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Comment. Math. Helvetici 54 (1979) 126-132 Birkhéauser Verlag, Basel

Sur les Plongements du Type Déformation

par ANDRE HirscHOwITZ

§0. Introduction

Soient f;:A—Y,; et f,:A— Y, deux plongements d’une méme variété
analytique compacte A (dans toute la suite, on ne plonge que des variétés
compactes) dans deux variétés Y; et Y,. On dit que ces deux plongements sont
équivalents s’il existe un diagramme commutatif

A

I

Yje——Y—£8 Y,

dans lequel a et B soient des plongements ouverts.

Si g: A — X est un plongement, on note A’ (ou A™ s’il n’y a pas risque de
confusion) le voisinage infinitésimal d’ordre n de A dans X et A{” le voisinage
formel de A dans X. Disons que g est trivial si g est équivalent a un plongement
de A comme fibre d’un produit et que g est formellement trivial si A$” est le
produit de A par un espace formel. Disons maintenant que g est du type
déformation si g est équivalent au plongement de A comme fibre spéciale dans
I’espace total d’une déformation de A. Disons que g est formellement du type
déformation si A$? est 'espace total d’une déformation de A paramétrée par un
espace formel. On démontre ici que tout plongement formellement du type
déformation est du type déformation. On en déduit les résultats suivants concer-
nant la détermination des plongements: tout plongement formellement trivial est
trivial; tout plongement d’une variété X, vérifiant H'(X,, 0)=0 dans une
déformation a un parametre dont la fibre générale est rigide, est de détermination
finie. On retrouve aussi le résultat suivant de Griffiths: si H'(A, 0)=H'(A, 6)=0,
0 désignant le fibré tangent, alors tout plongement de A dont le fibré normal est
trivial est un plongement trivial.

D’autre part, on en déduit des exemples de plongements formels ne con-
vergeant pas.

Je remercie A. Douady qui m’a expliqué la démonstration du Lemme 1 et H.
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W. Schuster qui s’est intéressé a cette affaire et qui m’a indiqué que la Proposition
2 est die a Griffiths.

§1. Une application de la these de Douady

LEMME 1. Soit II: X — S un morphisme propre et plat, o S est un germe et la
fibre est connexe en ce sens que les fontions holomorphes globales y sont constantes.
Alors le morphisme naturel de Og dans 1140 est un isomorphisme.

DEMONSTRATION (diie 2 Douady). On sait (cf Kiehl-Verdier [11]) qu’il
existe un complexe 0 — L de fibrés sur S tel que, pour tout changement de base
T — S, le complexe 0 — L'(T) ait pour cohomologie la suite des RUT{0x(T) ou
II™ désigne la projection de X'= TXgX sur T. On a Ox(T) = Ox, et 1150, regoit
O ce qui permet d’augmenter le complexe avec le fibré trivial Cg de fagon que la
cohomologie de C; — L% T)— L*(T) soit maintenant conoyau de O — I130,..
On applique cela a T = {s}.

Le conoyau de Op— T30, est alors nul par hypothése. La suite de fibrés
Cs — L°(S)— L'(S) est donc exacte au point s. Par suite, elle est exacte au
voisinage, c’est-a-dire sur S, ce qui signifie que Og — II4Ox est surjectif. Comme ce
morphisme est évidemment injectif, c’est un isomorphisme. C.Q.F.D.

LEMME 2. Soit X' — T un morphisme de germes et Y un sous-espace de X'
plat sur T. Si les fibres Y(t) et X'(t) sont égales, alors Y et X' sont égaux.

DEMONSTRATION. Soit & I'idéal de Y. La suite 0 > F — Ox. — 0y — 0
est exacte. Comme Oy est Or-plat elle le reste par 1’extension des scalaires,

0— F Qo, Orf M, = Ox (i) — Oy () — 0.

L’hypothese implique donc F ®¢_ O/ M, =0. 1l en résulte que F Q¢ - Ox./ M, est
nul et d’apres le lemme de Nakayama, que % est nul. C.Q.F.D.

LEMME 3. Soit X — S un morphisme propre et plat. On suppose que les fibres
sont connexes au sens analytique (cf. Lemme 1). Alors le morphisme naturel de S
dans espace de Douady 9(X) des sous-espaces analytiques compacts de X est un
plongement ouvert.

DEMONSTRATION. Soit 0 un point de S, soit X, la fibre de X au-dessus de
0 et soit ¢ : Y — T un germe de déformation de X, dans X. On peut supposer que
S est de Stein. Alors le morphisme naturel de Y dans S se factorise a travers T
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d’apreés le Lemme 1. Soit f le morphisme correspondant de T dans S et posons
X' = f*(X). Le morphisme naturel de Y dans X’ est un plongement fermé, comme
celui de Y dans X X T, et il commute a la projection sur T.

En outre, les fibres de Y et X’ sont égales. D’apres le Lemme 2, on a alors
X'=Y, ce qui prouve que S a la propriété universelle cherchée. C.Q.F.D.

THEOREME. Si g est formellement du type déformation, alors g est du type
déformation.

DEMONSTRATION. On utilise la solution du petit probléme des modules
(DOUADY [3]). Soit & I’espace des sous-espaces analytiques compacts de X, soit
a le point de & correspondant 2 A et soit D™ le voisinage infinitésimal d’ordre n
du point a dans @. Soit ¥ le sousespace universel de P X X et soit ™ sa
restriction au-dessus de 2™. On va montrer que la projection naturelle de 9 sur
X est un plongement ouvert au voisinage de la fibre spéciale. D’apres le
Nullstellensatz #™ est un sous-espace d’un voisinage infinitésimal de {a}x A
donc d’un produit 2® x A®, Comme #™ est aussi un sous-espace de D™ x X,
c’est un sous-espace de 2™ X A®. Soit 9, la composante connexe du point a,
correspondant & A dans I’espace des sous-espaces analytiques compacts de A® et
¥, le sous-espace universel de 2, X AP,

Par fonctorialité du passage au n° voisinage infinitésimal, le morphisme de
@™ dans 9, correspondant au sous-espace X de 2™ x AP se factorise a
travers le n°® voisinage infinitésimal de a, dans %,. D’aprés le Lemme 3, ce
voisinage infinitésimal est naturellement isomorphe a 9,, la restriction correspon-
dante de ¥, s’identifiant 2 ¥,. Cela signifie que #‘™ est en fait un sous-espace de
P™x A™. Soit a le morphisme ainsi défini de 2™ dans 9,. Le morphisme de 9,
dans & correspondant au sous-espace #, de ¥, X X se factorise, lui aussi par
fonctorialité du passage aux voisinages infinitésimaux a travers 2. Soit $ le
morphisme ainsi défini de 9, dans 9. La propriété universelle de 9, assure que
a o B est 'identité. La propri€té universelle de & assure que I'injection naturelle
de 2" dans @ se factorise a travers 8 o @ donc que B o a est I'identité. Par
conséquent a est un isomorphisme. D’apres le Lemme 3, la projection naturelle
de ¥, sur A™ est un isomorphisme. Comme « est un isomorphisme, la projec-
tion naturelle de #™ sur A est aussi un isomorphisme. Cela étant vrai pour
tout n, la projection de # sur X est un plongement ouvert. C.Q.F.D.

COROLLAIRE. Si HY(A,0)=0 et si le fibré normal au plongement g est
trivial, alors g est du type déformation.

DEMONSTRATION. 11 est bien connu que si g est du type déformation, le
fibré normal est trivial. Inversement, soit E I’espace vectoriel des sections du fibré
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normal. Si le fibré normal est trivial, le morphisme naturel de A¥ dans le premier
voisinage infinitésimal de l'origine dans E est lisse et a pour fibre spéciale A.
Montrons par récurrence que q est formellement du type déformation.

On suppose que le plongement de A dans A™ est une déformation dont la
base est le voisinage infinitésimal d’ordre n, F™, de lorigine dans C*. Soit
(I, ..., II,) le morphisme correspondant de A™ dans C*. Si & désigne le fais-
ceau d’idéaux de A dans X la suite exacte

O_)g;n+1/gn+2__)O/gn+2_)@/gn+l__)0

donne naissance a la suite exacte:

@(A("+1))—~> O(A("))—> HI(A, gn+1/gn+2).

Mais F""1/F"*? est une puissance symétrique du fibré normal. L’hypothese
assure par conséquent que la restriction C(A®*Y)— O(A™) est surjective. Soit

alors (I, ..., II,) un prolongement de (I,,...,II,) 3 A™*Y. Comme n est au
moins égal a 1, il suffit que (I, .. ., IT,) soit lisse (2 valeurs dans F™) pour que
(I, ..., II,) soit lisse (2 valeurs dans F™*V). Il reste a appliquer le théoréme pour
obtenir le corollaire. C.Q.F.D.

§2. Determination de plongements

Le probleme général est le suivant: soit g: A — X un plongement; existe-t-il
un entier n éventuellement infini tel que tout plongement g': A — X’ ou A est
isomorphe a A soit équivalent 2 g? S’il existe un tel n fini, on dit que g est de
détermination finie. Le probleme a été résolu dans le cas ou le fibré normal est
négatif (Grauert [4] Hironaka~Rossi [10]) et abordé dans le cas ot le fibré normal
est positif (Nirenberg—Spencer [12], Griffiths [5]) et dans le cas ou le fibré normal
est trivial (Griffiths [5]). On s’intéresse ici & ce dernier cas.

PROPOSITION 1. Tout plongement formellement trivial est trivial.

DEMONSTRATION. Tout plongement formellement trivial est en par-
ticulier formellement du type déformation donc du type déformation d’apres le
théoréme. La proposition résulte alors du résultat de Schuster (cf [13]) selon
lequel toute déformation formellement triviale est triviale. C.Q.F.D.

PROPOSITION 2. (Griffiths [5] Prop. 3.1.): Si H'(A, 0)=H'(A, 8)=0 (ici 0
désigne le fibré tangent), alors tout plongement de A dont le fibré normal est trivial
est le plongement trivial.
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DEMONSTRATION. D’aprés le Corollaire du théoreme. un tel plongement
est du type déformation et comme H'(A, 8) =0, toute déformation de A est
triviale. C.Q.F.D.

PROPOSITION 3. Soit A compacte avec H'(A, 0)=0. Soit g: A — X un
plongement dans une déformation a un parametre dont la fibre générale F est rigide
(c’est-a-dire vérifie H'(F, 8) =0). Alors g est de détermination finie.

DEMONSTRATION. D’aprés un théoreme d’Hervier (cf [8]), il existe un
entier n tel que tout plongement g':A — X' dans une déformation a un
paramétre vérifiant AU~ AU est équivalent & g Mais tout plongement g': A —
X' vérifiant A{V~ A{ (avec n=1) est du type déformation d’apres le Corollaire,
ce qui permet de conclure. C.Q.F.D.

EXEMPLE. La Proposition s’applique a tout plongement de la variété de
Hirzebruch 3,,, comme fibre spéciale d’une famille & un parametre de P, XP,.

§3. Plongements formels et plongements convergents

En géométrie algébrique, on connait des plongements formels de la sphere de
Riemann qui ne proviennent pas de plongements dans des variétés algébriques
(Hironaka—-Matsumura [9]). Mais il se pourrait (cf [2]) que tout plongement formel
en codimension 1 de la sphere de Riemann soit convergent en géométrie
analytique, ce qui s’appliquerait aux exemples de [9]. Nous allons maintenant
construire des plongements formels du type déformation qui ne proviennent pas
de plongements dans des variétés analytiques.

Le principe est le suivant: on choisit une variété compacte A dont le germe
semi-universel de déformation G est universel dans la catégorie des germes
d’espaces analytiques donc aussi dans celle des germes d’espaces formels par
passage a la limite inductive; on peut prendre pour A une courbe de genre au
moins 3 (cf [6], Corollaire 6.6.) ou un tore (cf [7] Remarque 2.7). Notons C,, le
voisinage formel de 0 dans C et soit j un morphisme de C, dans G qui ne se
factorise a travers aucune immersion de C, dans C. Alors la déformation formelle
définie par j constitue un plongement formel qui d’apres I’hypothése précédente
ne se prolonge pas en plongement du type déformation convergent. D’apres le
théoréme, il ne se prolonge pas du tout. Il reste donc a construire un tel
morphisme j.

Si G est isomorphe a4 C? (ou plus généralement est de dimension au moins 2)
c’est facile:

PROPOSITION 4. I existe un morphisme j de C,. dans C? ne se factorisant a
travers aucune immersion de C,, dans C.
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DEMONSTRATION. On va montrer que si un morphisme j de C.. dans C?
est de la forme j(x) = (x, f(x)) et se factorise a travers une immersion p de C,, dans
C, alors f est une série convergente, ce qui permettra évidemment de conclure.
Ecrivons j =q © p avec q =(q;, q») convergente. On a donc q, ° p =id, donc q, est
inversible et p=q;', d’ot1 f=q, ° q7' ce qui prouve sa convergence. C.Q.F.D.

Si G est de dimension un, il est facile de voir que tout morphisme de C, dans
G se factorise a travers une immersion de C, dans C. En revanche, on a la:

PROPOSITION 5. 11 existe un morphisme de C2 dans C ne se factorisant a
travers aucune immersion de C, dans C>, c’est-a-dire une série formelle a trois
variables qu’aucun changement de variables ne rend convergente.

DEMONSTRATION. On va montrer que pour que

s(x, y, z) =xy(y —x)(y —zx)(y — f(z)x)

puisse étre rendue convergente par changement de variable, il faut que f soit
convergente, ce qui permettra de conclure en choisissant f divergente. Soit
x(a, b, ¢), y(a, b, ¢), z(a, b, ¢c) un changement de variables rendant s convergente.
On peut évidemment supposer ce changement de variables tangent a I'identité.
Ecrivons s(x(a,b,c), y(a,b,c), z(a,b,c))=0c(a,b,c). Comme les anneaux
considérés sont factoriels, la décomposition en facteurs premiers de o s’écrit
O =010,030,05 aVEC O =XU; 0, =YyU, o3=(y—x)uz o,=(y—2zx)uy os=
(y—f(2)x)us et uju usu, us =1, les u; étant des séries formelles en (a, b, ¢) valent
1 en z€ro et les o; étant convergentes. On peut supposer que a =0, et b =o,.
Dans le nouveau systeme de coordonnées la variété 3 des zéros de o est la
réunion de cinq hypersurfaces lisses 3; se coupant le long de I’axe des ¢. Un calcul
élémentaire montre que le birapport en (0,0,c) des espaces tangents a
3:,3,,35,3, est z(0,0,c) et des espaces tangentes a 3;,3, 35 35 est fo
z(0, 0, ¢). Les deux séries d’'une variable sont donc convergentes.
Comme

0
9% 0,0,00=2(0,0,0)=0,
oc ac

2(0,0,c) est un changement de variables convergent et donc f est
convergente. C.Q.F.D.

Plus généralement, soit 7r: X — C un germe de déformation a un parametre
non triviale de la variété compacte A. Alors si s désigne la série formelle a trois
variables construite dans la démonstration de la proposition précédente, s* 7 est
une déformation formelle non convergente: en effet; si s*7 converge, le “lieu



132 ANDRE HIRSCHOWITZ

trivial”’ de cette déformation peut étre rendu convergent par changement de
variables (cf Schuster [14] qui démontre que la réunion des germes de sous-
espaces ol une déformation est triviale est encore un germe de sous-espace). Or,
ce quon montre en démontrant la Proposition 5, c’est que s~ '(0) ne peut étre
rendu convergent par aucun changement de variables. Donc toute variété admet-
tant un germe de déformation a un parametre non triviale admet aussi un
plongement formel non convergent (du type déformation, en codimension 3).

DERNIERE MINUTE: Bingener et Flenner ont construit de fagon analogue
un plongement formel non convergent [1].
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