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Comment. Math. Helvetici 54(1979) 126-132 Birkhàuser Verlag, Basel

Sur les Plongements du Type Déformation

par André Hirschowitz

§0. Introduction

Soient f1:A—:>Y1 et f2:A-^Y2 deux plongements d'une même variété
analytique compacte A (dans toute la suite, on ne plonge que des variétés
compactes) dans deux variétés Yl et Y2. On dit que ces deux plongements sont
équivalents s'il existe un diagramme commutatif

dans lequel a et j3 soient des plongements ouverts.
Si g:A-^>X est un plongement, on note A(gn) (ou A(n) s'il n'y a pas risque de

confusion) le voisinage infinitésimal d'ordre n de A dans X et A^ le voisinage
formel de A dans X. Disons que g est trivial si g est équivalent à un plongement
de A comme fibre d'un produit et que g est formellement trivial si A^ est le

produit de A par un espace formel. Disons maintenant que g est du type
déformation si g est équivalent au plongement de A comme fibre spéciale dans

l'espace total d'une déformation de A. Disons que g est formellement du type
déformation si A^ est l'espace total d'une déformation de A paramétrée par un
espace formel. On démontre ici que tout plongement formellement du type
déformation est du type déformation. On en déduit les résultats suivants concernant

la détermination des plongements; tout plongement formellement trivial est

trivial; tout plongement d'une variété Xo vérifiant H1(Xo,O) 0 dans une
déformation à un paramètre dont la fibre générale est rigide, est de détermination
finie. On retrouve aussi le résultat suivant de Griffiths: si H1(A, 6) HX{A, 6) 0,
0 désignant le fibre tangent, alors tout plongement de A dont le fibre normal est
trivial est un plongement trivial.

D'autre part, on en déduit des exemples de plongements formels ne
convergeant pas.

Je remercie A. Douady qui m'a expliqué la démonstration du Lemme 1 et H.
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W. Schuster qui s'est intéressé à cette affaire et qui m'a indiqué que la Proposition
2 est due à Griffiths.

§1. Une application de la thèse de Douady

LEMME 1. Soit 17 : X —> S un morphisme propre et plat, où S est un germe et la

fibre est connexe en ce sens que les fondons holomorphes globales y sont constantes.

Alors le morphisme naturel de 6S dans II%€X est un isomorphisme.

DÉMONSTRATION (due à Douady). On sait (cf Kiehl-Verdier [11]) qu'il
existe un complexe 0—» L' de fibres sur S tel que, pour tout changement de base
T—» S, le complexe 0-» L'(T) ait pour cohomologie la suite des Rq17j(?x(T) où
IIT désigne la projection de X' TxsX sur T. On a 6X(T) 0x, et 1Î*0X, reçoit
0T ce qui permet d'augmenter le complexe avec le fibre trivial Cs de façon que la

cohomologie de CT-> L°(T)^> 1/(7) soit maintenant conoyau de ÛT-» 17*©x-
On applique cela à T {s}.

Le conoyau de OT-^n^€X' est alors nul par hypothèse. La suite de fibres

Cs—»L0(S)->L\S) est donc exacte au point s. Par suite, elle est exacte au

voisinage, c'est-à-dire sur S, ce qui signifie que 0s -» n%Gx est surjectif. Comme ce

morphisme est évidemment injectif, c'est un isomorphisme. C.Q.F.D.

LEMME 2. Soit X' —» T un morphisme de germes et Y un sous-espace de X'
plat sur T. Si les fibres Y(t) et X'(t) sont égales, alors Y et X' sont égaux.

DÉMONSTRATION. Soit & l'idéal de Y. La suite 0^>&-+OX'-*OY-*0
est exacte. Comme 6Y est <9T-plat elle le reste par l'extension des scalaires,

0 -> & ®Ct Ûr/Mt -» ÛXit) -* 0Y(t) -> 0.Ct Ûr/Mt -» ÛXit) -* 0Y(t)

L'hypothèse implique donc 2F®€r€TIMt=0. Il en résulte que &®€x> Gx./Mx est
nul et d'après le lemme de Nakayama, que 9 est nul. C.Q.F.D.

LEMME 3. Soit X—» S un morphisme propre et plat. On suppose que les fibres

sont connexes au sens analytique (cf. Lemme 1). Alors le morphisme naturel de S

dans Vespace de Douady 3)(X) des sous-espaces analytiques compacts de X est un
plongement ouvert.

DÉMONSTRATION. Soit 0 un point de S, soit Xo la fibre de X au-dessus de

0 et soit <p : Y—» T un germe de déformation de Xo dans X. On peut supposer que
S est de Stein. Alors le morphisme naturel de Y dans S se factorise à travers T
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d'après le Lemme 1. Soit / le morphisme correspondant de T dans S et posons
X' /*(X). Le morphisme naturel de Y dans X' est un plongement fermé, comme
celui de Y dans X x T, et il commute à la projection sur T.

En outre, les fibres de Y et X' sont égales. D'après le Lemme 2, on a alors
X' - Y, ce qui prouve que S a la propriété universelle cherchée. C.Q.F.D.

THÉORÈME. Si g est formellement du type déformation, alors g est du type

déformation.

DÉMONSTRATION. On utilise la solution du petit problème des modules

(DOUADY [3]). Soit 3) l'espace des sous-espaces analytiques compacts de X, soit
a le point de 3) correspondant à A et soit D(n) le voisinage infinitésimal d'ordre n
du point a dans 3). Soit M le sousespace universel de 3)xX et soit dfCin) sa

restriction au-dessus de 25(n). On va montrer que la projection naturelle de M sur
X est un plongement ouvert au voisinage de la fibre spéciale. D'après le
Nullstellensatz $f(n) est un sous-espace d'un voisinage infinitésimal de {a}xA
donc d'un produit 2>(p)x A(p). Comme $?(n) est aussi un sous-espace de ®(n)xX,
c'est un sous-espace de 9(n)xA(p). Soit 3)p la composante connexe du point ap

correspondant à A dans l'espace des sous-espaces analytiques compacts de A(p) et
2Sfp le sous-espace universel de 2>pxA(p).

Par fonctorialité du passage au ne voisinage infinitésimal, le morphisme de
3)in) dans 3)p correspondant au sous-espace $?(n) de 3(n)xA(p) se factorise à

travers le ne voisinage infinitésimal de ap dans 3)p. D'après le Lemme 3, ce

voisinage infinitésimal est naturellement isomorphe à 3)n, la restriction correspondante

de %!p s'identifiant à 2fn. Cela signifie que $f(n) est en fait un sous-espace de
2>(n)x A(n). Soit a le morphisme ainsi défini de 3)(n) dans 3)n. Le morphisme de 3)n

dans 3) correspondant au sous-espace $fn de 3)n x X se factorise, lui aussi par
fonctorialité du passage aux voisinages infinitésimaux à travers 3)(n). Soit /3 le

morphisme ainsi défini de 3)n dans 3)(n\ La propriété universelle de 3)n assure que
a ° P est l'identité. La propriété universelle de 3) assure que l'injection naturelle
de 3)(n) dans 3) se factorise à travers |3 ° a donc que j3 ° a est l'identité. Par

conséquent a est un isomorphisme. D'après le Lemme 3, la projection naturelle
de Wn sur A(n) est un isomorphisme. Comme a est un isomorphisme, la projection

naturelle de $f(n) sur A(n) est aussi un isomorphisme. Cela étant vrai pour
tout n, la projection de *ffî sur X est un plongement ouvert. C.Q.F.D.

COROLLAIRE. Si H1(A,6) 0 et si le fibre normal au plongement g est

trivial, alors g est du type déformation.

DÉMONSTRATION. Il est bien connu que si g est du type déformation, le
fibre normal est trivial. Inversement, soit E l'espace vectoriel des sections du fibre
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normal. Si le fibre normal est trivial, le morphisme naturel de A(1) dans le premier
voisinage infinitésimal de l'origine dans E est lisse et a pour fibre spéciale A.
Montrons par récurrence que q est formellement du type déformation.

On suppose que le plongement de A dans A(n) est une déformation dont la
base est le voisinage infinitésimal d'ordre n, F**0, de l'origine dans Ck. Soit

(IIl9..., IIk) le morphisme correspondant de A(n) dans Ck. Si 2F désigne le
faisceau d'idéaux de A dans X, la suite exacte

donne naissance à la suite exacte:

1)) -» <9(A(n)) -* H\A, &n+1l&n+2).

Mais ^rn+1/$rn+2 est une puissance symétrique du fibre normal. L'hypothèse
assure par conséquent que la restriction PLA(n+1))-> €(A(n)) est surjective. Soit

alors (J71?... ,Ûk) un prolongement de (IIu IIk) à A(n+1). Comme n est au
moins égal à 1; il suffit que (I7l5..., IIk) soit lisse (à valeurs dans F(n)) pour que
(J71?..., Ëk) soit lisse (à valeurs dans F(n+1)). Il reste à appliquer le théorème pour
obtenir le corollaire. C.Q.F.D.

§2. Détermination de plongements

Le problème général est le suivant: soit g:A^Xun plongement; existe-t-il
un entier n éventuellement infini tel que tout plongement g': A —>X' où A(g"} est

isomorphe à A(gn) soit équivalent à g? S'il existe un tel n fini, on dit que g est de
détermination finie. Le problème a été résolu dans le cas où le fibre normal est

négatif (Grauert [4] Hironaka-Rossi [10]) et abordé dans le cas où le fibre normal
est positif (Nirenberg-Spencer [12], Griffiths [5]) et dans le cas où le fibre normal
est trivial (Griffiths [5]). On s'intéresse ici à ce dernier cas.

PROPOSITION 1. Tout plongement formellement trivial est trivial.

DÉMONSTRATION. Tout plongement formellement trivial est en
particulier formellement du type déformation donc du type déformation d'après le
théorème. La proposition résulte alors du résultat de Schuster (cf [13]) selon

lequel toute déformation formellement triviale est triviale. C.Q.F.D.

PROPOSITION 2. (Griffiths [5] Prop. 3.1.): Si H\A, Û) H\A, 6) 0 (ici 0

désigne le fibre tangent), alors tout plongement de A dont le fibre normal est trivial
est le plongement trivial.
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DÉMONSTRATION. D'après le Corollaire du théorème, un tel plongement
est du type déformation et comme HX(A, 0) 0, toute déformation de A est

triviale. C.Q.F.D.

PROPOSITION 3. Soit A compacte avec H\A,6) 0. Soit g:A-»X un
plongement dans une déformation à un paramètre dont la fibre générale F est rigide
(c'est-à-dire vérifie H1^, $) 0). Alors g est de détermination finie.

DÉMONSTRATION. D'après un théorème d'Hervier (cf [8]), il existe un
entier n tel que tout plongement g' :A-^Xf dans une déformation à un
paramètre vérifiant A(gn)~A(g"} est équivalent à g. Mais tout plongement g' \A->
X' vérifiant A^^ A(g") (avec n > 1) est du type déformation d'après le Corollaire,
ce qui permet de conclure. C.Q.F.D.

EXEMPLE. La Proposition s'applique à tout plongement de la variété de
Hirzebruch X2n comme fibre spéciale d'une famille à un paramètre de ¥1xj>l.

§3. Plongements formels et plongements convergents

En géométrie algébrique, on connaît des plongements formels de la sphère de
Riemann qui ne proviennent pas de plongements dans des variétés algébriques
(Hironaka-Matsumura [9]). Mais il se pourrait (cf [2]) que tout plongement formel
en codimension 1 de la sphère de Riemann soit convergent en géométrie
analytique, ce qui s'appliquerait aux exemples de [9]. Nous allons maintenant
construire des plongements formels du type déformation qui ne proviennent pas
de plongements dans des variétés analytiques.

Le principe est le suivant: on choisit une variété compacte A dont le germe
semi-universel de déformation G est universel dans la catégorie des germes
d'espaces analytiques donc aussi dans celle des germes d'espaces formels par
passage à la limite inductive; on peut prendre pour A une courbe de genre au
moins 3 (cf [6], Corollaire 6.6.) ou un tore (cf [7] Remarque 2.7). Notons G» le
voisinage formel de 0 dans C et soit / un morphisme de C^ dans G qui ne se
factorise à travers aucune immersion de C^ dans C. Alors la déformation formelle
définie par / constitue un plongement formel qui d'après l'hypothèse précédente
ne se prolonge pas en plongement du type déformation convergent. D'après le
théorème, il ne se prolonge pas du tout. Il reste donc à construire un tel
morphisme /.

Si G est isomorphe à C2 (ou plus généralement est de dimension au moins 2)
c'est facile:

PROPOSITION 4. U existe un morphisme j de C^ dans C2 ne se factorisant à
travers aucune immersion de Cx, dans C.
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DÉMONSTRATION. On va montrer que si un morphisme j de C^ dans C2

est de la forme j(x) (x, f(x)) et se factorise à travers une immersion p de C» dans
C, alors / est une série convergente, ce qui permettra évidemment de conclure.
Ecrivons j q ° p avec q (ql9 q2) convergente. On a donc qx ° p id, donc % est
inversible et p qï1, d'où f q2o qï1 ce qui prouve sa convergence. C.Q.F.D.

Si G est de dimension un, il est facile de voir que tout morphisme de C» dans
G se factorise à travers une immersion de Cx dans C. En revanche, on a la:

PROPOSITION 5. H existe un morphisme de Cl, dans C ne se factorisant à

travers aucune immersion de Ci dans C3, c'est-à-dire une série formelle à trois
variables qu'aucun changement de variables ne rend convergente.

DÉMONSTRATION. On va montrer que pour que

s(x, y, z) xy(y - x)(y - zx)(y -f(z)x)

puisse être rendue convergente par changement de variable, il faut que / soit
convergente, ce qui permettra de conclure en choisissant / divergente. Soit
x(a, 6, c), y(a, b, c), z(a, b, c) un changement de variables rendant s convergente.
On peut évidemment supposer ce changement de variables tangent à l'identité.
Ecrivons s(x(a, b, c), y (a, b, c), z(a, b, c)) cr(a, b, c). Comme les anneaux
considérés sont factoriels, la décomposition en facteurs premiers de cr s'écrit
a o-1a2(T3<T4a5 avec or1 xux a2 yu2 cr3 (y — x)u3 a4 (y — zx)u4 a5
(y —f(z)x)u5 et M1w2M3W4M5 1, les ut étant des séries formelles en (a, b, c) valent
1 en zéro et les at étant convergentes. On peut supposer que a <rl et b a2.
Dans le nouveau système de coordonnées la variété X des zéros de a est la
réunion de cinq hypersurfaces lisses Xt se coupant le long de l'axe des c. Un calcul
élémentaire montre que le birapport en (0,0, c) des espaces tangents à

XUX2,X3,X4 est z(0,0, c) et des espaces tangentes à X1,X2,X3,X5 est /°
z(0, 0, c). Les deux séries d'une variable sont donc convergentes.

Comme

z(0,0, c) est un changement de variables convergent et donc / est

convergente. C.Q.F.D.
Plus généralement, soit tt : X -> C un germe de déformation à un paramètre

non triviale de la variété compacte A. Alors si s désigne la série formelle à trois
variables construite dans la démonstration de la proposition précédente, s*tt est

une déformation formelle non convergente: en effet; si s*tt converge, le "lieu
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trivial" de cette déformation peut être rendu convergent par changement de

variables (cf Schuster [14] qui démontre que la réunion des germes de sous-

espaces où une déformation est triviale est encore un germe de sous-espace). Or,
ce qu'on montre en démontrant la Proposition 5, c'est que s~\0) ne peut être
rendu convergent par aucun changement de variables. Donc toute variété admettant

un germe de déformation à un paramètre non triviale admet aussi un
plongement formel non convergent (du type déformation, en codimension 3)

DERNIÈRE MINUTE: Bingener et Flenner ont construit de façon analogue
un plongement formel non convergent [1],
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