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On co-H-spaces

PeTer HiLTON, GUIDO MISLIN AND JOsEPH ROITBERG

Dedicated to Beno Eckmann on the Occasion of his Sixtieth Birthday

1. Introduction

This paper is concerned with two aspects of the theory of co-H-spaces, which
we interrelate in our final result. First, let W be a finite connected complex and let
X be a nilpotent space of finite type. It was proved in [HMR] that if W is a
suspension or a l-connected co-H-space, then there exists a cofinite set of
primes Q such that the rationalizing map Xg— X, induces an injection of
homotopy sets [ W, Xg] — [ W, X, ], provided that S = Q. We show in Section 3 that
the class W of finite connected complexes W for which this conclusion holds is
much broader than the result above indicates, and indeed that it properly contains
all finite connected co-H-spaces.

A set M with a binary operation, written additively, is called a loop if it admits
a two-sided zero, and if the equations

at+x=>b, yta=b

have unique solutions x, y in M for all a, b in M. We show in Section 2 that if W
is any connected co-H-space and X is any nilpotent space, then the co-H-
structure w: W — Wv W induces a loop structure in [ W, X ], which is, of course,
natural with respect to X. We use this fact, together with Theorem 2.4 of [HMR],
to obtain the results referred to above.

Sections 4-6 are concerned with the Ganea conjecture (Problem 10 of [G1])
that a connected co-H-space Y is of the homotopy type of Zv B, where Z is
1-connected and B is a bunch of circles. Considerable progress was made in this
direction by Berstein and Dror [BD], who showed that the result was true if the
co-H-structure on Y is (homotopy) co-associative. In fact, they proved more and,
with regard to connected co-H-spaces Y, they established the following. With any
such Y we may associate the classifying map u:Y — B for the universal cover

Y, where B is a bunch of circles, and then the Ganea conjecture holds if, for any
space A, the binary operation in the set [ Y, A] induced by the co-H-structure in

1



2 PETER HILTON, GUIDO MISLIN AND JOSEPH ROITBERG

Y satisfies
(r+su)+tu=r+(su+tu),r:Y—>A,s t:B— A. (1.1)

They describe the condition (1.1) by saying that B co-operates co-associatively on
Y. Of course, if Y is a co-associative co-H-space then [Y, A] is associative, so
(1.1) certainly holds.

We show in Section 4 that the Ganea conjecture holds if Y is a coloop;'"’ we
give the explicit definition of a coloop in Section 2, but, in fact, coloops Y are
characterized by the property that [ Y, A]is a loop for all spaces A. Then the next
two sections are devoted to obtaining a common generalization of the Berstein—
Dror condition and the coloop condition. We show that with every connected
space X with free fundamental group we may associate a canonical idempotent e,
characterized by the property that 7,e = 1 and é: X — X is nullhomotopic, where
X is the universal cover of X (indeed e is characterized by weaker properties). In
the pointed homotopy category any idempotent splits; that is, we have a space
im e and maps

p.:X—>ime,i,:ime— X, with ip, =e, p.i, = 1. (1.2)

Then Theorem 6.1 gives conditions under which an idempotent e splits a con-
nected co-H-space Y in the sense that Y =Z vim e, for some space Z. We obtain
our generalization by showing that these conditions are satisfied by the canonical
idempotent e if the equation x+ e =a in [Y, Y] has a unique solution for all a in
[Y, Y], and that then im e =B and Z is 1-connected. It is immediate that e has
this property if Y is a coloop, or, more generally, if [ Y, Y] is a loop; and we adapt
arguments of [BD] to show that e has this property if the Berstein—Dror condition
is satisfied. Finally we bring together the two parts of the paper to show that the
only connected but not 1-connected nilpotent co- H-space is S'. It is interesting to
remark that none of the proper localizations of S' can be co-H-spaces; but, of
course, the localizations of 1-connected co-H-spaces are again co-H-spaces.

We frequently confuse maps and homotopy classes in what follows (as also in
(1.2)); however, we remind the reader, in the text, of this convention.

2. The loop [ W, X]

Let W be a connected co-H-space with structure map u: W— Wv W. Then
p induces in the set [ W, X, for any space X, a binary operation, +, natural in X,

1 Of course, conversely, if Y=2Zv B, with Z 1-connected and B a bunch of circles, then Y admits
a coloop structure.
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with 2-sided zero, the class of the constant map. We will show that [W, X ] is, in
fact, a loop if X is nilpotent.

PROPOSITION 2.1. The map ¢,=(1vV)e(uv]): WvW—->WvW is a
homology equivalence. So, too, is the map ¢,=(Vv1)e(lvu).

Proof. Now, if n>0, H(WvW)=HW®H,W and ¢,4x:H,(WvW)—>
H,(WvW) is given by ¢,4(a, b)=(a,a+b), a, be HW. Similarly, ¢,4(a, b)=
(a+b,b).

We say that (W, u) or, simply, W is a (homotopy) coloop if ¢, and ¢, are
homotopy equivalences.

COROLLARY 2.2. If W is 1-connected, then ¢,, ¢, are homotopy
equivalences, and so W is a coloop.

THEOREM 2.3. Let W be a connected co-H-space and X a space. Then
[W, X] is a loop provided that (i) W is 1-connected, or (ii) X is nilpotent.

Proof. Note first that [W,v W,, X]=[W,, X]x[W,, X]. Then it is easy to see
that ¢, induces

T (W, XIx[W, X]—[W, X]x[W, X], given by ¢T (a, B)=(a+B,B),
(2.1)
while ¢, induces

¢3:[W, XIX[W, X]— [W, X]x[W, X], given by ¢3(a, B)=(a, a+p).
(2.2)

Thus [W, X1 is a loop precisely when ¢¥ and ¢* are bijective. Now if W is
l-connected, ¢,, ¢, are homotopy equivalences, so ¢, ¢¥ are bijective; and if X
is nilpotent then any homology equivalence ¢:A — B induces a bijection
¢*:[B, X]—[A, X] (Dror’s Theorem).

Remarks. (i) It is known that there are connected spaces W (we may even
take W=S'vS', according to M. G. Barratt”) which admit co-H-structures

*Indeed, it is not difficult to see that if w is the free group on generators x, y, then the
comultiplication 7 — 7 * m, given by

X —> x/xll, y —> ylyll[y" x"]

admits no left inverse. Here we write a’, a” for the element a € 7 regarded as an element of the first,
second copy of 7 in 7 * m, respectively.
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which are not coloop structures. It is not known whether there are connected
spaces W which admit co-H-structures but admit no coloop structures.

(ii) The significant fact we use in Theorem 2.3 (ii) is that a nilpotent space is
Hy(—; Z)-local in the sense of Bousfield [B]. Thus, of course, the conclusion of
Theorem 2.3 holds if X is Hy(—; Z)-local.

(iii) If W is a nilpotent connected co-H-space, then [W, W] is a loop. This
does not immediately guarantee that the co-H-structure on W is a coloop
structure. However, as indicated in the Introduction, this is an essential step in
our proof below (Theorem 6.7) that W is then either 1-connected or S'. It is easy
to see that any co-H-structure on S' admits a 2-sided co-inverse, but this
condition is apparently weaker than that of being a coloop.

3. Injectivity of [W, X ]— [W, X,]

In this section we study the family W of finite connected complexes W such
that, for all nilpotent X of finite type, there exists a cofinite set of primes Q such
that the rationalizing map r: Xg— X, induces an injection of homotopy sets

re:[W, Xs]—~ [W, X,] forall ScO. (3.1)

We know, from [HMR], (a) that there are finite connected complexes not in W
and (b) that, if we replaced, in (3.1), the requirement of injectivity by that of weak
injectivity (that is, r5'(0) = 0), then all finite connected complexes would have the
given property. Naturally we will exploit observation (b) in studying the family W,
reinforcing it with the following elementary proposition.

PROPOSITION 3.1. A loop-homomorphism is injective if it is weakly injective.

We now proceed to the study of W, as a subfamily of the family of all finite
connected complexes.

PROPOSITION 3.2. If W is a co-H-space, then WeW.
Proof. This follows from Theorem 2.3(ii), observation (b), and Proposition 3.1.

PROPOSITION 3.3. If Wis a 1-connected rational co-H-space, then WeW.

Proof. We are given that W is 1-connected and that there is a co-H-struc-
ture I""O: Wo"'> Wov Wo. If jO emdeS W()V WO in WOX Wo, then on.LOZAo, the di'
agonal map. Consider the map

wor : W— Wyv W,
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where r: W — W, rationalizes. By Theorem 2.10 of [HMR], we know that there
exists a cofinite set of primes Q; such that w,r and joumr lift uniquely into
WiV Wy and W, X Wy respectively, for all R< Q,. Let @: W— Wyv Wy be the
lift of uor and let @ induce wg: Wg— WrvWg. Then it is clear that ug is a
co-H-structure on Wrg.

Now choose Q, cofinite, so that [W, Xs]— [ W, X,] is weakly injective for all
S< Q, and let O = Q,N Q,. We have the commutative diagram, for S< Q,

[Wo,, Xs] 2> [Wo,, X,]
where e¢: W— W, Q-localizes. Then each e* is bijective and ry is weakly
injective. It follows that ry, is weakly injective; but ry, is a loop-homomorphism
by Theorem 2.3, so that ryy is injective; so, too, therefore is ry.

PROPOSITION 3.4. If W, W,eW, so does W, v W,.

Proof. This follows immediately from the relation [W,vW,, X]=

[W,, XIx[W,, X].

PROPOSITION 3.5. Let f: W— W' be a map of finite connected complexes
inducing a rational homology isomorphism. Then if one of W, W' belongs to ‘W', so
does the other.

Proof. Since W, W' are finite and f: Ho(W; Q)= Hy (W'; Q), it follows that
there exists a cofinite Q, such that, if G is a Q,-local abelian group,

fx: Ho(W; G)= He(W'; G). (3.2)
Now suppose that there exists a cofinite Q, such that ry:[W, Xs] — [W, X;] for
S€Q, and let Q=Q;NQ,. Since X, X, are Hy(—;Zy )-local if ScQ,, it

follows that, in the diagram below, with S< Q,

I I

[W', X5 [W', X,]

the vertical arrows f* are bijective. Thus r4 is also injective. In very similar
fashion we infer that, if W’ e W, then so does W.
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COROLLARY 3.6. Let W~ W' be the equivalence relation generated by the
relation W-> W' which asserts the existence of a rational homology equivalence
from W to W'. Then if one of W, W' belongs to ‘W, so does the other.

From Propositions 3.2, 3.3, 3.4 and Corollary 3.6 we infer

THEOREM 3.7. Let W~ A v B, where A is a (finite) co-H-space and B is a
(finite) 1-connected rational co-H-space. Then WeW.

Remark. Suppose that W is a (finite) nilpotent rational co- H-space. Then W,
1s (by definition) a co-H-space, so that W, is 1-connected (its fundamental group
is free and 0-local). Thus ™ W is a finite nilpotent group operating nllpotently on
the homology groups of W, the universal cover of W. It is easy to see that W is a
finite 1-connected rational co- H-space, since 7, W is finite and W, = W,,. Thus the
covering map W — W is a rational homology equivalence and so WeW by
Theorem 3.7. We immediately infer that W contains more than just the co-H-
spaces; for example it contains the real projective spaces P", for n odd. Of course,
we could have inferred from Proposition 3.3 that ‘W contains spaces which are
not co-H-spaces; thus, W contains $*U_e’, where a generates m4(S?).

4. Co-H-maps

Let (X, n), (Y, n) be co-H-spaces and let f: X — Y be a map making the
diagram

X 15 Y

1“ l“ ’ (4.1)

XvX—f—Xf-) YVY

homotopy-commutative. We then say that f is a co-H-map. Let

xf
Y X 4.2)

h

XxX1i,y-2,7

be the Puppe sequence of f. We prove

PROPOSITION 4.1. Let f: X — Y be a co-H-map. Then, in (4.2), we may
give Z the structure of a co-H-space in such a way that g is a co-H-map. If,
further, f is corectractile,'”” Y is a coloop, and Z is 1-connected, then the co-H-
structure on Z is determined by the requirement that g be a co-H-map.
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Proof. We will deliberately confuse maps and homotopy classes; thus we will
write equality in place of the homotopy relation. We consider the diagram

x 1 v =&, 2z

XvX L yvy &8 zZvz
| | [

XxX L yxy£s zxZ

where ju=A4. Since (gvguf=(gve(fvHn=(gfvg)u=0, there exists
p:Z—->2ZvZ with pag=(gvg)n. Consider A, jo:Z—>ZxZ. Then Ag=
(gxg)Ad=(gxg)ju=j(gvgwr=jrg Now the group [} X, A] operates on the set
[Z, A], for any space A, and the relation Ag = jag guarantees se[) X, ZX Z],
such that A = (ji)*. But jo:[> X, Zv Z]—> [} X, Z X Z] is surjective, so that there
exists re[) X, ZvZ] with jr=s. Set w=a". Then A=(r) =jx")=ju.
Moreover ug = f1g, so that u is a co- H-structure on Z with respect to which g is a
co-H-map.

If f is coretractile, that is, if ) f has a left inverse, then it is obvious from (4.2)
that h=0. Thus [Z, A ] L [ Y, A]is weakly injective. However if we use the co-
H-structure p on Z of the first part, then g is a co-H-map, so that g* is a
homomorphism. But since Z is 1-connected, (Z, p) is a coloop (Corollary 2.2), so
that g* is a weakly injective homomorphism of loops and therefore (Proposition
3.1) injective. It follows that u:Z — Zv Z is uniquely determined by ug, and
hence by the relation ug=(gv g)u.

Remark. Note that nowhere in the argument do we require that u: X — Xv
X be a co-H-structure.

THEOREM 4.2. Let f: X — Y be a co-H-map of coloops with the mapping
cone Z 1-connected. If f has a left inverse then Y=Zv X.

Proof. Let uf=1 and consider the equation t+fu=1 in [Y, Y]. Then f=
(t+ fu)f=tf + fuf, since f is a co-H-map, = tf+f. Since X is a coloop, tf=0, so
that ¢t =vg, v:Z — Y. Consider the maps

(PR H'\u

Y& ZvX, where i,i, embed Z X in ZvX
w.f)

3 In the sense of James; that is, ). f has a left (homotopy) inverse.
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We will prove that these maps are mutual (homotopy) inverses. First,
(v, lizg +ixu)=(v, lizg+(v, fixu=vg+fu=1.

Next (i g+ ixu)f =i gf +ixuf, since f is a co-H-map, = iy, so it remains to show
that (i g +iyu)v =i,. To see this, observe that

i,8 +ixu = (izg + ixu)(vg+ fu) = (i g +ixu)vg + (izg + ixu)fu
= (iygtixu)vg+ ixu.

Since Y is a coloop, we infer that
iz8 = (izg +ixu)vg.

But we saw in the proof of the second part of Proposition 4.1 that g is an
epimorphism, so that i, = (i,g +ixu)v, as required.

Remark. In fact, g has the right inverse v; for g = g(vg +fu)=gvg and g is an
epimorphism.

We may illustrate Theorem 4.2 as follows. Let Y be a connected coloop.
There is then a bunch of circles B and a map f: B — Y inducing an isomorphism
of fundamental groups. Moreover, since B is an Eilenberg-MacLane space, there
is plainly a map u: Y — B inducing fg' on 7; and uf = 1. There will be a unique
map u:B— BVB realizing (fvf)y'usfs on r; and this p will be a co-H-
structure on B such that f is a co-H-map. Since (uv u)u, pu: Y — Bv B induce
the same homomorphism of 7r,, they are homotopic, so that u is also a co- H-map.
It follows that f embeds B as a retract of Y so that B is also a coloop. Thus, if Z
is the mapping cone of f, then Z is 1-connected, and we conclude

COROLLARY 4.3. Let Y be a connected coloop. Then Y =Z v B, where Z is
a 1-connected co-H-space and B is a bunch of circles.

We now proceed to generalize Corollary 4.3; our generalization will also
comprehend the Berstein—Dror condition.

5. Homotopy idempotents

DEFINITION 5.1. Let d: X— X be an idempotent homotopy class (i.e.,
d*=d). Then we define the image of d by

d d

imd=—"5 (X2 X245 X —> ),
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We continue to ‘confuse’ maps and homotopy classes. Then the diagram

d d

X__l.__)X_l_)..

gives rise to maps p=p,: X —imd, i =i, :im d = X such that d = ip. We call this
the canonical factorization of d. We assume henceforth that X is connected.

LEMMA 5.1. pi=1:imd — im d.

Proof. The space im d represents the functor A — im ([A, X]—=>[A, X)),
from the category of all connected pointed complexes to sets and this functor
satisfies the Brown axioms. Explicitly,

[A,im d]=dy[ A, X]. (5.1)

Thus iy :[A,im d]— [A, X] corresponds in (5.1) to the embedding of dy[A, X]in
[A, X], and py:[A, X]— [A, im d] corresponds to dy:[A, X]— dy[ A, X]. But dy
is the identity on dy[A, X] so that pyis =1, whence pi=1.

LEMMA 5.2. w, imd=im m,d, H, im d =im H,d.

Proof. The first result follows immediately from (5.1); the second follows from
the fact that homology commutes with direct limits.

Let H stand for reduced homology; recall that X is connected. We then have

PROPOSITION 5.3. Let d,e: X — X be idempotents such that Hd+ He =
1:HX — HX. Then

{Hp,, Hp,}: HX = H(im d) D H(im e), (Hi,, Hi,): H(im im e)= HX.

Proof. Since Hd + He = 1 it follows that Hd, He are orthogonal idempotents of
HX. The result now follows immediately from Lemma 5.2.
We come now to one of our principal results on co-H-spaces.
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THEOREM 5.4. Let X be a connected space with free fundamental group.
Then there exists a unique idempotent e:X — X such that me=1 and é=
0: X — X. Moreover p, : X — im e is the classifying map for X and e is a co-H-map
if X is a co-H-space.

Proof. We argue as in Section 4 that there is a bunch of circles B and there are
maps f:B— X, u: X — B such that uf=1. We set e = fu: X — X. Plainly, from
Lemma 5.2, 7, (im e)=m,B, n=1, so that e = fu is the canonical factorization of
e, thatis, B=ime, p, = u, i, = f. Certainly u: X — B is the classifying map for X.
Since ¢ factors through B it is plain that é =0. We again refer to the argument in
Section 4 showing that, if X is a co- H-space, then B may be given the structure of
a co-H-space such that f, u are co- H-maps; this shows that e will be a co- H-map.

Now let e': X — X be an idempotent such that m,e'=1 and é =0. Then
certainly im e’ is a K(m, X, 1) and, since 7, X is free, there will be a homotopy
equivalence 0 : K(7, X, 1) — B giving rise to a (homotopy) commutative diagram

, K(m X, 1)
pe ie'
X e X
\B /

proving the theorem.

6. The main theorem

We come now to the promised generalization of Corollary 4.3. We first need a
definition.

DEFINITION 6.1. Let M denote a set with a binary operation, written
additively. We say that e € M is loop-like on the right if the equation x +e = a has
a unique solution x in M for each ae M.

We now state the main theorem.

THEOREM 6.1. Let Y be a connected co-H-space and e: Y — Y an idem-
potent co-H-map. If e is loop-like on the right (in the set [Y, Y] with binary
operation induced by the co-H-structure in in Y), then there exists a unique
idempotent d: Y — Y such that d+e=1 and

Y=imdvime.
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We first need a topological and an algebraic lemma. These lemmas, together
with Lemma 6.4, are modelled on arguments in [BD].

LEMMA 6.2. Let Y be a connected co-H-space and k a field. Then H,(Y; k)
is a free k[m,Y]-module, n=1, and

H(Y;k)=H,(Y; k)®, vk, n>1. 6.1)

Proof. Ganea [G2] has shown that Y is a retract of V=) Y. By Corollary
4.3 or [BD], ¥ 2Y=Zv B with Z 1-connected and B a bunch of circles, so that,
according to Lemma 1.11 of [BD], H,(V;k),n=1, is a free k[m, V]-module.
Since Y is a retract of V, ar, Y is a retract of 7, V, and so H,(V; k), n=1, is a free
k[w,Y]}-module. Now H,(Y;k) is a o, Y-retract of H,(V;k), so that
H,(Y; k),n=1, is a projective k[, Y]-module. But Y is free, so that, by a
result of Cohn-Seshadri, H (Y; k) is a free k[, Y]-module. The relation (6.1)
now follows by appealing to the Cartan-Leray spectral sequence of the universal
covering Y — Y — K(m,Y, 1), using the fact that H,(Y; k) is a free k[mw, Y]-
module, n=1, to infer that

E2,=0, p>0, unless p=1, q=0;
El,=H,(Y;k)®, vk q>0.

LEMMA 6.3. Let w denote a free group and k a field. Let F be a free
k[7]-module and let e: F — F be an idempotent such that the induced idempotent
€:FQ®,k— FQ,_k is the identity. Then e is the identity.

Proof. Since e is an idempotent, im e < F is a direct summand, hence projec-
tive. Thus the short exact sequence

kere>> F>»ime

splits and remains exact on tensoring with k; moreover, ker e is also projec-
tive. It follows that ker e ®, k =0, since &€= 1. But ker e is projective and hence
free (by the Cohn-Seshadri result), so that ker e =0 and e is injective. The result
follows since an injective idempotent is necessarily the identity.

Remark. Lemma 6.3 remains true if the field k is replaced by a principal ideal
domain D.

We now focus on Theorem 6.1, but we prefer to state our argument in the
form of a further lemma, since it seems to have some independent interest.
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LEMMA 6.4. Given Y —— X —— Y with ba =1 and X a connected co-H-
space, assume that a (or b) induces isomorphisms of w, and H. Then we also have

ab=1 so that Y= X.

Proof. Since ba = 1 it follows that if a or b induces isomorphisms of 7, and H,
then a and b induce mutually inverse isomorphisms. Thus if j=ab then j: X - X
is idempotent with 7r,j =1, Hj = 1. Let k be a field, set F = H,t(f(; k), n>1, and let
j induce e:F— F. By Lemma 6.2, F is free, and, by (6.1), € is just Hj so that
¢=1. By Lemma 6.3, e=1. Since k was an arbitrary field, it follows that j is
a homotopy equivalence. But since ba = 1, this implies that ab = 1.

Proof of Theorem 6.1. Since e is loop-like on the right, there exists a unique
d: Y— Y withd +e=1. We prove that d is idempotent. First e = (d + e)e = de + e,
since e 1s a co-H-map. Since e is loop-like, de =0. Thus d =d(d+e)=d*+de =
d?, so d is idempotent.

Now (compare the proof of Theorem 4.2) we have, with

a=i,p,+i,p, ‘X b=(i,i,) . Y
’ - )

X=imdvime, Y

where i,, i, embed im d, im e, respectively, in and ba = i;p, +i,p. =d+e=1. Now
imd, ime are retracts of Y, hence co-H-spaces. Thus X is a (connected)
co-H-space. Also b induces an isomorphism HX = HY by Proposition 5.3. Since
m, X, m, Y are free and H,b is an isomorphism, ,b is injective (by the Stallings—
Stammbach Theorem). Since ba = 1, b is surjective, so that 7 b is an isomorph-
ism. We may thus apply Lemma 6.4 to infer that

Y=imdvim e.

Remark. We could, of course, have reached the same conclusion simply by
assuming that, in [Y, Y], we have two idempotents d, e such that d+e=1.
However, this condition would be very hard to verify. On the other hand, as we

now show, there are very accessible conditions which guarantee that the canonical
idempotent e of Theorem 5.4 satisfies the hypotheses of Theorem 6.1.

COROLLARY 6.5. If the canonical idempotent e: Y — Y of Theorem 5.4 is
loop-like on the right then we have the Ganea decomposition of the co-H-space Y,

Y=ZvB

where Z is 1-connected and B is a bunch of circles.
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Proof. In the notation of Theorem 6.1, we have only to show that imd is
1-connected if m,e=1. Now H,e=1 and H,d+H,e=1 so H;d=0. Thus
H,im d =im H,d = 0. It follows that 7r; im d is a free group whose abelianization
is trivial, so that it is itself trivial and the corollary is proved.

Remark. We obviously get the same conclusion if e is loop-like on the left.

THEOREM 6.6. The canonical idempotent e:Y — Y of Theorem 5.4 is
loop-like on the right if (i) [Y, Y] is a loop or (ii) the induced co-operation of
B=im e on Y is co-associative in the sense of [BD].

Proof. (i) is obvious and is included in order to show explicitly that we have
here a generalization of Corollary 4.3. To prove® (ii) note that the condition
asserts that, in the set [Y, A] with binary operation + induced from the
co-H-structure in Y, we have

(r+su)+tu=r+(su+tu), rrY—-A, s,t:B— A, (6.2)

where u: Y — B is the classifying map for Y (see the proof of Theorem 5.4). Now
(6.2) immediately implies that, if we give B the co-H-structure making u: Y — B
and f:B— Y co-H-maps (e = fu), then [B, A] is associative, so that the co-H-
structure on B is co-associative. However, this implies (see [EH] or [K]) that the
co-H-structure on B is a (homotopy) cogroup structure so that [B, A]is a group.
Now recall that e=fu. Set é=(—f)u:Y — Y. Then, since u is a co-H-map,
et+e=ée+e=0. Thus, by (6.2), we have, in [Y, Y], (a+é&)+e=a+(e+e)=aq,
and, if x+e=y+e then x=x+(e+e)=(x+e)+é=(y+e)t+te=y+(e+e)=y.
Thus e is loop-like on the right as claimed.
We may apply Corollary 6.5 and Theorem 6.6 to prove the following.®

THEOREM 6.7. Let Y be a nilpotent co-H-space. Then Y is 1-connected or
Y=§'

Proof. By Theorem 2.3 [Y, Y] is a loop. Thus we know that Y= Zv B where
Z 1s 1-connected and B is a bunch of circles. Since 7, Y is nilpotent, B=0 or
B=S'.If B=0, Y is l-connected. If B=S! and Z is not contractible, let
H,(Z; k) # 0 for some n>0 and some field k. Then H,(Y; k) is a non-trivial free
k[Z]-module (Lemma 6.2) so that m, Y does not act nilpotently on all H,Y. This
contradicts the nilpotency of Y and shows that, if B=S', then Y=§".

* Much of this argument is contained in [BD].
> Mislin gave a (more involved) proof of this result in a letter to R. Held.
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