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Comment. Math. Helvetici 54 (1979) 105-110 Birkhduser Verlag, Basel

The normality of closures of orbits in a Lie algebra

WmMm HEesseLink (Groningen)

Abstract. Let X be the closure of a G-orbit in the Lie algebra of a connected reductive group G. It
seems that the variety X is always normal. After a reduction to nilpotent orbits, this is proved for
some special cases. Results on determinantal schemes are used for Gl,. If X is small enough we use a
resolution and Bott’s theorem on the cohomology of homogeneous vector bundles. Our results are
conclusive for groups of type A,, A,, A; and B,.

0. Introduction

Let G be a connected reductive algebraic group over an algebraically closed
field k of characteristic zero. G has an adjoint action on its Lie algebra g. Let
a € g and let X be the closure of the G-orbit of a. If a is semi simple the orbit is

closed so that X is a smooth variety. If a is regular X is normal cf. [17] Theorem
16.

PROBLEM. Is the variety X always normal?

This problem was brought to our attention by Walter Borho in the fall of
1975. A positive solution would have applications in the theory of the infinite
dimensional representations of g, see [2] (2.6) and [3]. After a reduction we give
two more cases where we have an (affirmative) answer. The method used in the
second case is the more interesting one. It involves a resolution and some
cohomology.

1. Reductions

We have the additive Jordan decomposition a = a; +a,.. Let G’ and g’ be the
centralizers of a, in G and g respectively. Now a, € g’ and g’ is the Lie algebra of
G’ cf. [1] (9.1). Let X' be the closure of the G'-orbit of a, in g'.

PROPOSITION. The morphism f:G X X' — X given by f(g, x) = Ad(g)(a, +x),
is a smooth surjective morphism.
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The proof is standard and may be omitted. The only assumption needed here is
that G is a linear algebraic group.

By [9] (IV 17.5.7) normality of X is now equivalent to normality of X'. The
group G' is connected and reductive, cf. [19] (3.11) and (3.7). So we may replace
G, a, X by G', a,, X', i.e. we may assume that a is a nilpotent element of g.

It is easy to see that we may replace G by a reductive or semi simple group of
the same type. As a product of normal varieties over k is normal we may assume
that G has an irreducible root system.

2. Case I. Assume G = GI(V) where V is a vector space of dimension n. Now
g=End (V) and a is a nilpotent endomorphism of V. Let A =(A,, ..., A,) be the
partition of the blocks of the Jordan normal form of a. So A;= - - - = A, =1, there
are e,, ..., e €V such that the elements a™e; with 0o =m <A, form a basis of V
and that a™e, =0 if m=A,. Clearly n=A,+ « - - +A,.

PROPOSITION. If A,=1 then X is Cohen-Macaulay and normal.

Proof. Put q=A, so that n=q+r—1. The dimension of X is (q—1)(2n—q),
cf. [10] (3.8). Let N be the variety of the nilpotent endomorphisms of V, let D be
the variety of the endomorphisms of V of rank <q, and let X’ be the schematic
intersection of N and D. It follows from [10] (3.10) that X = X’.,, i.e. that X is
the reduced variety with the same points as X'. For x € End (V) let

det (x—T.id)=(-T)" + Z (=T)"a:(x)

i=1

be its characteristic polynomial. The subvariety N of End (V) is defined by the
ideal generated by oy, ..., 0, As ;| D=0 for i=q, the subscheme X' of D is
defined by the ideal generated by o, . . ., g,_,. The variety D is Cohen-Macaulay
of dimension (q—1)2n—q+1), cf. [7] Theorem 1 and [15] (4.13). So X' is
Cohen-Macaulay by [9] (0, 16.5.6). Using the cross section of [10] (3.7) one
verifies that the orbit of a is contained in the regular locus of X', so that X’ is
non-singular in codimension one. By Serre’s criterion [9] (IV 5.8.6) it follows that
X' is normal and hence equal to X.

3. Some cohomology

The results in this section are due to Kempf [12], [13]. The language used is
closer to [5] (1.5) and [11]. Let G be a connected reductive group and P a
parabolic subgroup of G. Let E be a P-module, i.e. a finite dimensional vector
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space with a given representation P — GI(E). Consider the variety Z=G < E
which is the quotient of G X E under the right P-action given by (g, x)p =
(gp, p~'x). Let ¢: Z — G/P be given by (g, x)P = gP, it is a locally trivial vector
bundle. The locally free O p-module £(E) is defined as the sheaf of sections of
. We write H"(E) = H"(G/P, 4(E)), these groups are G-modules.

LEMMA. Let V be a G-module and E a completely reducible P-module. Let
7 :V — E be a surjective morphism of P-modules. Then H*(E)=0 for n=1 and
the canonical G-morphism 7': V — H°(E) is surjective.

Proof. We may consider H°(E) as the G-module of the morphisms f: G — E
satisfying f(gp)=p 'f(g). Now ' is given by 7'(v)(g)=w(g 'v). Clearly 7=
q o w' where q: H(E)— E is given by q(f) = f(1). Write E =@®,E; where each E,
is an irreducible P-module. As q is surjective we have H°(E;) #0 for all i. Now
Bott’s theorem, cf. [16] (6.4), which holds in our algebraic situation by theorem 5
of [4] exp. I1, implies that H"(E) =0 for all n=1 and that the G-modules H°(E,)
are irreducible. The image of 7' has a non-zero intersection with each H°(E,), so
7' is surjective.

Construction. Let V be a G-module and E a P-invariant subspace. Put
Z=GXPE. Let 7: Z — V be given by 7(g, x)P = gx. The group G acts on Z and
7 is G-equivariant. Identifying Z with the closed subvariety of (G/P)xX V of the
pairs (gP, x) with g~ 'x € E, one verifies that 7 is a projective morphism. So the
image of 7 is the irreducible closed subvariety of V defined by the ideal ker (7°)
where °:T'(V, 0,) — I'(Z, 0,) is the comorphism.

THEOREM. (Kempf [12]). If E is a completely reducible P-module then
H"(Z,0,)=0 forn=1, and 7° is surjective.

Proof. The ring I'(V, 0y)) is the graded symmetrical algebra @,,-, S,.(V*) on
the dual V* of V. As yy(0,)=8, L(S,(E*), we have H"(Z 0,)=
®,. H"(S,.(E™)) for all n=0 by [9] (III 1.3.3) and [8] chap. II (3.10). A P-module
F is completely reducible if and only if the unipotent radical of P acts trivially on
F. So the P-modules S,,(E*) are completely reducible. Now the assertions follow
from the lemma applied on the projections from S,.(V*) to S,.(E¥).

4. The resolution

Let G be connected and reductive with an irreducible root system. Let a be a
non-zero nilpotent element of g. There is a uniquely determined parabolic
subgroup P of G associated to a, see [18] (III, 4). The closure of the P-orbit of a
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is a normal subalgebra, called u,, of the Lie algebra p of P. We form Z =G X *u,
and 7:Z — g as above.

PROPOSITION. The morphism t induces a G-equivariant, projective,
birational and surjective morphism 1:Z — X. The variety X is normal if and only if
the comorphism 7°:T'(X, Oyx)— I'(Z, 0,) is bijective.

Proof. Consider b=(1, a)P in Z. The centralizer of a in G is contained in P,
cf. loc. cit., and hence equal to the centralizer of b. So 7 induces a bijection
between the orbits of b and a. Using [18] (I, 5.6) and [1] (6.7) one shows that this
bijection is an isomorphism. The orbits of b and a are dense and open in Z and X
respectively, so 7:Z — X is birational. The other properties of = follow im-
mediately. Since the variety Z is regular and the morphism 7 is proper and
birational, the ring I'(Z, 0,) is the integral closure of I'(X, Oy) in its field of
fractions. This concludes the proof.

Consider the following cases.
Case II. The P-module u, is completely reducible.

Case III. The nilpotent element a is regular.

THEOREM. In the cases II and III the variety X is normal and H*(Z,0,)=0
forn=1.

Remark. So in these cases X has rational singularities cf. [14] p. 51.

Proof. Case Il is immediate from the above proposition and the theorem in 3.
For case III see [17] theorem 16 and [11] theorem A.

5. Applications

We follow [18] (III, 4). There are h,be g with [h, a]=2a, [h, b]=~2b,
[a,b]=h. For i€ Z put g(i)={xeg|[h x]=ix}. We have g=®g(i), p=
D=0 a(i), u,=D;~, g(i). Let T be a maximal torus which leaves each g(i)
invariant. Let R be the root system of G with respect to T. For a € R let d, be
given by g, < g(d,). Let S be a set of simple roots with d, =0 for all « € S. Then
d,€{0,1,2} for all aeS. The G-orbit of a is characterized by the numbers
d,,a €S, attached to the corresponding nodes of the Dynkin diagram. Let
Y aes N, be the highest root. As the unipotent radical of P has Lie algebra
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u, =®,., ¢(i), we obtain
Criterion 1. Case II applies if and only if ) ,.sn.d, <2.

Let G be one of the classical groups Gl,, Sp,, SO, and let p: G5 GI(V) be its
usual representation in a vector space V of dimension n. Let A be the partition of
the nilpotent endomorphism dp(a) of V, cf section 2. Using [18] (IV 1.13 and
2.32) we obtain

Criterion 2. If G is Gl, or Sp, then case II applies if and only if A, <2. If G is
SO, then case II applies if and only if A;+A,=4.

Remark 1. By inspection of the tables in [10] (4.9) it follows that X is normal
if G is of type A;, A,, A;, B, and that X has rational singularities if G is of type
A, A,, B..

Remark 2. For the exceptional groups inspection of the tables 16-20 in [6]
yields that case II applies for nilpotent elements with the following weighted
Dynkin diagrams (here the numbers d, =0 are suppressed).

Ee o oandlv 10
1 !
E7 o l ! -0
! !
2 g 5
Es (L o o 1
! ! ’

Fy 2: O, OO ) G l$>

Remark 3. Let k be a field of positive characteristic p. The propositions in 1
and 2 still hold. For the reductions in 1, the proposition in 4 and the normality of
X in case III we need some restrictions on p, cf. [19], [18], [20]. Although the
theorems fail, a case-by-case analysis shows that X is normal if p#2,3 and G is
of type A, A,, A; and B,.
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