Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 53 (1978)

Artikel: Diffeomorphismes d'une variété symplectique non compacte.
Autor: Rousseau, Guy

DOl: https://doi.org/10.5169/seals-40791

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-40791
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 53 (1978) 622-633 Birkhiuser Verlag, Basel

Difféomorphismes d’une variété symplectique non compacte

Guy RouUsSEaU

Dans [1] A. Banyaga a étudié le groupe Diff, (M) des difféomorphismes
symplectiques a support compact d’une variété symplectique M. Le but de cet
article est d’apporter quelques compléments au travail de Banyaga. Le résultat
principal est la détermination de la structure du plus grand quotient résoluble de
la composante connexe de Diff, (M) quand M n’est pas compacte.

Je suis heureux de remercier ici A. Banyaga pour une intéressante correspon-
dance et A. Fathi pour de nombreux conseils.

1. L’invariant S

Dans tout cet article les espaces d’applications différentiables entre variétés
sont munis de la topologie de la convergence uniforme sur tout compact pour
I’application et toutes ses dérivées partielles.

On considere une variété symplectique M, i.e. une variété C> connexe, sans
bord, dénombrable a l'infini, munie d’une forme symplectique 2 € A*(X), autre-
ment dit d2=0, dim (M)=2n(n=1) et 2" est une forme volume.

Si X est un champ de vecteurs, on note i(X) le produit intérieur par X, c’est
une antidérivation de degré-1 de A(M). Ainsi X+—i(X)2 définit un isomor-
phisme de I’espace des champs de vecteurs a support compact sur celui des
1-formes a support compact. Ce résultat s’étend aux espaces CVP(M) des champs
de vecteurs a support compact dépendant différentiablement d’un parameétre et
FDP(M) des 1-formes a support compact dépendant differentiablement d’un
parametre. \

On considére le groupe des difféomorphismes de classe C™ a support compact
de M et le sous-groupe Diff,, (M) ={h e Diff (M)/h*Q = Q} des difféeomorphismes
symplectiques de M.

On note Isotop (M) le groupe des isotopies de M a support compact et
Isotop, (M) ={h, eIsotop (M)/h¥Q2 =0, VteI=[0,1]} le sous-groupe des
isotopies symplectiques.
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L’ application

dh,

h,'—>”.l,, H,(X)='5 (hfl(x))

est un homéomorphisme de Isotop (M) sur CVP(M).
On a alors les résultats suivants:

1.1([1; I.1.3]): Soit a une forme fermée et h, € Isotop (M), alors
h*a—a=dB, avec B,= J' h*(i(h,)a) ds.
0

1.2: Isotop, (M) ={h, € Isotop (M)/i(h,)L2 fermée, Yt e I}.
1.3([4]): Diff, (M) est localement contractile.

On note G, (M) la composante connexe de I’élément neutre de Diff,, (M).

C’est ce groupe que ’on va étudier dans la suite. D’apres 1.3 son revétement
universel est G, = Isotop,, (M)/homotopie.

Si h, € Isotopg, (M), on définit:

Z(h,)=L i) di

qui appartient au groupe Z}(M) des 1-formes fermées a support compact (cf. 1.2),
et S(h,)=1la classe de ¥ (k,) dans le groupe de cohomologie H!(M), quotient de
Z(M) par le groupe Bl(M) des 1-formes exactes a support compact.

PROPOSITION 1.4. ([5]). S définit un homomorphisme de groupes surjectif et
continu de G, (M) sur H (M).

Démonstration. [1;1I;1.1] ou 2.1, 2.3 et 2.6 ci-dessous.

1.5 L’invariant S. Comme G, (M) est un espace séparable et localement
contractile, (G, (M)) est dénombrable; donc I' = S(m,(G,, (M))) est un sous-
groupe dénombrable de H. (M).

On obtient ainsi un homomorphisme de groupe surjectif et continu:

Gqo (M)—>H; (M)/T.
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THEOREME 1.6 ([1: I1.6.1]). Si M est compacte, Ker S est un groupe simple,
de plus Ker S agit transitivement sur M.

Ainsi dans ce cas, G, (M) se dévisse en un groupe commutatif quotient et un
sous-groupe simple non commutatif.

2. Quelques lemmes

LEMME 2.1. Soit H,, une famille différentiable a 2 parametres dans I, de
difféeomorphismes symplectiques telle que H,,= Id, alors si

oH,,
s

X0 =2 H); V0= 2 (H o)

On a

2 (Hy)— 2 (Ho)— ) (Ho,)+ 2 (H,o) = df

avec

f= ” Y,,.; X.,) ds dt
12
fonction C* a support compact.
Démonstration. C’est une reformulation de ce qui est démontré en [1; I1.1.1].
LEMME 2.2. Si £ et m sont deux champs de vecteurs, on a:
Q&N =n@{(O)QAI(MN2AQ"TY)

Démonstration. En effet:

0= i nim1=( T O AOAADT A+ 2 (i)

i=1

donc:

0 MO = 0" i(Oi(m = ni(&) A2 A Q™Y
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PROPOSITION 2.3. Soient ¢,, s, € Isotop, (M), alors:

Y (@)= (¢)+ Y (W) +df

aveéec

=]l eG.erdndsar

fonction C* a support compact et

f"=n J’L (@A QiIWP)AAQ " dsdt dans H?(M).
=s=t=1

Démonstration
(1) on pose H, = ¢, °y;, on a alors:

Y, (x)=1¢.(x) et X, .(x)=s5¢,(x)+ % (4)(x)

625

(en posant @¥(y;,)(x) = Tey (¥ (¢51(x))). Et de plus X, =@ oth; Xo, = Y1 =

¢s; Y.0=0. Le Lemme 2.1 montre donc que

2:(¢f”%)==§:(¢04‘z:0%)4-df

avec

r= ] G et das=[| 0 o) drdu
2 =u=t=1

d’ou la premiere formule.
(2) en appliquant le lemme 2.2, on obtient:

fQ"=n J'L 1 (@) A i) AQ " dt ds.

Mais ([3; IV 1.8, p. 89)) i(¢¥ ()2 = ¥ '(i(d) oF(2)) = ¥ ' (i() ),

et cette derniere forme est cohomologue 2 i(yy,)2 d’aprés 1.1, d’ou la seconde

formule.
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DEFINITIONS 2.4

(1) On note Isotopy, (M) ’ensemble des isotopies h, de Isotop, (M) vérifiant
les conditions €équivalentes suivantes:

(a) i(h)Q est indépendant de ¢ 4 un bord pres;

(b) Si h,, désigne lisotopie t— h, alors: S(h,)=sS(h,), Vsel
[D’apres la proposition 1.4, Isotop, (M) est un sous-groupe de Isotopg, (M)].

(2) Isotop (Ker S) ={h, e Isotop, (M)/h,cKer S, Vtel}.
[Isotop (Ker S) est donc le sous-groupe Ker S NIsotoph, M)].

(3) Une belle section de S: Isotop, (M) — H! (M) est une section L de S telle
que:

(a) L induit une application R-linéaire de H. (M) dans CVP (M) (voir nota-
tion au §1.)

(b) L(H:(M)) < Isotoph, (M).

LEMME 2.5. Vo, ¢, €Isotoph, (M), les égalités suivantes ont lieu modulo des
éléments df tels que Q)" soient des bords:

g(‘Pt) N §(’~{’1) N \Qn_1>

n
Z(¢t°¢t)—2(¢z)+2(¢l’t)+§d( on

§(¢t)A g(l(]t)/\ \Qnﬁl)

(o) = 160+ (G0 +nd (S

Y(ei)=—2 (¢)

Démonstration. Par définition, on a, pour tout ¢, i(¢,)2 = S(¢,) dans H! (M),
la premiere formule est donc une reformulation de 2.3, la troisieme en découle
aussitdt, ainsi que la seconde en dérivant.

PROPOSITION 2.6. Il existe des belles sections de S; toutes sont continues.
Pour construire une belle section, on peut choisir dans Isotopy, (M) I’image d’une
base (a;) de H! (M), (sous la seule condition que S(L(a,)) = a;).

Démonstration. Si (a;) est une base de H! (M), choisissons des 1-forms «; dont
les classes sont a;; si on pose L(Y Aa,)=h, avec i(h,)Q2 =Y Aa, Vt, alors L est
une belle section.

La continuité équivaut a celle d’une application linéaire de H. (M) dans
FDP (M)(voir notation au §1); elle est évidente puisque I'image dans H. (M) du
sous-espace de FDP (M) des formes a support dans un compact donné est un
espace de dimension finie.

La troisieme assertion est évidente.
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Remarque 2.7. Les applications § et L sont (au moins) para-
métriquement différentiables, c’est-a-dire que VneN, S et L c¢hangent les
chemins différentiables a n parametres dans Isotop,, (M) a support compact (i.e.
les chemins différentiables a n+ 1 parametres dans G, (M) a support compact) et
les chemins différentiables 2 n parametres a support compact dans H! (M) (“a
support compact” signifie ici que I'image de I" est dans un sous-espace de
dimension finie).

On déduit de ceci que:

(1) Tout h, € Isotop,, (M) est différentiablement homotope a extrémités fixées
a un g € Isotopy, (M). Ainsi Isotoph, (M) s’envoie surjectivement dans G, (M).

(La démonstration est écrite, sans parler de L, en [1;11.3.1].)

(2) Deux isotopies de Isotopy, (M) (resp Isotop (Ker S)) différentiablement
homotopes a extrémités fixées dans Isotopg, (M) le sont dans Isotopy, (M) (resp
Isotop (ker S)).

PROPOSITION 2.8.
(1) Ker S est connexe par arc différentiable, [donc Ker S est un quotient de
Isotop (Ker S)].

(2) Isotop (Ker S)={h, € Isotop (M)/i(ht)Q € B} (M), Vte I}.

Démonstration

(1) Par définition, si heKer S, il existe h, € Isotop, (M), tel que h=h, et
S(h)=0; d’aprés 2.7.1, on peut supposer h, € Isotopl, (M)NKer S = Isotop
(Ker S).

(2) Si h, elIsotop (M)et i(h)e B! (M), Yt; alors h, €Isotopl,(M) (1.2 et
2.4.1) et S(h,)=0, donc h, €Isotop (Ker S).

Réciproquement. Si h, € Isotop (Ker S), alors, Vs, h,eKer S, donc S(h,) e
I'(notation de 2.4.1b); mais S(h,,) est une fonction continue de s €[0, 1] a valeur
dans I’ dénombrable. Donc Vs, on a: 0=S(h,)=§i(h)2dte H (M); en
dérivant par rapport a s, on obtient: i(h)2 <€ B} (M), Vt.

3. Cas non compact: L’invariant R
On suppose dorénavant M non compacte.

3.1. LINVARIANT R. ([5)). Si h, eIsotop (Ker S), alors, d’apres 2.8, Y (h,) est
un bord, i.e. Y (h,) = df ou f est une fonction C* a support compact, mais comme
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M est non compacte, ces deux conditions déterminent uniquement f, et on pose:
R(h)= j fQ" eR.
M

On note KerS =Isotop (Ker S)/(homotopie C~ dans Ker S 2 extrémités
fagmp IS4 ~
fixées). D’apres 2.7.2, Ker S s’identifie & un sous-groupe de Gj,.

PROPO§_IILON 3.2. ([5]). R définit un homomorphisme de groupe surjectif et
continu de Ker S sur R.

Démonstration. Si H,, est une famille différentiable a deux parametres de
difféomorphismes symplectiques dans Ker S telle que H,, = H,,=1Vs; les Lem-
mes 2.1 et 2.2 montrent que: ) (H,,)=) (H,,)+df ou la fonction C* a support
compact f vérifie:

L "= ”Iz U;w (Yo )2 A i(X, )0 /\.Q"*l] ds dt

Mais d’apres 2.8, i(Y,,)2 et i(X,,)2 sogt\cles bords. Donc fp,f2"=0 et
Ii(HL,) = li’(HO,,). Ainsi R se factorise par Ker S, c’est un morphisme de groupe
d’apres 2.3 (et 2.8); il est évidemment continu et il est surjectif d’apres 3.3.

LEMME 3.3. Il existe une section continue m :R — Isotop (Ker S) de R qui est
un homomorphisme de groupes.

Démonstration. Soit f une fonction C” a support compact telle que: f,, fQ" =
1. Pour A eR, le gradient symplectique X, =AX,; de Af. (i.e. i(X,)2=d(Xf))
fournit par intégration un groupe a un parameétre m(A) = h? tel que R((h))) = A et
h*=h,,; d’ou le lemme.

3.4. UINVARIANT R. Soit A le sous-groupe R(m(Ker S)) de R, R induit
donc un homomorphisme de groupes surjectif et continu R:Ker S —> R/ A.

D’apres 2.7.2, m(Ker S) s’identifie a un sous-groupe de 7,(G,) et est donc
dénombrable. Ainsi A est dénombrable et R/ A est non nul.

Si 2 est une forme exacte, I" est nul ainsi que A ([1; cor. I1.4.3]). De plus,
Banyaga donne alors des définitions directes des invariants R et S sans I’aide des
isotopies.
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THEOREME 3.5 ([1;11.6.2]). (Si M est non compacte), Ker R est un groupe
simple, il agit transitivement sur M.

Ainsi G, se dévisse en un sous-groupe simple non commutatif et un groupe

quotient résoluble. C’est la structure de ce dernier qui nous occupe au paragraphe
suivant.

4. Cas non compact: Le plus grand quotient résoluble de G,.

On suppose toujours M non compacte. On note (,) la forme bilinéaire alternée
sur H! (M) définie par:

{a, b>=J’ anbarQ" L,

M

PROPOSITION 4.1. Pour tous h,, g €lIsotop, (M), leur commutateur [h,, g ]
est dans Isotop (Ker S) et vérifie R([h, g1)=n (S(h,), S(g)).

Démonstration. Comme Gg/Ker S=H! (M)/I’ est commutatif, [h, g]=
hgh 'g:' est dans Ker S, VieI et, de plus, si h, ou g est modifié par une
homotopie, [ h,, g ] est modifié par une homotopie dans Ker S. Ceci et la remarque
2.7.1 nous autorisent a ne vérifier la derniere assertion que pour h, g €
Isotopy, (M).

D’apres le Lemme 2.5, les égalités ci-dessous ont lieu modulo un terme df ou f
est une fonction C a support compact telle que f2" soit un bord.

Z ([gt’ h))= Z (g)+ Z (hzgt—l ht—l) +§ d(s(gt)/\ (— fz(ngt))/\ Q"-l)

= Z (g)+ Z (h)+ Z (gt_l ht—l) ) ) ~

2 Q-
1 g(CS@IACSEIADTT 1 (SR sfl()g:)A oy
- nd(g(gt)/\ggf)/\ﬂnﬂ).

D’ou la proposition.

COROLLAIRE 4.2. 'c H! (M) ={ae H. (M)/{a, b)=0, Vbe H: (M)}.
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Démonstration. On sait que (G, (M)) est dans le centre ~de G, (M); le
corollaire résulte donc de la proposition et de la surjectivité de S.

COROLLAIRE 4.3.
(1) Yg, he Gg leur commutateur [g, h] est dans Ker S et on a:

R([g h]) =n(S(g), S(h)).

(2) Ker R est distingué dans G, (M).
(3) Le centre de G, (M)/Ker R est S"'(H: (M)*/IN)/Ker R.
(4) Go/Ker R est extension centrale de H. (M)/T" par R/ A.

Remarque. Comme I'< H! (M)*, la forme (,) est définie sur H (M)/I".

Démonstration. Ce sont des conséquences immédiates de 4.1.

COROLLAIRE 4.4. Le sous-groupe [Gg, Go] des commutateurs de G, est
égal a Ker R ou Ker S selon que la forme bilinéaire alternée (,) sur H: (M) est
identiquement nulle ou non.

Démonstration. Comme Ker R est simple et non commutatif, il est parfait,
donc [G,, Ga]2[Ker R, Ker R]=Ker R; le corollaire résulte donc de 4.3.1, la
surjectivité de S et la bilinéarité de (,).

Remarque 4.5. Si {2 est une forme exacte et si n=2, alors la forme (,) est
nulle et [G,, Go]=Ker R est simple; on retrouve ainsi [1; 11.6.3 ii)].

Si n=1 (auquel cas {2 est exacte), cela n’est pas forcément vrai; il suffit de
prendre pour M le tore de genre 1 auquel on a retiré un point.

On obtient ainsi des exemples ou [Gg,, G,] n’est pas simple.

PROPOSITION 4.6. Soit L une belle section de S, alors
(1) Va,be H! (M), L(a)L(b)L(a+b) ' eIsotop(Ker S) et

R(L(a)L(b)L(a+b) ") =(n/2)Xa, b).

(2) Isotoph, (M)/Ker R est extension centrale de Isotop,, (M)/Isotop (Ker S)=
H! (M) par Isotop ‘(Ker S)/Ker R=R, et la 2-classe de cohomologie correspon-
dante est la classe du 2-cocycle (n/2){a, b).

Plus précisément I’ application

Isotoph, (M)/Ker R—— H: (M) xR

h—>(S(h,), R(h. - L(S(h))™)
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est un isomorphisme de groupes topologiques, si I’on munit H: (M)XR de la
multiplication

(a, \)(b, ) = (a +hA+u +’§ (a, b)).

TN
Remarque. D’apres 2.7.2 on peut considérer Ker S comme un sous-groupe de
Gq, donc cette proposition donne en fait la structure du groupe Gq/Ker R.

Démonstration

(1) L(a)L(b)L(a+b)*eKer S NIsotop,, (M) =Isotop (Ker S). Les égalités
suivantes ont lieu modulo un terme df ou f est une fonction C* a support
compact telle que f02" soit un bord.

> (L(@)L(b)L(a+b) ™) =) (L(a)+ ) (L(b)L(a+b)™")

n a/\(-—a)/\.(l"_1>
+_
s

=2 (L(a)+ 2 (L®)+ X (L(a+b)™) _
+1‘al(b/\("a_b)/\Q )

2 or
n (anbaQ"! - "
=2 (L)Y @)+ X E6)
- Y. (E(a+b))
n—1
=§d(g%\;(£—); puisque, par définition d’une belle

section, ¥, o L est une application linéaire.

La premicre assertion résulte de cette formule.

(2) Soit v T'application de H! (M)XR dans Isotop), (M)/Ker R définie par
v(a,A)=m(A) - L(a) (Lemme 3.3); u et v sont deux applications continues
inverses 'une de Yautre. Il reste a voir que la structure de groupe induite sur
H! (M) XR est celle indiquée; mais cela résulte aussitot de 1) et de 4.1.

THEOREME 4.7. G, (M)/Ker R est extension centrale de G,(M)/Ker S =

H (M)/T par Ker S/Ker R=R/ A et la 2-classe de cohomologie correspondante est
la classe du 2-cocycle (n/2)a, b).

.Remarque. 11 existe donc un isomorphisme de groupe de G, (M)/Ker R sur
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H! (M)/T xR/A, (pour la multiplication (a, A)(b, u)=(a+b, A + u+ n/2{a, b))).
Mais cet isomorphisme n’est pas forcément un homéomorphisme. La proposition
ci-dessous montre que c’est cependant vrai avec une petite condition sur I. Il est
probable que cette condition est toujours remplie; de toute fagon, si I' ne la
vérifie pas, les topologies qui interviennent ne sont pas jolies.

Démonstration. Le centre de Gg/Ker R est un groupe commutatif extension
de H!(M)*/I" par le groupe divisible R/A (4.3.3), il est donc isomorphe au
produit de ces deux groupes ([2; I §3]). Ainsi, il existe un morphisme de group L,
(éventuellement non continu) de H: (M)*/I" dans le centre de Go/Ker R qui est
une section de S.

Soient V un supplémentaire de H: (M)* dans H} (M) et = la projection de
Isotopy, (M) sur G (M), (m(h,) = h,). Si L est une belle sectionde S, L,=w oL/,
est sur V une section de S.

Tout élément a de H: (M)/I" s’écrit d’une maniére unique a =b+c avec
be H: (M)*/T" et ce V; posons alors L(a)= L,(b)-L,(c)= L,(c)-L,(b). L’appli-
cation L de H! (M)/I" dans G, est une section de S et on vérifie aussitdt que
R(L(a)L(b)L(a+b)™")=(n/2)a, b), ce qui démontre le théoréme.

PROPOSITION 4.8. Supposons qu’il existe une base (e;);c; du R-espace
vectoriel H. (M) et un sous-ensemble J, de J tels que (e);c;, soit une base du
Z-module T, alors,

(1) Il existe une belle section L de S telle que L(IN < m(Gg, (M))-Ker R.

(2) une telle section L definit par passage au quotient une section continue de S,
L:H! (M)/T - Gg/Ker R.

(3) L’application

Go/Ker R—> H: (M)/T X R/ A
h—(S(h), R(h-L(S(h))™)

est un isomorphisme de groupes topologiques si I’on munit H, (M)/T XR/A de la
multiplication (a, A)(b, n)=(a+b, A + n +(n/2)a, b)).

Remarque. Banyaga ([1; 11.6.3]) a montré par d’autres méthodes cette propos-
ition dans le cas particulier {2 exacte et n =2; ses méthodes s’étendent aucas n =1
Dans tous ces cas, on a I'=0.

Démonstration. D’apres 2.6, 2.7.1 et la définition de I, on peut trouver une
belle section L telle que L(e)e m (G, (M)), Vie J,. Mais d’apres 4.6.1, L induit
un homomorphisme de groupe de H: (M)* > T dans Isotopf, (M)/Ker R; d’ou la
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premieére assertion. La seconde assertion en découle aussitdt. Enfin, on voit
facilement que, Va, be H: (M)/T, on a R(L(a)L(b)L(a+b)™")=n/2(a, b), ce qui
montre la derniére assertion.
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