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Some properties of groups without the property P,

V. LOSERT

Let G be a locally compact group with a left Haar measure dx. The group is
said to have the property P, if for every € >0 and every compact subset K of G
there exists s € L'(G) with |s||; =1 and sup,.x Jg |s(xy)—s(y)| dy <e. (see [1] p.
168).

In [1] A. Derighetti introduced the quantity p,, which is defined as the
infimum of all non-negative real numbers A such that for every compact subset K
of G there exists s =0 with ||s||; =1 and sup, .k §g |s(xy) —s(y)| dy <. He proved
that p; <1 implies property P;.

In this paper we are able to show that p; <2 already implies property P,. It
follows that p; can assume only two values, p, =0 if G has property P, and p, =2
if not. Analogous relations are proved for the constants p,, which are defined in
the same manner as p,, with L'(G) replaced by L?(G) (1=p<®). The same
constants are obtained if the system of compact subsets of G is replaced by that of
finite subsets.

More generally one can consider the case of a locally compact space X on
which G acts continuously and which admits a quasi invariant measure u (see
[S]. This defines a representation ] of G on L*(X, n). One can define constants p,
as above and it turns out that again only two values for each p, are possible,
depending whether 7 weakly contains the one dimensional identity representation
of G are not.

In the last section we show that the Fourier algebra A(G) (or more generally
A, (G)) factorizes iff the group has property P,. This generalizes a result proved in
[7] 2.3 for the free group of two generators.

Acknowledgement 1 want to thank H. Rindler with whom I had a number of
valuable discussions on the subject of this paper.

Notations

Let G be a locally compact group with unit element e, X a locally compact
topological space on which G acts continuously and which admits a quasi
invariant Radon measure u with modular function x (cp. [5)).
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134 V. LOSERT

If f is a function on X and a € G, we define af(x) = f(ax) for x € X. F (resp. §¥)
shall denote the family of all finite (resp. compact) subsets of G.

We have a representation m,(x)s = y(x ™', .)/*x ™" for xe G, se L*(X, n). (We
will write 7 instead of r,.)

We define p(m,) =supg.s inf {sup, g ||m(x)s —s|,:s e L?(X, n), s =0 ||s|, = 1}
(1=p<x)

p*(m,) is defined in the same manner with ¥ replaced by %.

d(m) = sup inf{sup |(7(x)s, s)—1|:s € L*(X, w)}

KeX xeK

d*(m) with & instead of ¥.
p(,) coincides with the quantity p(w) of [1]. For X = G, u Haar measure p(,)
coincides with p;.

If M is a mean on L=(X, n) (a positive linear functional with M(1)=1) we put
a (M) =sup {{M(d)—M(d)|:x€ G, ¢ € L*(X, p), [¢]..=1}.

If x € G, €, shall denote the point measure of mass one concentrated in x. We
write Lxr(G) for the space of real-valued integrable functions on G and L{(G) =
{fe Lr(G):f f(x) dx =0},

LEMMA 1 Put B={e,*f—¢€,*f:x,yeG, feLg(G), |fli=1}. Then the
closed absolutely convex hull of B in Lix(G) coincides with {f € Lx(G):|fl,=2}.

Proof. We use the bipolar theorem [10] Th. 4 p. 35:

B°={¢cL*(G):|f g(x)p(x) dx|=1  VgeB}
={¢ e LR(G):|;¢ —,¢l.=<1 Vx,ye G}.

If ¢ € B is continuous this means that |p(x)—¢(y)|=<1 for all x,yeG. It
follows that sup,.c ¢(x)—inf,cc d(x)=<1 (¢ is real valued) and so there exists
some ¢ €R such that ||¢ —c|l.=<3. B° is by definition closed with respect to the
topology o(L™, L"), it is convex and left-translation invariant. It follows that
¢ eB® fe LY (G), f=0, [ fdx =1 implies f * ¢ € B.

If ¢ € B® is arbitrary, we choose an appropriate approximate identity (u;) in
L'(G) such that u; * ¢ € B® and u; * ¢ converges to ¢ in the topology o (L, L").
Since u; * ¢ is continuous we can find ¢; € R such that [|u; * ¢ —¢;||<3. Let ce Rbe
a cluster point of the ¢, then some subset of u; * ¢ —c; converges to ¢ —c (for
o(L>, L") and it follows that ||¢ —c|.<sup|u; * ¢ —c|l.=3. This means that
B°={¢ e Lg(G):3AceR:|¢—c|.=3} (the converse inclusion is trivial).

If feLg(G), {fdx=0, |fli=2, ¢€B’ [¢—cll.<7 then [ff(x)d(x)dx|=
If f(x)b(x)—c) dx|=1.

Consequently f€ B and it is again trivial that any f in the closed absolutely
convex hull of B satisfies | fdx =0 and ||fl], =2.
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Remark. The conclusion of Lemma 1 is not valid in the case of complex
valued functions:

Let ay, a,, az€C be the roots of z> =1 and assume that ¢ € L*(G) takes only
the values 37"? ; (i=1,2,3) each on a set A; of positive measure. Then ¢
belongs to B° but there does not exist a constant ¢ € C such that ||¢ — c|l..<3. Now
one can easily construct a function fe L°(G) such that ||f||; =2 and arg f(x) =&
for x € A;. Consequently | f(x)¢(x) dx =3""2[|f(x)| dx =2.37"2>>1 and so f does
not belong to the closed, absolutely convex hull of B.

LEMMA 2. If M is a mean on L*(X, u), ¢ € L™(X, n), fe Lg(G), we have
IM(f = $)|=27" a(M)|fl; |l

Proof. For fixed ¢ € L*(X, w) the map f — f * ¢ is continuous from L'(G) to
L=(X, u) (for the norm topology). For x,ye G, fe L' (G) we have by the
definition of a(M):

IM(e. * f * d—e, * f* d)|=a(M) |f * dll.< «(M)|fl )]l

The set B, ={ge Lx(G): |M(g* ¢)|<a(M)|d|.} is a closed convex subset of
Lx(G) which contains the set 0.B={¢, *f—¢, *f: x,yeG, fe Lx(G), |fli=1}.
By Lemma 1 B, contains all functions g € Lx(G) with ||g||=2 and so the result
follows.

LEMMA 3. If M is a mean on L7(X, ), C a compact subset of G, € >0, then
there exists fe L' (X, u), f=0 with [f(x)du(x)=1 such that ||m(x)f—fl=
a(M)+e€ for all xeC.

Proof. Let h be an arbitrary function in L'(G) with h=0, § h(x) dx =1. Then
there exists some neighbourhood U of the unit element e¢ in G such that
lle, * h—h|l,<€/2 for xe U. Let F={x,, .., x,} be a finite subset of G such that
CcFU.

Now we consider the space Y which is defined as a product of n + 1-copies of
Lx(X) with the norm ||(f,)|| =sup ||f]l;. Put @ = a(M)™" (if (M) =0 the same proof
works if « is sufficiently large) and define a map u:Lx(X, u) — Y by

u(f)=(am(e, * h=h)f, ..., am(e, * h—h)f, ).

(We write also ; for the extension of the representation to L'(G).) u is clearly
linear and satisfies |fl|; <|lu(f)ll=<2«|fl;.

The dual space Y’ of Y can be identified with the sum of (n+1)-copies of
LR(X, w), equipped with the norm ||(¢)|=%r_,||¢:|l. and the dual map v’
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of u is then given by u((¢)) =221 al(e, * h)* * & —h* * @]+
Gpir-(h*(x)=h(x")Ag(x™")). Let K be the preimage of the unit ball of Y by u,
then the polar K° is the image of the unit ball of Y’ by u'. If ¢ €K, it
follows that there exist (¢,)1eY’ with Y"!'|dll.=1 such that ¢=

r_al(e, *h)** ¢, —h*™ * ¢;]+d,.1. By Lemma 2 |[M(¢)|=<1 and this means
that M belongs to the bipolar K% of K in Lix(X, w)". By the bipolar theorem K is
dense in K for the topology o(Lg(X, u)", La(X, w)). Since M(1)=1 it follows
that there exists f,€ K such that |{,fo(x) du(x)—1|<€/8. f,€ K means that ||fo||<1
and ||m(e, * h—h) foli=a(M) for i=1,..., n.

We decompose f, into its positive and negative part: f,=f; —f,. From
Ifolls +lifolls =1, [1=lfslli+llfoll.| <e/8 it follows that [|f,—f5ll, =[foll; <€/16 and
Ifelli=1—¢/8. Put f=f/|Ifsll. Then ||'n'1(€x‘ * h—h)fli=(a(M)+¢€/8) (1—¢/8) '<
a(M)+¢€/2. (We assume €<1.)’

Finally if xe U then |m (e, * h—h)f|, <€/2+|m (e * h—h)fl,=a(M)+e
The following lemma, as well as its proof, is due to H. Rindler:

LEMMA 4. p(m,)=2 if and only if p(m,)=2"% p*(m,)=2 if and only if
p*(my) =22,

Proof. Assume that xe G, fe L*(X, w), f=0, |fli =1, |m&x)f—flli=2—e€. Put

g=f'".
Then

2-e= [ lim(er -l du

= J'X |ma(x)g — gl [ma(x)g + gl duw

=|lmy(x)g — gl | ma(x)g + gl
=(2(g, 8)—2Am(x)g, 8))""*(2(g, 8)
+8(my(x)g, gN'"?

=2(1—(my(x)g, g¥)">.

It follows that (m,(x)g, g)=(1 ;(1 —€/2))12 < €2 and
|7a(x)g — gl =2 —2(m,(x)g, g) =2. (1—€'?).

Conversely if ||m,(x)g —g|5 =2 —¢€ ist follows from the equation |a —b[* <|a®— b?|
(a, b=0) that |7 (x)f—fll,=2—€.
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THEOREM 1. The following statements are equivalent

(i)  does not contain weakly i
(i) p(m,)=2"" for I=sp<w
(iii) p*(m,)=2"" for 1=p<w
(iv) d(m) =1

(v) d*(m)=1

Proof. 1If 7 contains i; weakly then all the quantities in (ii)—(v) are zero and so
(ii)—(v) implies (i).

If p*(m,)<2'? then by Lemma 4 p*(m,)<2. The same argument as in [1]
Prop. 1 shows that there exists a mean M on L*(X, ) with a(M)<2. By Lemma
3 p(m)<2 and by Lemma 4 p(m,)<2'?. If |m(x)s—s|i<a<2 then <
m(x)s, s > 1—a/2. It follows that d(7)<1 and by [1] Cor. 14 7 contains ig
weakly. This shows that (i) implies (ii), (iii) for p=1, 2 and (iv).

If d*(7)=1 a simple computation shows that p™*(,) = 2", It remains to show
that p(m,)*> =2 implies p(m,) =2"? for 1=p < (analogously for p*(m,)). By the
inequality |a —b|? <aP +b" for a, b=0, p=1 it follows that p(m,)=2"". Assume
that ||m,(x)s —s|p=2—2¢€? i.e. {my(x)s,s)=<e€> and that s=0, |s|,=1. Put t=
m(x)s, A, ={xeX:s(x)=et(x)}, A,={xeX: t(x)<es(x)} (we assume e<1).
Then it follows that €fx/,5(x)* di(x) =<Jx/a,5(x)t(x) du(x) < €>.

Consequently fx,4,5(x)* du(x)=<e and similarly {x\a, t(x)> du(x)=e For 1=
p <o we get:

5GP — 17 |7 dp(x))
I )

1

1/p 1/p
= (J t(x)? dp,(x)) - (J s(x)? du(x)) =(1—¢€)P —€lP
Ay A
The same estimate holds for (f4, |s(x)"? —t(x)*?|? du(x))/p. This gives combined
Ix |s(x)*? —t(x)*?| du(x)=2—8(e) where &(e) — 0 for € — 0. If one puts s, =
s then ||m,(x)s, —s,|F=2—8(e) and it follows that p(m,)=2"".

For fe L'(G), xe G put A, f=Ag(x)f,. If H is a closed normal subgroup we
write Ty for the canonical map L'(G) - L'(G/H) and « for the convex hull of
{A,:xe H}. It is well known (see [8] p. 174) that if H has the property P, then

inf [|Afll; =||Tufll; for all fe LY(G).
AedA

The next proposition shows that a converse similar to Th. 1 holds for this
characterization:

PROPOSITION 1. If H does not have the property P,, then for any A <1 there
exists fe L'(G) such that ||fll; =1, Tuf =0 and inf, 4 ||Af||> A.
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Proof. If A <1 and for any fe L'(G) with Tyf =0 there exists A € & such that
lAfll= AlIfll, one can iterate this procedure to get A € & such that | Af]|<A"||f|l. An
analogous argument as in [8] Ch. 8, 4.5 p. 176 shows that for f;, ..., f,.€ L'(G)
with Tyf; =0 and € >0 there exists A € o such that |Af|, <e for i=1, ..., m.
Let {x,, ..., x,} be a finite subset of H, e >0. If fe L'(G) with f=0, Hfll1 1is
arbitrary put fi=e€, *xf—f Then Tyf,=0 and consequently there exists A €
such that ||Af||<e. Then g = Af satisfies g=0, [|gl,=1 and |le, * g—gll,<e for
i=1, , n. This means that (G, H) has the property P«(G, H) (see [9] §3 p. 12)
and by Prop. 1 p. 13 of [9], H has the property P,.

2. In the last section we consider some function algebras on a locally compact
group, whose factorization properties depend on the property P;. The proof of
this result was obtained independently by A. Derighetti.

Let A,(G) be the algebra of all functions ¥ I, * g,, where f, e L*(G), g, €
LYG), 1/p+1/q=1, g.(x)=g(x™") (see [6]).—for p=2 one gets the ordinary
Fourier algebra of G. Let B,(G) be the algebra gernerated by those positive
definite functions which are subordinate to the left regular representation of G on
L?*(G). [2] An algebra A is said to factorize weakly, if it coincides with the linear
span of A.A.

PROPOSITION 2. If one of the algebras A,(G) (1=p <) or B,(G) factorizes
weakly, then G has the property P;.

Remark. If G has the property P, then B,(G) has a unit element and each
A,(G) has a bounded approximate identity (see e.g. [6] p. 121).

Proof. If a function f belongs to one of these algebras, then its complex
conjugate does also and has the same norm. By Th. 2.3 of [3] there exists a
constant K, >0 such that for each compact subset C of G there exists fe A such
that f=1on C, f=0 on G and ||f| =K, (A denotes of the algebras cited above.)
In the case of A,(G) one can now use the same argument as given in [6] Th. 6 to
see that G has property P,. An analogous argument holds for B,(G) since this is
the dual of the C*-algebra on L?(G) generated by left convolution operators from
LY(G) (2] p. 192).
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