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On the trajectories of a quadratic differential, I
WILFRED KAPLAN

Dedicated to Albert Pfluger on his Seventieth Birthday

1. Introduction

The nature of the family of trajectories of a quadratic differential on a
Riemann surface has been the object of serious study for many years (see
references at the end of this article). Although much has been learned about the
possible structures of such families, one is far from a complete topological
classification of all structures occurring. The presence of recurrent trajectories
(nonclosed trajectories contained in their own omega limit sets) makes the
classification exceptionally difficult.

It is our purpose here to develop some tools which are helpful in achieving the
classification. In the second part of our paper [12] we shall illustrate the value of
the tools in some special cases. In particular, we there consider the quadratic
differentials Q(z)z"2 dz? and P(z)z~? dz on the sphere studied by Schaeffer and
Spencer [15], give new proofs of some of their results, and provide a topological
classification for the ‘“‘generic” families arising. Further, we consider some cases of
families with recurrent trajectories and present a method for generating such
families on the sphere.

The principal tools presented here are first an extension of the index concept
previously studied [11] to allow calculation of the total index for a region with
singular points on the boundary and second a generalization of the Stoilow theory
of interior mappings [16] to cover the case of multiple-valued functions arising
from integration of quadratic differentials.

Terminology

A quadratic differential on a Riemann surface ® is an expression ¢(z) dz2,
defined locally for each local complex coordinate z on ®, where ¢ is meromor-
phic and ¢(z) dz? is invariant under change of coordinates. Here for the most
part we take R to be the sphere (equivalently, the extended complex plane) and a

57



58 WILFRED KAPLAN

quadratic differential on & can be defined by giving ¢(z) for a coordinate z
defined except at one point of R, which we usually take to be the point at «. By a
regular curve family on &, we mean a collection & of distinct curves on &, whose
union is an open set D < R, such that each curve is one-to-one continuous image
of a circle or of an open interval and such that locally the family has the
topological structure of a family of parallel lines. By the last condition each point
p of D has a neighborhood U such that there is a homeomorphism T of U onto
the closure S of the open square S:0<x<1, 0<y<1 in the xy-plane, mapping
the intersections of the curves of F with U onto the line segments y = const in S.
We call U an r-neighborhood for %. If E is an open subset of D, #¢ denotes the
curve family filling E formed of the intersections with E of the curves of %. By a
cross-section of F we mean an arc or simple closed curve y contained in D such
that for each point p of y there is an r-neighborhood U of p such that each curve
of %, meets y at most once. A point p of R — D is called a singular point of %. By
an o-homeomorphism we mean an orientation preserving homeomorphism of one
oriented surface into another. Throughout the z-plane (xy-plane) will be given its
usual orientation. For an arc ab, we denote by (ab) the arc ab minus its endpoints.

2. Extended index relation

We here consider a regular curve family & filling domain D of the plane as in
[11]. As in Section 3 of that paper, the index I(J) is defined for each admissible
path J: that is, for each simple closed path J which is positively directed and is
either a closed curve of %, a closed cross-section of &, or a path formed of a finite
(even) number of arcs which are alternately arcs on curves of # and cross-section
arcs. One has

I(J)=2+3(p— M), (1)

where p is the number of “right turns’” on J and A the number of “left turns.”
We now extend the concept of admissible path J to allow for a finite number
of isolated singular points on J.

DEFINITION 1. A positively directly simple closed path J in the z-plane is
semi-admissable relative to the regular curve family % if J is formed of successive
directed arcs pip;, PaPss---»> Pn-1s PuPn+1 (With p,.;=p,), n=2, whereby for
i=1,...,n each p; (called a vertex of J) is either in D or is an isolated boundary
point of D, each open arc (p;p,,,) is in D and either (a) (p;p;,,) lies on a curve of ¥
or (b) each closed subarc of (p,p;,,) is a cross-section of %.
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For a semi-admissible path J one can, by means of a suitable o-
homeomorphism of the plane onto itself, introduce coordinates x, y such that for
a particular i p; is the origin 0:(0,0), a portion of J is given by a segment
~g <x<e¢ of the x-axis, and the interior of J lies in the half-plane Y >0. With
reference to these coordinates we now define a boundary index for the four cases
which can occur at p,.

DEFINITION 2. For each vertex p, of the semi-admissible path J the
boundary index I, (p;) is defined as follows:

Case (aa): the arcs p,_;p, and p;p,,, come under (a) of Definition 1. In terms
of the xy-coordinates described above, we form a new curve family &’ consisting
of the intersections of the curves of & with the open half-plane y >0, the lines
y =const= ¢ for ¢ <0 and the segments —e <x <0, 0<x <g of the x-axis. ¥’ is
regular in a deleted neighborhood of o and we define I, (p;) to be minus the index
I(o) relative to %'.

Case (bb): the arcs p,_;p; and p;p,,, come under (b) of Definition 1. We define
I, (p;) as for Case (aa) except that in the region y =0 minus the origin o each ray
xX=c¢ —e<c<g, lies on a curve of ¥'.

Case (ab): the arc p,_;p; comes under (a), p;p;,, comes under (b) of Definition
1. We define I,(p;) to be 3— I(0), where I(o) is defined as in Case (aa) except that
in the region y =0 each semi-parabola x/c =1-(y?/c?), c =const, 0<c<eg, lies
on a curve of ¥'; as does the segment y =0, —¢ <x <0.

Case (ba): the arc p,_;p; comes under (b), p,p;,; comes under (a) of Definition
1. We define I,(p,) to be 3— I(0), where I(0) is defined as in Case (aa) except that
in the region y =0 each semi-parabola x/c = (y*/c*)—1, 0<c <, lies on a curve
of ¥, as does the segment y=0, 0<x<e.

From Definition 2 one verifies that if p; is in D, then in Cases (aa) and (bb),
I(p;) = 0, and in Cases (ab) and (ba), I,(p;) = +3, with + for a right turn at p;, - for
a left turn. Furthermore, one verifies that I,(p;) can be computed in every case by
choosing an arc g = p!s, - - - s,p/ in D and lying inside J except for its endpoints
pi, pi', which lie on the arcs (p;,_,p;) and (p;p;..;) of J respectively, whereby the arcs
(Pi-1P?), Dis1, $153,-.., skpl, (pipi+1) are alternately arcs on curves of ¥ and
cross-sections, and the simple closed curve formed of B plus the arcs p;'p;, p;p; on
J encloses no singular point. Then

L(p) = %(PB - )\3)’ (2)
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where pg, Ag are the total numbers of right and left turns on B at the successive
points pi, s;, ..., S, pi'. We call B a bypassing arc. The value I,(p;), as given by
(2), does not depend on the particular choice of 8; this follows from the theorem
[11, p. 304] that I(J)=0 for an admissible path J enclosing no singular points.
The validity of (2) also shows that I,(p;) as given by Definition 2 does not depend
on the particular constructions used in this definition.

DEFINITION 3. For a semi-admissible path J relative to %, the index I(J) is
defined in terms of the boundary indices of its vertices by the formula:

10)=2+ Y, 1(p). ®)

If J happens to be admissible, all p; are in D and only cases (ab) and (ba) arise
as noted above, with I,(p;) = +£3, so that (3) reduces to (1).

For an arbitrary semi-admissible path J, one can choose sufficiently short
bypassing arcs B; as above at all p; so that, by replacing p!p,p! by B; (directed from
p! to p/) for all i, one obtains from J an admissible path J, enclosing the same
singular points as J. But

109=2+3 % (s ~Ap)=2+ L L) =10)

by (1), (2) and (3). With the aid of Theorem 1 of [11], we thus conclude:

THEOREM 1. Let & be a regular curve family filling a domain D of the plane
and let J be a semi-admissible path relative to . Then Definition 2 assigns to each
vertex of J a unique boundary index and hence Definition 3 assigns to J a unique
index, reducing to the previously defined index if J is admissible. If J encloses only a
finite set (z4, ..., zy) of singular points of ¥, then I(J) =Zf’=1 I(z;).

Case of trajectories of a quadratic differential. Here it is known that a pole of
order n has index n, a zero of order m has index —m. To evaluate the boundary
index at such a point one uses the known local structure of the family of
trajectories [4, pp. 27-35]. For a zero p; on J, there are h trajectories leading to p;
from D. For a pole of order n=3 there are n—2 “elliptic sectors” in all at the
point [2, p. 163], of which k lie wholly or partly in D. In terms of these integers
h, k, the values of the boundary index are given in Table 1. The pole of order 1
does not arise in Case (aa) for a semi-admissible path J but does arise for a
quasi-admissible path as explained below.
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Table 1.
Values of index I, (p;)
Case

Nature of p, (aa)  (bb)  (ab)  (ba)

Zero h h-1 h-% h-1
pole, order=3 -k-1 -k -k-3 k-3
pole, order 2 ~1 -1 -1 -1
pole, order 1 (0) -1 -1 -1

Case of nonsimple closed path. 1t is convenient to extend the definition of I(J)
further to allow for a nonsimple closed path which can be considered as the
boundary of a simply connected domain D;.

DEFINITION 4. A directed closed path J in the z-plane is quasi-admissible
relative to the family & if J satisfies all the conditions of Definition 1 except for
being a simple path, two arcs pp;,; and p;p;+, (i# j) either meet in no point, one
common vertex or two common vertices or else coincide with reversal of direc-
tion, J forms the boundary of a simply connected domain D; and there is a
continuous mapping @ of the closed disc Dy:|w|=1 in the complex w-plane into
the z-plane with the following properties: @ maps the open disc D,:|w|<1
o-homeomorphically onto D,; ¢ maps successive arcs P,P,, P,P;,...,P,P, .,
(P,+1=P;) of the positively directed circle |w|=1 homeomorphically onto the
correspondingly directed arcs p;p,, P2Ps; - - - » PaPns+1 Of J; @ is a homeomorphism
on each set D,U (P,P,,,); @ maps at most two points into each point of J other
than a vertex.

From the definition it follows that D,UJ is obtained from D, by certain
identifications of points among the {P;} and of certain pairs of arcs among the
{P,P,.,}, with reversal of direction. One can also consider 130 as a representation
of D, and its prime ends, and the mapping @ can always be chosen to be a
conformal mapping of D, onto D, (see the discussion of conformal mapping for
domains with normal boundary points in [1, pp. 357-372)).

An example is given in Fig. 1. Here P,P; is identified with P4zPs, P, with
Py, PyoPy; with Py,Py;.

The definition of the boundary index I,(p;) can be extended to the vertices p;
of such a quasi-admissible path. It can also be found by bypassing arcs as above,
so that (2) holds. In fact, the part of & in D,— |J?_, {p;} can be considered as the
image of a family in Dy— \J?_, {P,} under the mapping ®. Definition 1 applies to
this family and we can define I,(p,) to equal I,(P;) relative to the corresponding
family. The result is equivalent to that obtained by the other methods, since @
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Figure 1. Quasi-admissible path J.

maps a bypassing arc for P, onto a bypassing arc for p,. As for Theorem 1, one
proves:

THEOREM 2. Let & be a regular curve family filling a domain D of the
z-plane and let J be a quasi-admissible path relative to F as in Definition 4. Then
the above definitions assign a unique boundary index I, (p;) to each vertex of J and
hence (3) assigns an index to J. This index reduces to the previously defined index if
J is semi-admissible or admissible. If the domain D, of Definition 4 contains only
the finite set {z, ..., zx} of singular points of ¥, then I(J)=Y[L, I(z;).

For the case of the trajectories of a quadratic differential, Table 1 can again be
used for a quasi-admissible path, with h and k defined relative to one ‘“side” of J
at each p; on a part of J traced twice. One new case now appears, that of a first
order pole in case (aa), with boundary index 0.

In Figure 2 we give two examples. In the first, J is semi-admissible and the
boundary indices are as shown, so that I(J)= —2. In the second, J is quasi-
admissible, the boundary indices are as shown and I(J)=-3. In both cases we
verify that I(J) =} I(z;) as in Theorems 1 and 2.

Remark. The concept of index of a path can be extended to paths J passing
through the point at «. For example, if J is quasi-admissible, Definition 4
continues to have meaning and specifies a definite region D; bounded by J. A
suitable o-homeomorphism of the extended plane onto itself takes D; to a
bounded region, to which the previous analysis applies and yields a value for I(J),
independent of the particular o-homeomorphism chosen; Theorem 2 remains
valid. There is a similar discussion for semi-admissible and admissible paths; in
each case I(J) is defined relative to one of the two domains into which J separates
the extended plane.
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Figure 2. Application of index theorems.

3. A theorem on omega limit sets

For orientable curve families a curve C of the family having an omega limit point
p* which is regular must return repeatedly to the neighborhood of p* and hence
repeatedly cross an r-neighborhood U successively in the same direction. For the
more general families considered here, this conclusion fails. However, for a
recurrent curve C, we showed that C must have two successive crossings of an
r-neighborhood in the same direction [11, Theorem 3]. We here extend this
conclusion to an arbitrary curve having a regular omega limit point, but with a
further restriction on .

THEOREM 3. Let & be a regular curve family on the sphere having at most a
finite number of singular points. Let C be a directed curve of ¥ which is not closed
and has a regular point p* in its omega limit set. Then there exists an r-
neighborhood U, relative to &, which is crossed twice successively by C in the same
direction.
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Figure 3. Example with infinitely many singular points.

Proof. By the above remarks, we can assume that C is not recurrent, so that
p*€ C. As in [11, p. 306], we introduce local coordinates at p* in terms of which
the lines y=const are on curves of ¥ and label successive crossings of the
neighborhood U* of p* by C by the corresponding y-coordinates. Let us suppose
that the assertion fails and that, for every r-neighborhood, successive crossings by
C are in opposite directions. Let y,, y,, . . . be successive crossings of U* by C and
let p* have y-coordinate y*. If y, < y* < y,, then there must be a first crossing in the
interval y; <y <y, after y,. This must be in the same direction as the crossing at
y; or in the same direction as the crossing at y,. Hence by restricting to a smaller
r-neighborhood, excluding y, or y,, we would have two successive crossings in the
same direction, contrary to hypothesis. Therefore y, <y* <y, is excluded, as is
y, < y* <y;. Thus all crossings must be below y* or else all must be above y*. We
consider the former case, the other case being similar, and suppose U* restricted
so that y, <y, <y* If now y;<y,;<y,, then an r-neighborhood excluding y, but
including y, and y,; is crossed successively by C at y, and y,;, contrary to
hypothesis. There is similar difficulty if y,<y;<y,, so that we must have
y1 <y, <ys, and in general the sequence {y,} is strictly monotone. The arc y,y..,
of C plus a cross-section arc x =const in U* then form an admissible path J,
which bounds an open region D, on the sphere excluding p* and intersecting U*

only between y, and y,,,. Hence the regions D,, D,, ... are pairwise disjoint.
Since I(J,)=1, it follows that each D, contains a singular point z;, of %; the
points z;, z,,... provide infinitely many singular points of %, contrary to

hypothesis. Thus there must be at least two successive crossings in the same
direction and the theorem is proved.

Remark. If one allows infinitely many singular points, the conclusion fails. In
Figure 3 we suggest a family %, curve C and regular point p*, and there is no
r-neighborhood which C crosses successively in the same direction.

4. Many-valued interior mappings and quadratic differentials

In [16, p. 121] Stoilow showed that if a mapping f from an orientable
2-manifold M to the w-plane is “interior” (light and open in the terminology of



On the trajectories of a quadratic differential, I 65

Whyburn [20]), then local complex coordinates can be introduced on M, in terms
of which f becomes analytic.

This theorem can be extended in various ways. For example, if f is as above, if
M is a covering surface of another surface M, and, for each covering transforma-
tion g, fogef' is locally analytic in the w-plane, then complex coordinates can
also be introduced on M,, in terms of which f becomes a many-valued analytic
function on M,, whose Riemann surface is M. For if 7 is the projection of M on
M,, then the local mappings fow ' provide such coordinates on M,. The
requirement of local analyticity of fo g f~! forces f to be locally homeomorphic.
One can add additional hypotheses to allow for points at which f is locally n to 1
(like w=2z" at z=0). Furthermore, one does not need a strict covering surface,
but rather the sort of covering provided by Riemann surfaces.

Similar ideas are considered by Jenkins and Morse [7, pp. 123-128].

We are concerned here with a theorem, similar to Stoilow’s theorem, arising
naturally in constructing a quadratic differential whose trajectories have a given
topological structure. We shall phrase the theorem in terms of a continuation
process, paralleling that for analytic functions. We confine attention to the
extended plane, though the process can be extended to general orientable
2-manifolds.

In the following discussion, we consider interior mappings from domains in the
extended z-plane into the finite w-plane (z=x+iy, w=u+iv). If f is such a
mapping, with domain D, then by Stoilow’s theorem there is a homeomorphism h
of D into the extended z-plane such that fo h™' is analytic. We shall assume
throughout that h is an o-homeomorphism. This is equivalent to assuming that f
preserves orientation locally, as does an analytic function.

DEFINITION 5. Let D, and D, be domains of the extended z-plane and let
fiin Dy, f, in D, be interior mappings into the w-plane. We then say that f,, f,
are direct interior continuations of each other if D=D,ND,# & and f,|D=
fal D. |

Indirect interior continuation and interior continuation along a path are then
defined as for analytic continuation. We also need the analogue of analytic
continuation across an analytic curve (as in the Schwarz reflection principle).

DEFINITION 6. Let f, in D, and f, in D, be interior mappings and let a
curve C (homeomorphic image of a circle or of an open interval) be contained in
the common boundary of D; and D,. Let D be a domain containing C and
divided by C into two domains D}, D%, with Dj< D, and D4< D,. Let there
exist an interior mapping f in D such that f |D; = f,| D} and f |D4 = f,| D%. Then
f1, > are said to be interior continuations of each other across C.



66 WILFRED KAPLAN

THEOREM 4. Let f,, f,, Dy, D,, C, D, D}, D% be as in Definition 6. Let
f1| D4 be extendible to D, U C to yield an o-homeomorphism f1 of this set, mapping
C onto an interval of the u-axis and D} into the half-plane v>0; let f,| D% be
extendible to D’ U C to yield an o-homeomorphism f¥ of this set, mapping C onto
an interval of the u-axis and D into the half-plane v <0. Let ff|C = f¥|C. Then
f1, f2 are indirect interior continuations of each other across C.

Proof. Let f be defined in D by the requirements: f | DU C =T, f| DU C=
fX. By the hypotheses on f¥ and f¥, f is an o-homeomorphism, hence interior,
and f satisfies the requirements of Definition 6.

DEFINITION 7. Let $ be a family of nonconstant interior mappings from
domains of the extended z-plane to the w-plane. We call $# an allowed family if
(1) for each f in #, with domain D, the restriction of f to a subdomain of D is also
in #; (2) for each pair f, g in $ having the same domain, either f=g or the
equation f(z)= g(z) is satisfied on a set with no limit point in D; (3) each two
mappings in $ are indirect interior continuations of each other within $ - that is,
one mapping can be obtained from the other by a finite sequence of direct interior
continuations using only members of £.

From (1) and (2) one proves as usual that interior continuation of an element f
of # along a path within #, when possible, is unique; further, that the monodromy
theorem holds. Thus $ resembles a family of analytic continuations of an analytic
function. In the next theorem we characterize the families $ which are in fact
equivalent to such an analytic family arising from the integration of the square
root of a quadratic differential on the sphere.

THEOREM 5. Let G be the extended z-plane minus a finite nonempty set
S={z,,..., z,}. Let $ be an allowed family of interior mappings from subdomains
of G to the finite w-plane. Let each mapping in $ be locally a homeomorphism. Let
each element of $ be interiorly continuable within $ on each path in G. If D= G
and f, g are two elements of $ with domain D, let it follow that either f(z)=
g(z)+const in D or f(z) = — g(z) + const in D. At each point z, in S let $ have the
characteristics of the integral of the square root of a quadratic differential ¢(z) dz*>
having a zero, a pole or a regular point at z,. That is, let one of the following cases
arise when an element f of $ is continued interiorly within $ on all paths in a deleted
neighborhood U of z; contained in G:

(i) a single-valued mapping is obtained in U, with finite or infinite limit at z,
(as at a regular point of ¢(z) dz* or at a point where the differential has a zero of
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even order or a pole of even order greater than 2 at which the square root of the
differential has zero residue);

(ii) a double-valued mapping c + g(z) is obtained, where c is constant and g(z)
has limit 0 or » at z, (as at a zero or pole of odd order of ¢(z) dz?);

(iii) for each circuit of z, in the positive direction, f is replaced by f+ c, where c is
a nonzero constant (so that after m such circuits f is replaced by f+ mc) and on
each path leading to z, in U Im (f/c) has limit © (as at a pole of order 2 of
¢(z) dz?);

(iv) for each circuit of z, in the positive direction f is replaced by f+ c, where c is
a nonzero constant and (iii) fails but there is a simple path a leading to z; in U,
such that U— « is simply connected and such that continuation of f in U — a yields
a single-valued interior mapping f, with the properties: for some integer N, f, takes
each complex value at most N times in U— «a and along a [Im (fo/c)| = © as z = z,
(as at a pole of ¢(z) dz* of even order greater than 2 at which the square root of the
differential has nonzero residue).

Then complex coordinates { can be introduced in the extended plane in terms of
which the elements of $ become branches of an analytic function §[$(£)]"* d¢+
const, where ¢({) d¢? is a rational quadratic differential whose zeros and poles are
contained in S.

Proof. Let M be the universal covering surface of G. By uniqueness of interior
continuation in $ along paths and the monodromy theorem for such continua-
tions, the given many-valued function in G represented by $ can be lifted to M to
provide a single-valued interior mapping F of M into the finite w-plane, a local
homeomorphism. Since the various branches of $# are related by the analytic
relations w; = + w +const, complex coordinates can be introduced as above on G
and on M, so that F becomes analytic on M and each mapping in # is analytic
and is of form Feo#~!, restricted to a domain D, where m is the projection
mapping from M to G.

It remains to introduce complex coordinates in (full) neighborhoods of the
points of S. We consider the four cases of the theorem in turn.

(i) Here from an element of I defined in a subdomain of U we obtain a single-
valued analytic function f in the doubly connected region U. U is conformally
equivalent to an annulus U, :r, <|{|<r, in the {-plane, where 0=r,< r,=o and
z — z; in U is equivalent to || — r,. The function f is locally one-to-one and hence
becomes a nonconstant function f,(¢) in U, with constant limit as { — r,. It follows
from the Riesz brothers’ theorem[13, p. 197], for example, that r, > 0 cannot occur, so
thatr; = 0. We canthususe { inthe disc|¢| < r,todetermine local coordinates at z,,and
these coordinates are consistent with the previous ones at points of U. The element f
can be defined at 2, so as to yield a function analytic in a neighborhood of z,, except
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possibly for a pole at z,. If a different initial element of £ is chosen, we obtain the same
function in the neighborhood, except possibly for a change of sign and addition of a
constant. Thus, in terms of the coordinate ¢, f*? is a single-valued function in the
neighborhood, independent of the branch chosen, and f’ is analytic except possibly
for a pole at z,.

(i) Here we again assign local coordinates in U, so that the continuations of
our given element of $ in U provide a 2-valued analytic function f in U; that is, a
1-valued analytic function on a 2-sheeted Riemann surface My covering U.
Again U is conformally equivalent to an annulus U, : r, <|{|<r,, which implies at
once that the Riemann surface My, is also conformally equivalent to an annulus,
of inner and outer radii r’?, r;’>. The hypothesis that f has a limit as z — z, (and
proper choice of the coordinate {) again imply that r, =0 and hence that £, in the
disk |¢|<r,, provides the desired local complex coordinate at z,; f becomes a
function on My with a regular point or a pole at { =0. Since the two branches
fi=c+g(z), f=c—g(z) of f have constant sum 2c, f'* is again single-valued in
U,, analytic except possibly for a pole at z;.

(iii) Here we proceed as in (ii) to obtain U, and the Riemann surface My, but
now My is the universal covering surface of U, and hence is conformally
equivalent to the infinite strip log r; <Re t<log r, in a t-plane. Our element and
its continuations provide a single-valued analytic function g(t) in this strip such
that Im g(t)/c — = as Ret—logr,. It follows again from the Riesz brothers’
theorem that the case r; >0 cannot arise. Thus again we can use { as a local
complex coordinate in a full neighborhood of z,. Our element generates a
many-valued analytic function f({) in U, :0<|{|<r, and since f increases by c in
one circuit, f' is single-valued in the neighborhood. Thus f’ has an isolated
singularity at { =0, so that

a0

fO= L ad"  fQ@)=ailog{+p)+q(), )
where
PO= L aal’n 4= L auilin+b, ©

Since f increases by ¢ on one circuit, a_, = ¢/(27i). Hence

() hegrn()on(®®)
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and, since Im (f/c) > o as {— 0,

lim <2W10g|£|+lm . ) (7)

{—0

If we let G(z) =exp [2wip(1/z)/c], then G(z) is an entire function and (7) implies
that, with M(r) =max |G(z)| for |z|=r,

lim log Mr(r) =00

Hence M(r)/r— 0, so that G(z) and hence p({) reduce to constants. Thus f'({)
has a first order pole at {=0 so that f* has a second order pole.

(iv) Here, as in Case (iii), we again have the coordinate ¢ in terms of which
our element generates a many-valued analytic function f in the annulus U, :r; <
|¢|<r, and f'({) is again single-valued in U, so that (4), (5), (6) again hold, with
a_,=c/(2wi). By (6), Im(f/c) is single-valued in U, In the coordinate {, «
becomes a curve a, joining the two boundaries |{|=r, of U, and U,—«,
is a simply connected domain in which we have a single-valued branch fy({) of f, as
described in the hypotheses. Since Im (f/c) is single-valued in U, so is Im (fy/c)
and by hypothesis |Im (fo/c)| — = as { approaches the circle |{|=r, along a,. Also

Re (&) =25¢ C+ Re (p_(_Q) +Re (i@), (8)
c 2m c c
for an appropriate single-valued branch of arg { in U, — «a,.
We now let
1, /(1 1 (1 1 (1
F = — 3 — P —
olz) =~ fo(z), P(z)=~- p(z), Q(z)=_ q(z), 9)

so that Fy(z) is analytic in a region V,—a,, where V, is the annulus r;' <|z|<r7’
and in this region

Fo(z)=-i%;(log|z|+i0)+P(z)+Q(z) (10)

for @ =arg z, an appropriate single-valued branch of arg z. Here P(z) is analytic
for |z|<r{', Q(z) for |z|>r;'. We choose R so that r;'<R<r;! and, for an
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appropriate analytic function ¢ in the region 4,:R =|z|=r, we let A,(r) be the
spherical area of the image (4,): that is, as in [13, p. 163],

2w fr "2
J “ﬂL—Pdeﬂ, (11)

1
=[] A+lP?

0

in polar coordinates p, 0. We can even apply this with ¢=Fy(z) and with
¢ =log|z|=log z +i6, with @ =arg z as above; in both cases ¢ is discontinuous
along a,, but the integral has meaning. By the hypotheses on f,, |Fy(z)|—
uniformly as |z| > r;' and F, takes each complex value at most N times in
V.—a,; we conclude that Ag(r) is bounded for R<r<ri'. Also A, (r) and
Ao(r) are bounded for R<r<ri'; the first because our branch of logz is
univalent, the second because Q is analytic for R=|z|=r]'. Now one shows
easily that

Ay +p,(N=2A,(r)+2A,(r).

Thus it now follows from (10) that Ap(r) is also bounded for R<r<r;'. We
observe that

Tp(r) = jr é_gtﬁ)_ dt +const (12)

R

is the characteristic function of P [13, p. 167].

If now r; >0, then P(z) is an analytic function in the disc |z| <r;' and by (12)
and the boundedness of Ap(r), P(z) has a bounded characteristic function in the
disc. It follows that P(z) has finite radial limits almost everywhere on |z|=r7".

Now from the properties of f, it follows that |[Im F,(z)| — © as z approaches
the circle |z| = r;' on a,. By (10) and the fact that Q(z) is analytic for |z| <13, we
conclude that |Im P(z)| has limit infinity as z approaches the circle |z|=r7" along
a,. Now a, has as limit set on |z|=r]' a connected set B, which may reduce to a
point. If B is not a point, then the fact that [Im P(z)|— « as z approaches the
circle along @, would imply that P(z) could not have a finite radial limit almost
everywhere, so that this case cannot occur. Hence B is a point. But then in our
branch log z = log |z|+i8 of log z, 8 = arg z is bounded for |z| close to r7’, so that
llog z| is itself bounded. Also |Q(z)| is bounded for |z| near r;'. But in (10) the
left side has infinite limit as |z| — r;! along every radius except perhaps one, while
the right side remains bounded along almost all radii. This is a contradiction.
Therefore r, =0. ;
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Now P(z) is an entire function with Ap(r) bounded for R<r<r;'= and by
(12) Te(r) =k log r+ const, with constant k. This implies that P(z) is a polynomial
[13, p. 209], [14, p. 2, no. 9].

Thus finally, for some integer m

o= 2 al™

n=—m

If m=0 here, the hypotheses on f, cannot be satisfied, since f,({) would be
analytic at £=0. Thus f'({) has a pole at {=0 and ¢ = f"> has a pole of even
order. For a pole of ¢ of order 2, (iii) is satisfied and since (iii) is ruled out by
hypothesis, we have a pole of ¢ of even order at least 4, so that m =2.

Thus in all four cases complex coordinates can be introduced at z, and we
have our local complex coordinates everywhere in the extended plane. Hence we
can represent the extended plane as the extended {-plane, in terms of a single
complex coordinate ¢, in terms of which our given elements of $ become analytic
functions of ¢, all obtainable from a single function by analytic continuation.
Under the hypotheses on ., these functions f are such that f? is single-valued, say
f(0) = ¢(L), where ¢({) is analytic and non-vanishing except at the n points of S.
The analysis of the four cases shows that ¢ has rational character at these points,
so that ¢ is a rational function of (. Therefore ¢(¢) d{> defines a rational
quadratic differential in the extended plane, and the branches f are representable
as [ [d(O)]Y? d{ + const as asserted.

REFERENCES

[1] H. BEHNKE and F. SOMMER, Theorie der analytischen Funktionen einer komplexen Verdnderlichen.
Berlin-Gottingen-Heidelberg, Springer Verlag, 1962.

[2] PuiLir HARTMAN, Ordinary Differential Equations, New York, John Wiley and Sons, 1964.

[3] JaMEs A. JENKINS, On the global structure of the trajectories of a positive quadratic differential,
Illinois J. Math. 4 (1960), 405-412.

[4] ——, Univalent Functions and Conformal Mapping, Ergebnisse der Mathematik und ihrer
Grenzgebiete, Neue Folge, Heft 18, Berlin-Gottingen-Heidelberg, Springer Verlag, 1965.
[S] ——, A topological three pole theorem, Indiana Univ. Math. J. 21 (1972), 1013-1018.

[6] JaMEs A. JENKINsS and MARSTON MORSE, Topological methods on Riemann surfaces, pseudohar-
monic functions, Ann. of Math. Studies, no. 30, 1953, 111-139.
[7] ——, Conjugate nets on an open Riemann surface, Lectures on Functions of a Complex Variable,
Ann Arbor, Univ. of Michigan Press, 1955, 123-185.
[8] James A. Jenkins and D. C. SPENCER, Hyperelliptic trajectories, Ann. of Math. (2), 53 (1951),
4-35.
[9] WiLrreD KAPLAN, Regular curve-families filling the plane, 1. Duke Math. J., 7 (1940), 154-185.
[10] ——, Regular curve-families filling the plane, 11., Duke Math. J. 8 (1941), 11-46.
[11] ——, On the three pole theorem, Math. Nachr. 75 (1976), 299-309.



72 WILFRED KAPLAN

[12] ——, On the trajectories of a quadratic differential, 1I (to appear).

[13] RoLFr NEVANLINNA, Eindeutige analytische Funktionen, Springer, Berlin, 1936.

[14] G. PoLyA and G. SzEGO, Aufgaben und Lehrsdtze aus der Analysis, vol. I, New York, Dover,
1945.

[15] A. C. ScHAEFFER and D. C. SPENCER, Coefficient Regions for Schlicht Functions, Amer. Math.
Soc. Colloquium Publications vol. 35, 1950.

[16] S. StoiLow, Legons sur les Principes Topologiques de la Théorie des Fonctions Analytiques, Paris,
Gauthier-Villars, 1938.

[17] Kurt STREBEL, On quadratic differentials and extremal quasiconformal mappings, Lecture Notes,
Univ. of Minnesota, Minneapolis, 1967.

[18] , Quadratische Differentiale mit divergierenden Trajektorien, Lecture Notes in Math., vol. 419,
Springer, Berlin, 1974.

[19] ——, On the trajectory structure of quadratic differentials, Ann. of Math. Studies no. 79, Princton
Univ. Press. 1974, 419-438.

[20] G. T. WuYBURN, Introductory topological analysis, Lectures on Functions of a Complex Variable,
Ann Arbor, Univ. of Michigan Press, 1955, 1-14.

University of Michigan
Ann Arbor, Michigan 48109
US.A.

Received March 29, 1977



	On the trajectories of a quadratic differential, I.

