of free groups of
rank two, say . F is free on x;, and vy, and let ab : F — (.F),, be the abelianiza-
tions. If

@={¢ : (Flap —> (c+1F)abticen

is a given sequence of homomorphisms it can be lifted to a sequence
D ={P;: . F—> 1 Flen

so as to produce a commutative ladder

F &> F %, F %, F .

lab lab lab iab

(1Fap= GF)ap == GF)gp == ((F)gp —> "+ - -

If the ¢, are injective the lifts @, are likewise injective, e.g. because of Theorem
2 and the residual nilpotency of free groups. The direct limit G4 =colim @ is
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therefore a locally free group with trivial multiplicator and torsion-free abeliani-
zation (Gg )., =colim ¢; and gr G4 is isomorphic to the Lie algebra of T(Gg )., =
T(colim ¢) generated by its first homogeneous component colim ¢. In particular,
gr Gg depends only on ¢ and not on the choice of the lift .

Next let P be an infinite set of odd rational primes and let A :N=> P be an
enumeration of P. Define the sequence ¢ ={¢,} by

@ X - (F)y > x4 * 41 F)2, and  y - ((F)y— Vst e F)a

The direct limit colim ¢ can be identified with the direct sum A, DA, of two
copies of the subgroup of the rationals generated by the elements 1/p (p € P). For
each S <N define a lift @(S) of ¢ by the formulae

X1 if keS

_ and y, >yt
X5 1l Vi1 Xien] if kés}

D, (S): x; — {

We shall prove that colim @(S) and colim @D (S’) are isomorphic if and only if the
symmetric difference of S and S’ is finite. Since N can be written as a disjoint
union of infinitely many infinite subjects this will imply that there are 2% many
non-isomorphic locally free groups whose associated graded Lie Z-algebras are
isomorphic.

4.7. If the symmetric difference of S and S’ is finite then clearly colim @(S)
and colim @(S’) are isomorphic. The converse will be established by showing that,
up to a finite error, S can be recovered from the nilpotent quotient of class two
Gas)/(Gas))s-

Let F be free on x and y. The elements of H = F/F; can be parametrized by
the lattice points Z> via

Z’3(a, b, c) o x*y°(y 'x lyx) - Fse FIF,=H.
The resulting group multiplication on Z> is then given by
(a,b,c)-(a',b',cY=(a+a',b+b',ba’+c+c).

Note that this group multiplication has an obvious extension to points of Q°.
For positive powers and roots of elements of H= H, < Hg, one gets

(a, b, c)" = (ma, mb, mc + (r2n> ‘a- b)

(a, b, c)''™ =(a/m, b/m,c/m—3%- (m—1) - (a/m) - (b/m))
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It follows that an element of H, is an m™ power (m an odd integer) if and only if
all three entries are integral multiples of m.

The endomorphism &< of H corresponding to the lifts &, with k € S has the
parametric description

(a’ b’ C)¢€ = (/\k *a, Ak : b7 (Ak)z ) C)'

It has the property that the image of an element of H which is an m™ power is at
least a (A, - m)™ power and that the image of an element which is not a g™ power
(q# A, odd prime) is still not a q™ power.

The endomorphism @* of H corresponding to the lifts @, with k& S has the
description

(a,b,c)®“=(A, - a, A - b,(A\)?* - c+a).

If q# A, is an odd prime then the image under @ of an element which is not a g™

power is still not a g™ power. Moreover, if (a, b, c)®* is a A,'" power then A, | a.
4.8. Now let ScN and construct the group Ggs)=colim @(S). Then the

nilpotent group N(S)= Ggs)/(Gas))s is the direct limit of the obvious chain

1H [0 2H Do 3H D3

where each H is isomorphic with the free nilpotent group H discussed above.
The isolators I(n) ={n'e N(S) | n =(n’)’ some jeZ} of an element n € N(S) are of
two types: if n stems from an element (a,, by, ¢;) € H with q,#0, - note the
choice of k does not matter —then I(n)=gp{l/p|peA(S)}, otherwise I(n)=
gp{l/p | pe€ P}. The claim then follows from the classification of isomorphism
types of subgroups of the rationals.

Acknowledgment. 1 would like to thank F. R. Beyl for some helpful discus-
sions in connection with the last counter-example.
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