Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 53 (1978)

Artikel: Cohomology eigenvalues of equivariant mappings.
Autor: Skjelbred, Tor

DOl: https://doi.org/10.5169/seals-40792

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-40792
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici §3 (1978) 634-642 Birkhiuser Verlag, Basel

Cohomology eigenvalues of equivariant mappings

TOR SKJELBRED

Let X be a topological space which is paracompact Hausdorff and of finite
cohomology dimension over a fixed field k. Let G be a compact Lie group acting
continuously on X such that there is a finite number of conjugacy classes of
isotropy groups G,, x € X. Conner conjectured in [2] that if H*(X; k) is acyclic,
then H*(X/G; k) is also acyclic, and he proved the conjecture in case k = Q. The
conjecture was recently proven in all characteristics by Robert Oliver [8]. The
problem of relating H*(X/G; k) and H*(X; k) is still largely unsolved even in
case X is the unit sphere of a linear representation. In this paper we will consider
equivariant mappings f: X — X and relate the eigenvalues of the induced en-
domorphisms of H*(X/G; k) and of H*(X; k). The result obtained should be
seen as a generalization of the Conner conjecture to G-spaces which are not
necessarily acyclic.

THEOREM 1. Let f be an equivariant self-mapping of a G-space X. Then
each eigenvalue of the induced endomorphism of H*(X/G; k) is an eigenvalue of
the induced endomorphism of H*(X; k), provided dim, H*(X; k) <o».

More generally we consider the monoid Map (G, X) of all equivariant map-
pings X — X, and a homorphism from a monoid ¥ into Map (G, X). Then
H*(X; k) and H*(X/G; k) become right ¥-modules. Let M be an abelian group
which is a right #-module. A simple subquotient of the ¥-module M is a simple
% -module isomorphic to M,/M,; where M, « M, < M are ¥-submodules. M may
be a module over a field k and ¥ commuting with k. Even if M is not finitely
generated, the following lemma is straightforward.

LEMMA 1. Let
O-> M->M->M->0

be an exact sequence of F-modules. Then a simple ¥-module is a subquotient of M
if and only if it is a subquotient of M@ M".
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Our main result then is,

THEOREM 2. Let X be a G-space and let ¥ be a monoid of equivariant
self-mappings of X. Then every simple subquotient of the ¥-module H*(X/G; k) is
a simple subquotient of the F-module H*(X; k). If Y< X is a closed subspace
invariant under G and under all fe &, then every simple subquotient of the
F-module H*(X/G, Y/ G; k) is a simple subquotient of the #-module H*(X, Y; k).

This result may be interpreted in terms of Serre classes of #-modules. Let N
be a simple #-module over k. Then by Lemma 1, those #-modules which do not
have N as a subquotient from a Serre class, say Cy. Theorem 2 says that if
H*(X; k) belongs to Cy, then so does H*(X/G:; k). It is then a Conner conjecture
modulo the Serre class Cy. If we forget equivariant mappings and consider the
Serre class of finitely generated abelian groups, we obtain,

THEOREM 3. Let X be a G-space, and assume that X has finite cohomology
dimension over Z. Then if H*(X;Z) is finitely generated, so is H*(X/G;Z).

We use Cech cohomology with closed supports. We use some results on
cohomology dimension [9] and the localization theory of Borel-Segal-Hsiang-
Quillen [1, 6, 9, 10] without further comments. When G is finite or abelian, the
proof of Theorems 1-3 is based on the localization theory. When G is connected
simple, the proof is based on the Conner conjecture and on the existence of the
spheres of Floyd-Hsiang [3, 5]. We first simplify the group G.

LEMMA 2. (i) Let N< G be a closed normal subgroup such that Theorem 2
holds for actions of N and of G/N. Then Theorem 2 holds for actions of G.

(i) It suffices to prove Theorem 2 when G is either a finite group of prime order,
a circle group acting semifreely, or a simple connected Lie group.

Proof. (i) Let ¥ be a monoid of equivariant self-mappings of the G-space X.
There is a natural homomorphism % — Map (G/N, X/N), and hence every simple
subquotient M of the F-module H*(X/G; k) = H*((X/N)/(G/N); k) is a subquo-
tient of H*(X/N; k). Because % <Map (G, X)<=Map (N, X), and Theorem 2
holds for actions of N, the simple module M must be a subquotient of H*(X; k).
Hence Theorem 2 holds for the G-action on X.

(i) By (i) we may assume that G is a finite group, a circle group, or a
connected simple group. If G =S0O(2), let Z< G be a finite subgroup containing
all finite isotropy groups. Then the action of G/Z on X/Z is semifree. By (i), it
suffices to prove Theorem 2 for actions of cyclic groups and for semifree circle
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actions to give a proof for all circle actions. If G is finite, let S be the p-Sylow
subgroup of G, where p =char (k), and where S ={1} if p=0. Then by [1] (p. 38),
we have H*(X/G; k) < H*(X]S; k). Therefore, it suffices to prove Theorem 2 for
the group S. Because S is solvable, it follows from (i) that we can reduce the
problem to finite groups of prime order.

Proof of Theorem 2 for G connected simple.

We shall construct a compact G-space Z such that for each closed subgroup H
of G the orbit mapping Z — Z/H induces an isomorphism

H*(Z/H;Z)— H*(Z;Z).

Z is a compact G-CW complex in the sense of Matumoto [7], and G has no fixed
points in Z. We construct Z by using,

THEOREM (Floyd-Hsiang [3, 5]) Each simple connected compact Lie group
G admits a real linear representation without one-dimensional direct summands
such that the unit sphere admits an equivariant self-mapping of degree 0.

Let S be the unit sphere, and n: S — S an equivariant self-mapping of degree
0. Let Z=T(n) be the mapping torus of n, that is the space obtained from
S %[0, 1] by identifying (x, 1) with (n(x),0) for xe S. Let 7: T(n) — S! be the
projection on the second factor where S* =[0, 1]/{0, 1}. T(n) is a G-CW complex
because n is constructed by extending a piecewise linear map of a fundamental
domain into the fixed point set of a principal isotropy group, where the simplicial
structure is compatible with the orbit type stratification. (This is actually done for
an action of some SO (2r+1) on S, and the action is restricted to G by a
representation of G of degree 2r+ 1. This construction is found in [3, 5] and with
more details in [11].) T(n) is a G-space in a natural way such that the fibres
7~ 1(z), z € S', are canonically G-homeomorphic to S. Since n is nullhomotopic, it
follows that 7 is a homotopy equivalence, and hence that the mapping cone C(1r)
of = is contractible. Since C() is a finite CW complex, the Conner conjecture,
proved by Oliver, implies that H*(C(w)/H; Z) =Z for each closed subgroup H of
G. Clearly C(w)/H is the mapping cone of T(n)/H — S*, and hence

H*(T(n)/H; Z)=H*(S'; Z)= H*(T(n); Z).

The G-CW structure on Z defines a finite cell complex structure on Z/G ([7]).
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For each cell ¢ of Z/G, choose x € Z such that G(x) is in the interior of ¢, and set
G, = G,. The cellular system (G.) will be used in the Borel construction. Given
two G-spaces X and Z, we consider Z X X as a G-space with the diagonal (joint)
action, and there are projections of orbit spaces,

pri:(ZxX)/|G — Z|G, pry:(Zx X)|G — X/G.
The fibres of pr; and pr, are, for xe X, ze Z,
pri (G(2)) =(G(2)xX X)/G=X]G,
and
pr2 (G(x)) =(Zx G(x))/G = Z|G,.
We apply the Leray spectral sequence to the mappings pr, and p, of the following

commutative diagram where the vertical arrows are induced by .

ZIG, > (Zx X)|G —> X|G

S = S'X(X/G)— X/G

Here pr, and p, are proper mappings. Since 7 induces cohomology isomorphisms
of the fibres, we have

H*(SY® H*(X/G)=H*((Z*x X)/G)

for any coefficient ring. This clearly is an isomorphism of %-modules. For the
mapping

pri:(ZxX)/G — ZIG

we obtain a spectral sequence defined by the skeleton filtration of the cell
complex Z/G, with

E,= C’ckeu(Z/G; %*(X/Gc))
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and converging to H*((Z % X)/G)=H*(S")® H*(X/G). For reduced cohomol-
ogy, there is the spectral sequence E with E, = C*,(Z/G; #*(X/G.; k)) converg-
ing to H*(S)® H*(X]G; k). This is a spectral sequence of %-modules. A simple
subquotient of the $-module H*(X/G; k) must be a simple subquotient of E, and
hence of some H*(X/G.; k). Because Z is without fixed points, G, < G for each
c. By induction on dim G, we may assume that Theorem 2 holds for actions of G..
Hence each simple subquotient of H*(X/G.; k) is a subquotient of H*(X; k), and
this proves Theorem 2 for the given action of G. The proof for a closed pair
(X, Y) of G-spaces is similar, using a spectral sequence converging to

H*(SYQH*(X/G, Y/G; k)
with

Proof of Theorem 2 for G=Z/p and G=S".

By Lemma 2, we may assume that G is acting semifreely. Let X be the Borel
space of the G-action; it is the total space of a fibre bundle X - X5 — Bg
where Bg is the classifying space of principal G-bundles. We set H&(X)=
H*(X;) and refer to [1, 6, 9] for the basic properties of this functor.

PROPOSITION 1. Let G be a compact Lie group acting semifreely on a space
X with fixed point set F. Then there is a long exact Mayer- Vietoris sequence of the
form

-+« = HU(X|/G) = HY(F)® HY(X) = H§(F)— -+

Proof. Because the action is semifree and X is paracompact, there is an
isomorphism

H*(X/G, F) > H§(X, F)

induced by the projection 7:X; — X/G, for any coefficient group. 7 induces,
with its restriction to Fg;, a homomorphism of long exact cohomology sequences,

-+ —> H(X, F) > HE(X) > HE(F)— - - -

*) | ,’(ﬂ. T,,. T,,*

-+ —25 H¥(X/G, F) » H*X/G) -» H*(F)—> - - -
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The Mayer-Vietoris sequence is deduced from (*) by a standard argument, see p.
3 of [4]. Let P be a one-point space with its unique G-action. We set HE(X) =
coker (HE(P) — HE(X)). There is then a reduced Mayer-Vietoris sequence if
F#J,

(RMV) - - - —> H*(X/G) - H*(F)® A%(X) - HEF) —> - - -

LEMMA 3. Let G=Z/p or S* be acting semifreely on X with fixed point set
F# . Let ¥ be a monoid of equivariant self-mappings of X. Then every simple
subquotient of any of the three ¥-modules HX(X:; k), HE(F; k), and H*(F; k) is a
subquotient of the %-module H*(X; k).

Proof. If k is of characteristic p, then G=Z/p or S'. Because H¥(F; k)=
H*(F; k)® H*(Bg; k) and the restriction homomorphism HE(X; k) — HE(F; k)
is surjective in high degrees, it follows that every simple subquotient of the
F-modules H*(F; k) and HX(F; k) is a subquotient of HX(X; k). The fibre
bundle X — X; — B, gives a spectral sequence converging to HX(X; k) with

E,= Ccckell(BG; %*(X, k)).

Hence every simple subquotient of the ¥-module HE(X; k) is a simple subquo-
tient of the ¥-module H*(X; k).

COROLLARY 1. If F# &, then Theorem 2 holds for G=7Z/p, S'.

Proof. The reduced Mayer-Vietoris sequence (RMYV) shows that every simple
subquotient of H*(X/G; k) is a subquotient of HX(F; k)® HE(X; k)® H*(F; k).
By Lemma 3, it is a subquotient of the %-module H*(X: k).

When F=, G=Z/p or S' is acting freely, and there is an isomorphism
H*(X/G; k)=HE(X; k). There is the spectral sequence of the fibring X; — Bg
with

E,= C::kell(BG; H*(X; k)),

E$*=H*(Z/p; H°(X;k)) for G=1Z/p, and
E*=H*(CP")QH*(X;k) for G=S8!,

and converging to H*(X/G; k). To prove Theorem 2 in this case, it suffices to
show that every simple subquotient of the ¥-module E./k (where k < EX is the
field of coefficients) is a subquotient of H*(X; k). Clearly, for r=1, b>0, every
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simple subquotient of E?’ is a subquotient of H?(X; k). Hence, for r=2, every
simple subquotient of d,(E,) is a subquotient of H"(X; k)=Y,-, H?(X; k). For
a>c, ¢ =the cohomology dimension of X over k, EX=0. It follows that for
a>c, each simple subquotient of E5° is a subquotient of H'(X; k). As %-
modules, E5°=E5*2° for a >0, and hence the last statement is valid for all a > 0.
It remains only the module E2°/k which is contained in H°(X; k), and the proof is
complete for the case F= .

The proof of Theorem 2 for a closed pair (X, Y) of G-spaces is quite similar to
the proof in the absolute case with F# (J. There is a Mayer-Vietoris sequence of
a semifree group action,

- — H¥X/G, Y/G)— H*(F, FN Y)® H&(X, Y)> HF,FNY)—=> - - -

and there is a spectral sequence with
E,=C%(Bg; #*(X, Y; k)) converging to H¥(X, Y;k).

This completes the proof of Theorem 2.
Next we give a proof of Theorem 3 which states that H*(X/G; Z) is finitely
generated when H*(X;Z) is finitely generated. A preliminary result is,

PROPOSITION 2. Let X be a G-space with a closed invariant subspace Y.
Assume that X has finite cohomology dimension over a field k. Then if H*(X, Y; k)
is finite dimensional over k, so is H*(X/G, Y/G; k).

Proof. The proof is basically the same as the proof of Theorem 2, but with
simplifications. Lemma 2 is valid for the present proof. If G=Z/p or S' acting
semifreely, the proof is a direct consequence of the Mayer-Vietoris sequence of a
semifree group action and the fact that the restriction homomorphism
HEX,Y; k) > HEF,FNY; k) is an isomorphism in high degrees. The exact
sequence

.. —5 HYX/G:} Y/G; k) > H*(E, FN Y; )@ HE(X, Y; k)

— > HYEFNY: k)— - -

then implies that H*(X/G; Y/G; k) - H*(F, FNY; k) has finite dimensional
kernel and cokernel. But dim, H*(F, FNY; k)<dim, H*(X, Y; k)<, and it
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follows that dim,, H*(X/G, Y/G; k) <. In case G is connected simple, we use the
spectral sequence of the first part of the proof of Theorem 2 with

and converging to H*(S)® H*(X/G; Y/G; k). By induction on dim G, we may
assume that dim, H*(X/G,, Y/G.; k) <= for each cell ¢ of Z/G. Since Z/G is a
finite cell complex, it follows that dim, E;<w, and hence that
dim, H*(X/G, Y/G; k) <. This completes the proof of Proposition 2.

THEOREM 3'. Assume that a compact Lie group G is acting on a space X
which is paracompact Hausdorff and has finite cohomology dimension (over Z).
Assume that there is a finite number of conjugacy classes of isotropy groups. Let Y
be a closed invariant subspace. Then if H*(X, Y;Z) is finitely generated, so is
H*(X/G, Y/G;Z).

Proof. Again, the proof is basically the same as that of Theorem 2, with some
changes for finite G. Let G be finite. Let q:(X, Y) — (X/G, Y/G) be the orbit
mapping, and let t: H*(X, Y;Z) - H*(X/G, Y/G;Z) be the transfer mapping
([1] p. 38). Then tq™ is multiplication by m =|G| in H*(X/G, Y/G;Z), and hence,
coker (tq*) € H*(X/G, Y/G; Z/m). Since tq™ factors through the finitely generated
group H*(X, Y;Z), it suffices to show that H*(X/G, Y/G;Z/m) is finitely gener-
ated. This is the case because, by Proposition 2, H*(X/G, Y/G;Z/p) is finitely
generated for each prime p. Now let G be a circle group. We may assume that G
is acting semifreely, in which case the localization theory for circle actions is valid
for cohomology with arbitrary coefficient group. Hence the argument in the proof
of Proposition 2 is valid with integral coefficients. To prove Theorem 3’ for
general G, we may assume that G is connected, and that the theorem holds for all
H with dim H <dim G, and hence that G is a connected simple group. Using the
spectral sequence converging to H*(S)®H*(X/G, Y/G;Z), with E,=
C*,(ZIG; #*(XIG,, Y/G.;Z)) where dimG.<dimG, it follows that
H*(X/G, Y/G;Z) is finitely generated.

Example. There is a pair (X, Y) of G-spaces and an equivariant mapping
f:(X,Y)— (X, Y) such that a certain eigenvalue #1 is of multiplicity one in
H*(X/G, Y/G; k), and of multiplicity at least two in H*(X, Y; k). Let V be the
linear space of all real n by n symmetric matrices of trace 0, and let X be the
unitsphere in V. The group SO(n) acts on X by conjugation with principal
isotropy group H=(Z/2)""'. Let Y be the subspace consisting of all x e X such
that G, is not principal, equivalently such that dim G, >0. In the author’s paper
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[11] there is constructed equivariant mappings f,: X — X for 0<2s<n, n=3 of
degrees degf. =1— (rsn) where 2m =n=<2m+ 1. Those mappings generalize the

mapping f,, of Floyd-Hsiang, which is of degree 0 when n =2m + 1. The mapping
f’ in the orbit space A =X/G is a self mapping of the orientable manifold-with-
boundary A which is a simplex of dimension n—2. In H*(4, 04;Z)=1Z f’ induces

multiplication by deg f%, and by Theorem (2.1) of [11], deg fi=degf,=1— (T) It

follows that in H*(A;Z)=Z, f. induces multiplication by 1—(m). Because

S
04 = Y/G, Theorem 2 implies that, for each field k, 1— ('sn) is an eigenvalue of

(f.| Y)* in H*(Y; k). From the exact sequence

0 — A*(Y; k)—> H*(X, Y; k) > H*(X; k) > 0
it follows that the eigenvalue 1— (’:) has multiplicity at least two in H*(X, Y; k),
while it has multiplicity one in H*(X/G, Y/G; k)=H%(4,934; k)=k.
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