Zeitschrift: Commentarii Mathematici Helvetici Herausgeber: Schweizerische Mathematische Gesellschaft **Band:** 54 (1979) **Artikel:** The normality of closures of orbits in a Lie algebra. Autor: Hesselink, Wim **DOI:** https://doi.org/10.5169/seals-41562 #### Nutzungsbedingungen Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren #### **Conditions d'utilisation** L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus #### Terms of use The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more **Download PDF:** 14.10.2025 ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch # The normality of closures of orbits in a Lie algebra WIM HESSELINK (Groningen) Abstract. Let X be the closure of a G-orbit in the Lie algebra of a connected reductive group G. It seems that the variety X is always normal. After a reduction to nilpotent orbits, this is proved for some special cases. Results on determinantal schemes are used for Gl_n . If X is small enough we use a resolution and Bott's theorem on the cohomology of homogeneous vector bundles. Our results are conclusive for groups of type A_1 , A_2 , A_3 and B_2 . ### 0. Introduction Let G be a connected reductive algebraic group over an algebraically closed field k of characteristic zero. G has an adjoint action on its Lie algebra g. Let $a \in g$ and let X be the closure of the G-orbit of a. If a is semi simple the orbit is closed so that X is a smooth variety. If a is regular X is normal cf. [17] Theorem 16. PROBLEM. Is the variety X always normal? This problem was brought to our attention by Walter Borho in the fall of 1975. A positive solution would have applications in the theory of the infinite dimensional representations of g, see [2] (2.6) and [3]. After a reduction we give two more cases where we have an (affirmative) answer. The method used in the second case is the more interesting one. It involves a resolution and some cohomology. ## 1. Reductions We have the additive Jordan decomposition $a = a_s + a_n$. Let G' and g' be the centralizers of a_s in G and g respectively. Now $a_n \in g'$ and g' is the Lie algebra of G' cf. [1] (9.1). Let X' be the closure of the G'-orbit of a_n in g'. PROPOSITION. The morphism $f: G \times X' \to X$ given by $f(g, x) = Ad(g)(a_s + x)$, is a smooth surjective morphism. 106 WIM HESSELINK The proof is standard and may be omitted. The only assumption needed here is that G is a linear algebraic group. By [9] (IV 17.5.7) normality of X is now equivalent to normality of X'. The group G' is connected and reductive, cf. [19] (3.11) and (3.7). So we may replace G, a, X by G', a_n , X', i.e. we may assume that a is a nilpotent element of g. It is easy to see that we may replace G by a reductive or semi simple group of the same type. As a product of normal varieties over k is normal we may assume that G has an irreducible root system. 2. Case I. Assume G = Gl(V) where V is a vector space of dimension n. Now g = End(V) and a is a nilpotent endomorphism of V. Let $\lambda = (\lambda_1, \ldots, \lambda_r)$ be the partition of the blocks of the Jordan normal form of a. So $\lambda_1 \ge \cdots \ge \lambda_r \ge 1$, there are $e_1, \ldots, e_r \in V$ such that the elements $a^m e_i$ with $o \le m < \lambda_i$ form a basis of V and that $a^m e_i = 0$ if $m \ge \lambda_i$. Clearly $n = \lambda_1 + \cdots + \lambda_r$. **PROPOSITION.** If $\lambda_2 = 1$ then X is Cohen-Macaulay and normal. **Proof.** Put $q = \lambda_1$ so that n = q + r - 1. The dimension of X is (q - 1)(2n - q), cf. [10] (3.8). Let N be the variety of the nilpotent endomorphisms of V, let D be the variety of the endomorphisms of V of rank $\leq q$, and let X' be the schematic intersection of N and D. It follows from [10] (3.10) that $X = X'_{red}$, i.e. that X is the reduced variety with the same points as X'. For $x \in End(V)$ let $$\det(x - T.id) = (-T)^n + \sum_{i=1}^n (-T)^{n-i} \sigma_i(x)$$ be its characteristic polynomial. The subvariety N of End(V) is defined by the ideal generated by $\sigma_1, \ldots, \sigma_n$. As $\sigma_i \mid D = 0$ for $i \ge q$, the subscheme X' of D is defined by the ideal generated by $\sigma_1, \ldots, \sigma_{q-1}$. The variety D is Cohen-Macaulay of dimension (q-1)(2n-q+1), cf. [7] Theorem 1 and [15] (4.13). So X' is Cohen-Macaulay by [9] $(0_{IV} \ 16.5.6)$. Using the cross section of [10] (3.7) one verifies that the orbit of a is contained in the regular locus of X', so that X' is non-singular in codimension one. By Serre's criterion [9] (IV 5.8.6) it follows that X' is normal and hence equal to X. ## 3. Some cohomology The results in this section are due to Kempf [12], [13]. The language used is closer to [5] (1.5) and [11]. Let G be a connected reductive group and P a parabolic subgroup of G. Let E be a P-module, i.e. a finite dimensional vector space with a given representation $P \to Gl(E)$. Consider the variety $Z = G \times {}^P E$ which is the quotient of $G \times E$ under the right P-action given by $(g, x)p = (gp, p^{-1}x)$. Let $\psi: Z \to G/P$ be given by $\psi(g, x)P = gP$, it is a locally trivial vector bundle. The locally free $\mathcal{O}_{G/P}$ -module $\mathcal{L}(E)$ is defined as the sheaf of sections of ψ . We write $H^n(E) = H^n(G/P, \mathcal{L}(E))$, these groups are G-modules. LEMMA. Let V be a G-module and E a completely reducible P-module. Let $\pi: V \to E$ be a surjective morphism of P-modules. Then $H^n(E) = 0$ for $n \ge 1$ and the canonical G-morphism $\pi': V \to H^0(E)$ is surjective. Proof. We may consider $H^0(E)$ as the G-module of the morphisms $f: G \to E$ satisfying $f(gp) = p^{-1}f(g)$. Now π' is given by $\pi'(v)(g) = \pi(g^{-1}v)$. Clearly $\pi = q \circ \pi'$ where $q: H^0(E) \to E$ is given by q(f) = f(1). Write $E = \bigoplus_i E_i$ where each E_i is an irreducible P-module. As q is surjective we have $H^0(E_i) \neq 0$ for all i. Now Bott's theorem, cf. [16] (6.4), which holds in our algebraic situation by theorem 5 of [4] exp. II, implies that $H^n(E) = 0$ for all $n \geq 1$ and that the G-modules $H^0(E_i)$ are irreducible. The image of π' has a non-zero intersection with each $H^0(E_i)$, so π' is surjective. Construction. Let V be a G-module and E a P-invariant subspace. Put $Z = G \times^P E$. Let $\tau: Z \to V$ be given by $\tau(g, x)P = gx$. The group G acts on Z and τ is G-equivariant. Identifying Z with the closed subvariety of $(G/P) \times V$ of the pairs (gP, x) with $g^{-1}x \in E$, one verifies that τ is a projective morphism. So the image of τ is the irreducible closed subvariety of V defined by the ideal $\ker(\tau^0)$ where $\tau^0: \Gamma(V, \mathcal{O}_V) \to \Gamma(Z, \mathcal{O}_Z)$ is the comorphism. THEOREM. (Kempf [12]). If E is a completely reducible P-module then $H^n(Z, \mathcal{O}_Z) = 0$ for $n \ge 1$, and τ^0 is surjective. *Proof.* The ring $\Gamma(V, \mathcal{O}_V)$ is the graded symmetrical algebra $\bigoplus_{m\geq 0} S_m(V^*)$ on the dual V^* of V. As $\psi_*(\mathcal{O}_Z) = \bigoplus_m \mathcal{L}(S_m(E^*))$, we have $H^n(Z, \mathcal{O}_Z) = \bigoplus_m H^n(S_m(E^*))$ for all $n\geq 0$ by [9] (III 1.3.3) and [8] chap. II (3.10). A P-module F is completely reducible if and only if the unipotent radical of P acts trivially on F. So the P-modules $S_m(E^*)$ are completely reducible. Now the assertions follow from the lemma applied on the projections from $S_m(V^*)$ to $S_m(E^*)$. ### 4. The resolution Let G be connected and reductive with an irreducible root system. Let a be a non-zero nilpotent element of g. There is a uniquely determined parabolic subgroup P of G associated to a, see [18] (III, 4). The closure of the P-orbit of a 108 WIM HESSELINK is a normal subalgebra, called \mathfrak{u}_2 , of the Lie algebra \mathfrak{p} of P. We form $Z = G \times^P \mathfrak{u}_2$ and $\tau: Z \to \mathfrak{g}$ as above. PROPOSITION. The morphism τ induces a G-equivariant, projective, birational and surjective morphism $\tau: Z \to X$. The variety X is normal if and only if the comorphism $\tau^0: \Gamma(X, \mathcal{O}_X) \to \Gamma(Z, \mathcal{O}_Z)$ is bijective. **Proof.** Consider b = (1, a)P in Z. The centralizer of a in G is contained in P, cf. loc. cit., and hence equal to the centralizer of b. So τ induces a bijection between the orbits of b and a. Using [18] (I, 5.6) and [1] (6.7) one shows that this bijection is an isomorphism. The orbits of b and a are dense and open in Z and X respectively, so $\tau: Z \to X$ is birational. The other properties of τ follow immediately. Since the variety Z is regular and the morphism τ is proper and birational, the ring $\Gamma(Z, \mathcal{O}_Z)$ is the integral closure of $\Gamma(X, \mathcal{O}_X)$ in its field of fractions. This concludes the proof. Consider the following cases. Case II. The P-module u_2 is completely reducible. Case III. The nilpotent element a is regular. THEOREM. In the cases II and III the variety X is normal and $H^n(Z, \mathcal{O}_Z) = 0$ for $n \ge 1$. Remark. So in these cases X has rational singularities cf. [14] p. 51. **Proof.** Case II is immediate from the above proposition and the theorem in 3. For case III see [17] theorem 16 and [11] theorem A. # 5. Applications We follow [18] (III, 4). There are $h, b \in g$ with [h, a] = 2a, [h, b] = -2b, [a, b] = h. For $i \in \mathbb{Z}$ put $g(i) = \{x \in g \mid [h, x] = ix\}$. We have $g = \bigoplus g(i)$, $p = \bigoplus_{i \ge 0} g(i)$, $u_2 = \bigoplus_{i \ge 2} g(i)$. Let T be a maximal torus which leaves each g(i) invariant. Let R be the root system of G with respect to T. For $\alpha \in R$ let d_α be given by $g_\alpha \subseteq g(d_\alpha)$. Let S be a set of simple roots with $d_\alpha \ge 0$ for all $\alpha \in S$. Then $d_\alpha \in \{0, 1, 2\}$ for all $\alpha \in S$. The G-orbit of α is characterized by the numbers d_α , $\alpha \in S$, attached to the corresponding nodes of the Dynkin diagram. Let $\sum_{\alpha \in S} n_\alpha \alpha$ be the highest root. As the unipotent radical of P has Lie algebra $\mathfrak{u}_1 = \bigoplus_{i \ge 1} \mathfrak{g}(i)$, we obtain **Criterion 1.** Case II applies if and only if $\sum_{\alpha \in S} n_{\alpha} d_{\alpha} \leq 2$. Let G be one of the classical groups Gl_n , Sp_n , SO_n and let $\rho: G \hookrightarrow Gl(V)$ be its usual representation in a vector space V of dimension n. Let λ be the partition of the nilpotent endomorphism $d\rho(a)$ of V, cf section 2. Using [18] (IV 1.13 and 2.32) we obtain **Criterion 2.** If G is Gl_n or Sp_n then case II applies if and only if $\lambda_1 \le 2$. If G is SO_n then case II applies if and only if $\lambda_1 + \lambda_2 \le 4$. Remark 1. By inspection of the tables in [10] (4.9) it follows that X is normal if G is of type A_1 , A_2 , A_3 , B_2 and that X has rational singularities if G is of type A_1 , A_2 , B_2 . Remark 2. For the exceptional groups inspection of the tables 16-20 in [6] yields that case II applies for nilpotent elements with the following weighted Dynkin diagrams (here the numbers $d_{\alpha} = 0$ are suppressed). Remark 3. Let k be a field of positive characteristic p. The propositions in 1 and 2 still hold. For the reductions in 1, the proposition in 4 and the normality of X in case III we need some restrictions on p, cf. [19], [18], [20]. Although the theorems fail, a case-by-case analysis shows that X is normal if $p \neq 2$, 3 and G is of type A_1 , A_2 , A_3 and B_2 . #### **REFERENCES** - [1] BOREL, A. Linear algebraic groups. New York: Benjamin 1969. - [2] BORHO, W. Recent advances in enveloping algebras of semi-simple Lie algebras. Sém. Bourbaki, 29e année, 1976/77, no 489. 110 WIM HESSELINK - [3] BORHO, W. und KRAFT, H. über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. This volume. - [4] SÉMINAIRE H. CARTAN, vol. 3, 1956-1957. New York: Benjamin 1967. - [5] Demazure, M. Désingularisation des variétés de Schubert généralisées. Ann. Sc. de l'Ec. Norm. Sup. 4e serie, 7, (1974) 53-88. - [6] DYNKIN, E. B. Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc. Transl. Ser. 2,6 (1957), 111-245 (= Mat. Sbornik N.S. 30, (1952)) 349-462. - [7] EAGON, J. A., and HOCHSTER, M., Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Am. J. of Math. 93 (1971) 1020-1058. - [8] GODEMENT, R., Théorie des faisceaux. Paris: Hermann 1958. - [9] GROTHENDIECK, A., et DIEUDONNÉ, J. A., Eléments de géométrie algébrique. Publ. Math. de l'I.H.E.S. 11, 20, 24, 32 (Paris 1961–1967). - [10] HESSELINK, W. H. Singularities in the nilpotent scheme of a classical group. Trans. Am. Math. Soc. 222 (1976) 1–32. - [11] —, Cohomology and the resolution of the nilpotent variety. Math. Ann. 223 (1976) 249-252. - [12] KEMPF, G. R., Images of homogeneous vector bundles and varieties of complexes. Bull. Am. Math. Soc. 81 (1975) 900-901. - [13] —, On the collapsing of homogeneous bundles. Inventiones Math. 37 (1976) 229-239. - [14] KEMPF, G. R., et al., Toroidal embeddings I. Lecture notes in math. 339. Berlin, Springer 1973. - [15] KLEIMAN, S. L., and LANDOLFI, J., Geometry and deformation of special Schubert varieties. Compositio Math. 23 (1971) 407-434. - [16] KOSTANT, B., Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. 74 (1961) 329-387. - [17] —, Lie group representations on polynomial rings. Am. J. of Math. 85 (1963) 327-404. - [18] Springer, T. A., and Steinberg, R., Conjugacy classes. In A. Borel et al.: Seminar on algebraic groups and related finite groups. Lecture notes in math. 131. Berlin: Springer 1970. - [19] STEINBERG, R., Torsion in reductive groups. Advances in Math. 15 (1975) 63–92. - [20] VELDKAMP, F. D., The center of the universal enveloping algebra in characteristic p. Ann. Sc. de l'Ec. Norm. Sup., 4^e série, 5 (1972) 217–240. Mathematisch Instituut Hoogbouw WSN Post box 800 Groningen, The Netherlands Received November 1, 1977.