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Ein Verzerrungssatz fur schlichte Funktionen

VoN CHRISTIAN BLATTER

1. Das Folgende ist ein Beitrag zur Theorie der schlichten analytischen
Funktionen f: D — C, D:={z ||z| < 1}. Die Menge dieser Funktionen bezeichnen
wir mit S, die Menge der normierten (f(0) =0, f'(0) = 1) derartigen Funktionen wie
iiblich mit S. Die Funktionen fe S geniigen dem sogenannten Koebeschen Verzer-
rungssatz:

E4

(1-|z|)

||
(1+]z))®

<|f(z)l= VzeD, (1)

siehe z.B. [4], S. 21. Diese Ungleichungen sind natiirlich fur Schlichtheit nicht
hinreichend, anderseits aber scharf: Fiir die Koebe-Abbildung

z

k(z):= =27 (2)

und z=<0 (z=0) gilt in (1) links (rechts) das Gleichheitszeichen. Wir beweisen
eine Ungleichung fiir Funktionen fe S, die im Gegensatz zu (1) zwei freie
Variable enthilt. Sie liefert den Mindestabstand der Punke f(z,) und f(z,), wenn
f'(zo) und f'(z;) gegeben sind, und stellt eine notwendige und hinreichende
Bedingung fiir Schlichtheit dar.

SATZ. Fiir beliebiges f€ S und beliebige Punkte z,, z,€ D gilt

sinh 2p

f(z0) =z =5 Y. (=|zP?If ()P (3)

cosh4p ; 5,

dabei bezeichnet p den hyperbolischen abstand von z, und z,. Das Gleichheits-
zeichen steht genau dann, wenn f zur Abbildung (2) konform dquivalent ist und z,,
z, auf der Symmetrieachse von f liegen.
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652 CHRISTIAN BLATTER

Vom geometrischen Gehalt einmal abgesehen ist fiir allfillige Anwendungen
dieser Ungleichung auf Koeffizientenprobleme der folgende Umstand von Be-
deutung (vgl. die Ergebnisse von FitzGerald [1]): Schreibt man (3) in der Form

\I,(f’ 205 Zl) = O,

so ist ¥ eine hermitisch-quadratische Funktion des Koeffizientenvektors von f
und wegen

20— 2,

tgh p =
ghp 1_2021

eine reell-analytische Funktion der Variablen z,, z,€ D.

2. Es sei fe§, und es seien z,, z, zwei beliebige Punkte in D. Die Verbin-
dungsstrecke o; der Bildpunke f(z,) und f(z,) liegt entweder ganz in f(D) oder
nicht. Im ersten Fall (=:1) ist ihr Urbild ein analytischer Bogen vy,, in D von
endlicher Lange 2L, im zweiten Fall (=:1II) enthilt f '(0,;) wenigstens zwei
analytische Bogen v, und v,, die von z, bzw. z; ausgehend bis zum Rand von D
laufen und damit beide unendliche hyperbolische Lange besitzen. Es sei y:s—
z(s) einer der erwahnten Bogen in D, bezogen auf die hyperbolische Bogenlinge,
und

a: s> w(s):=f(z(s)) (4)
der Bildbogen in der w-Ebene. Wir schreiben
w(s)=:A(s)e®®; (5)

dabei ist O(s) bei den hier gemachten Annahmen konstant, und A (s) > 0 stellt den
lokalen Streckungsfaktor von der hyperbolischen Metrik im Punkt z:=2z(s)e D
zur euklidischen Metrik im Punkt f(z) e C dar. Fiir den Abstand der Punkte f(z,)
und f(z,) erhalten wir damit im Fall I:

A:=Ifz)~fzl= | AGs)ds

und im Fall II:

A?J A(s)ds+J A(s) ds. (6)

Yo Y1



Ein Verzerrungssatz fiir schlichte Funktionen 653

3. Ueber die Funktion A bzw. u:=log A werden wir in den Abschnitten 6 und
7 folgendes beweisen:

lu(s)|<4 Vs, (7)
ii(s)<2(16—u>(s)) Vs. (8)
Wir wenden uns zunidchst dem Fall I zu und beginnen mit dem folgenden

LEMMA. Die Funktion u:[—L, L]— R geniige den Bedingungen (7) und (8).
Dann gibt es eine Losung uy der Differentialgleichung

y=2(16—7y7), 9)
die an den Stellen +L dieselben Werte annimmt wie u, und es gilt

u(s)=uq(s) Vse[-L,L] (10)

Beweis. Wegen (7) gilt jedenfalls

—8L<u(L)—u(—L)<8L, (11)
und die Grenzfille treten nur auf, falls t(s)=+4. Die Funktionen

y(s):=3log (cosh 8s+7sinh 8s)+c¢, 7e[-1,1],ceR, (12)

sind Losungen der Differentialgleichung (9). Eine kurze Rechnung liefert

y(L)—y(=L) =artgh (7 tgh 8L);

durch geeignete Wahl von 7e[-1,1] liasst sich daher der angeschribenen
Differenz jeder Wert im Intervall [-8L, 8L ] erteilen. Wegen (11) folgt hieraus die
Existenz einer Funktion uy, die das angegebene Randwertproblem 10st.

In den Grenzfillen i(s)=+4 wird 7==1 und u4(s)= u(s). Die Ungleichung
(10) ist dann trivialerweise erfiillt. Im allgemeinen Fall ist |7|<1, und mit
r=:tghc’, ¢'eR, erhilt man aus (12):

ug(s) =4 tgh (8s+c’),
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wir diirfen daher fir den Rest des Beweises
lug(s)|<4 Vse[-L, L]

annehmen. Nach dem Satz von Rolle gibt es ein soe[—L, L] mit t(sy) = tig(so).
Wir zeigen zunichst:

u(s)<uy(s) Vselsq, L]. (13)
Widrigenfalls sei
sy :=inf {s=s, | (s)> tg(s)}.
Dann ist
u(sy) = ug(sy) €14, 4. (14)

Wegen (8) gilt in einer geeigneten Umgebung U; (s;):

an o D)
206—u2(t))  2(16— (D)

und somit fur se[s,, s, +5[:

s S

u Uy
rtgh—| =<artgh—
ag4 agh4

Wegen (14) folgt hieraus u(s)=<uy(s) fiir alle s unmittelbar rechts von s, im
Widerspruch zur Definition von s,. Aus (13) folgt: u — uy ist im Intervall [s,, L]
monoton fallend. Wegen u(L) = ug(L) ist daher u(s)= uy(s) fir alle se[s,, L].
—Analog schliesst man fiir das Teilintervall [ - L, s,]. q.e.d.

4. Nach dem beim Beweis des Lemmas Gesagten ist

A= IL A(s)ds= J:A*(s) ds (15)

—L
mit

Ax(s) = C(cosh 8s + 7 sinh 85)'/2,
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wobei die Parameter C und 7 so zu wiahlen sind, dass gilt:
Ag(mL)=A(—=L)=:Xy, Ax(L)=A(L)=:A,.

Setzt man Aj+Af=: R?, so ergibt sich folgende Bedingung fur C:
2C? cosh 8L = R?,

Damit erhalten wir anstelle von (15):

L
AZ_Q:—C‘OESI’;?I? J (COSh 8s + 7 sinh 88)1/2 ds. (16)
L

Wir bezeichnen das Integral rechter Hand mit B(7). Wegen

L inh? 8
B(r) = _%J sinh” 8s

ds<0 (—-1=sr=1
|_; (cosh 8s+ 7 sinh 85)*? S ( <1

nimmt B(7) auf [—1, 1] das Minimum in den Punkten 7:=+1 an, und man erhalt

L

B(1)= I (cosh 8s +sinh 85)? ds =4sinh 4L (-1<s7<1).

—L

Wird dies in (16) eingesetzt, so folgt schliesslich

,_ sinh*4L 17
“8cosh8L (17)

und zwar gilt das Gleichheitszeichen nur im Fall r=+1, d.h. u(s)=+4. Wir
notieren noch:

sinh24L _ 1

8 cosh 8L 4 16 (L—).

Nun war ja 2L die hyperbolische Lange einer Kurve, die die beiden Punkte z,
und z; verbindet. Bezeichnen wir den hyperbolischen Abstand dieser beiden
Punkte mit p, so diirfen wir anstelle von (17) schreiben:

. 1.2
2 sinh” 2p

2432
> S cosh 4p (AG+AD. (18)
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Im Fall II (siehe (6)) trifft diese Formel (mit>) trivialerweise zu: Wegen u(s)=—4
gilt langs v, (i=0,1):

A(s)=Ae™™.

Damit wird
A?(AO""AI) J‘e_4s ds
0
und somit
2 1 2 2
A >'fg (AO + Al)'

Wird (18) schliesslich auf f, z, und z, umgeschrieben (fur A siehe (23)), so
resultiert gerade (3).

5. In (18) steht genau dann das Gleichheitszeichen, wenn erstens u(s)=4
(oder=—4) ist und wenn zweitens gilt: 2L = p, das heisst: wenn vy,; eine hyper-
bolische Geoditische ist. Bis auf eine Aehnlichkeit der w-Ebene hat man dann
A(s)=e*,

aor: w(s)=4(e* —1); (19)
und bis auf einen konformen Automorphismus von D ist y,, von der Form

Yo1: z(s)=tghs. ) (20)

Wird die Variable s aus (19) und (20) eliminiert, so ergibt sich fiir ein gewisses
reelles Interval I c D die Beziehung

w Vzel

_ y4
T (1-2z)?

Somit ist f:z+— w die Koebe-Abbildung (2).

6. Zum Beweis der Relationen (7) und (8) benutzen wir die bekannten
Ungleichungen ([4], S. 20; [3]

|a2| =2, |a3—a§| =1, Ias' <3
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fur Funktionen
f(z):=z+a,z*+azz>+. .. (21)

in S. Diese Ungleichungen werden differentialgeometrisch interpretiert und mit
Hilfe der konformen Invarianz der hyperbolischen Metrik an beliebiger Stelle
{€ D zur Anwendung gebracht.

Es sei also zunichst fe S gegeben durch (21), und es sei
y: s> z(s), z(so) =0,

ein analytischer Bogen durch 0, bezogen auf die hyperbolische Bogenlange in D:
2(s)=(1—-2z(s)z(s))e"®™. (22)

Der Bildbogen (4) in der w-Ebene braucht vorerst nicht geradlinig zu sein. Mit
den in (4) und (5) eingefiihrten Bezeichnungen erhilt man fiir w:

Ae'®=F(2)(1—zz)e™ (23)

(wir unterdriicken die Variable s). Logarithmische Ableitung nach s liefert unter
Verwendung von (22):

i+ i® =£—(—Z—) (1—2z2)e™ —(ze™ + ze ) + 6.

A f'(2)
Vermoge der Liouvilleschen Formel
0 =k, +i(ze™ —ze )

(siehe z.B. [2], S. 37f.) bringen wir nun die geoditische Kriimmung k, von y
(beziiglich der hyperbolischen Metrik in D) und vermoge

0= Ak,
die euklidische Krimmung «, des Bildbogens o ins Spiel. Damit erhalten wir

%+ ik, =;—§3 (1—22)e™ +ix, —2ze™ (24)
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und insbesondere an der Stelle s:=s, (ergo z =0):

2a,e' =%+ i(Ak, —Kg) (s =50). (25)

Von jetzt ab nehmen wir an, der Bildbogen o sei geradlinig. Dann ist «, =0, und
(25) vereinfacht sich zu

2a,e° =u—ik, (s=3o), (26)

wobei wir wiederum log A =:u gesetzt haben. Wegen |a,| <2 hat man insbeson-
dere

lu|<4 (s=so). (27)

Wir differenzieren nun (24) nocheinmal nach s und setzen anschliessend wieder
s:=s5,. Es ergibt sich

i =(6as—4a3)e*® +2ae i, +ikg—2 (s=s5,). (28)
Wegen (26) ist aber

2a,e”ik, =2a,e"(—a,e®® + ae %) =—-2a%e* +2|a,|*.
Addiert man daher

2u?=2(ae +a,e °)>=4 Re (a3e*®)+4|a,|
zu (28), so folgt

i +2u>=Re[(6a;—2a3)e*°]+6|a,|>*—2
und damit schliesslich

a2
ii+2122s6|a3——33|+6|a2|2—2. (29)

Mit den Bezeichnungen

p:=las—ajl<1, q:=|a,|<3
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erhilt man elementargeometrisch
2

as

T =300°+207) —3lasl* <5(57-2lal")

|aa_

und somit anstelle von (29):
i +2u°<2v57-2|a,|*+6|a,*—2.

Wie man leicht verifiziert, ist hier die rechte Seite im Bereich |a,|<2 eine
monoton wachsende Funktion von A :=|a,|>. Hiernach ist jedenfalls i +2u°<32
oder eben

i<2(16—u? (s=so). (30)

7. Die allgemeine Situation (fe S, z(s)) = {) lasst sich jederzeit mit Hilfe eines
konformen Automorphismus von D und einer Aehnlichkeit der w-Ebene auf den
schon betrachteten Fall zuriickfiuhren. Wie man sich leicht iiberlegt, bleiben dabei
u und i (sowie k, und Ak,) invariant. Wegen (27) und (30) sind damit (7) und (8)
als richtig erwiesen.

8. Aus (25) ergibt sich noch die folgende differentialgeometrische Interpretation
der Ungleichung |a,|<2:

A

‘X+ i(Ak, — Kg)

<4,

und zwar gilt dies langs beliebigen Bogen vy in D und fiir beliebiges fe S.
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