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Comment. Math. Helvetici 53 (1978) 622-633 Birkhâuser Verlag, Basel

Difiéomorphismes d'une variété symplectique non compacte

Guy Rousseau

Dans [1] A. Banyaga a étudié le groupe T>iftn (M) des difféomorphismes
symplectiques à support compact d'une variété symplectique M. Le but de cet
article est d'apporter quelques compléments au travail de Banyaga. Le résultat
principal est la détermination de la structure du plus grand quotient résoluble de
la composante connexe de Diffn (M) quand M n'est pas compacte.

Je suis heureux de remercier ici A. Banyaga pour une intéressante correspondance

et A. Fathi pour de nombreux conseils.

1. L'invariant S

Dans tout cet article les espaces d'applications différentiables entre variétés
sont munis de la topologie de la convergence uniforme sur tout compact pour
l'application et toutes ses dérivées partielles.

On considère une variété symplectique M, i.e. une variété C°° connexe, sans

bord, dénombrable à l'infini, munie d'une forme symplectique (le a2(X), autrement

dit dO 0, dim(M) 2n(rc>l) et On est une forme volume.
Si X est un champ de vecteurs, on note i(X) le produit intérieur par X, c'est

une antidérivation de degré-1 de a (M). Ainsi X*-*i{X)fl définit un isomor-
phisme de l'espace des champs de vecteurs à support compact sur celui des

1-formes à support compact. Ce résultat s'étend aux espaces CVP(M) des champs
de vecteurs à support compact dépendant différentiablement d'un paramètre et
FDP(M) des 1-formes à support compact dépendant differentiablement d'un
paramètre.

On considère le groupe des difféomorphismes de classe C°° à support compact
de M et le sous-groupe Diffn (M) {h e Diff (M)/fi*f2 il} des difféomorphismes
symplectiques de M.

On note Isotop (M) le groupe des isotopies de M à support compact et
Isotopn (M) {ht 6 Isotop (M)/hfO O, Vr e I [0,1]} le sous-groupe des

isotopies symplectiques.

622



Difféomorphismes d'une variété symplectique non compacte 623

L' application

K^k, h,{x)~{hT\x))
al

est un homéomorphisme de Isotop (M) sur CVP(M).
On a alors les résultats suivants:

1.1([1; 1.1.3]): Soit a une forme fermée et ht g Isotop (M), alors

h*a-a dpt avec ft hf(i(hs)a) ds.

1.2: Isotope (M) {ht g Isotop {M)H(ht)Q fermée. Vf g I}.

1.3([4]): Difï^ (M) est localement contractile.

On note Gn (M) la composante connexe de l'élément neutre de Difï^ (M)-
C'est ce groupe que l'on va étudier dans la suite. D'après 1.3 son revêtement

universel est Gn =Isotopr2 (M)/homotopie.
Si ht g Isotope (M), on définit:

qui appartient au groupe Z\(M) des 1-formes fermées à support compact (cf. 1.2),

et S(^) la classe de Y,(K) dans le groupe de cohomologie Hl(Nf), quotient de

Zl(M) par le groupe B\{M) des 1-formes exactes à support compact.

PROPOSITION 1.4. ([5]). S définit un homomorphisme de groupes surjectif et

continu de Gn (M) sur H\ {M).

Démonstration. [1; II; 1.1] ou 2.1, 2.3 et 2.6 ci-dessous.

1.5 L'invariant S. Comme Gn (M) est un espace séparable et localement
contractile, 7rx{Gn (M)) est dénombrable; donc F S(Trx{Ga (M))) est un sous-

groupe dénombrable de H\ (M).
On obtient ainsi un homomorphisme de groupe surjectif et continu:
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THEOREME 1.6 ([1: II.6.1]). Si M est compacte, Ker S est un groupe simple,
de plus Ker S agit transitivement sur M.

Ainsi dans ce cas, Gn (M) se dévisse en un groupe commutatif quotient et un
sous-groupe simple non commutatif.

2. Quelques lemmes

LEMME 2.1. Soit Hst une famille différentiable à 2 paramètres dans I, de

difféomorphismes symplectiques telle que Hoo Id, alors si

Xs,,(x)
ôt

On a

I (Hu) -1 (Hs4) - X (Ho.,) +1 (Hs,0) df

avec

n(Ysy,Xs,t)dsdt

fonction C°° à support compact.

Démonstration. C'est une reformulation de ce qui est démontré en [1; II. 1.1].

LEMME 2.2. Si £ et tj sont deux champs de vecteurs, on a:

a i

Démonstration. En effet:

o=i(fl[fl" a î(tï)fl]=(I r}^1 a î(ô/j a nni a i(îj)û)+nn • î(f)î(î?)fl

donc:

a i
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PROPOSITION 2.3. Soient <pt, ij/t e Isotop^ (M), alors:

avec

/= ff a(q>s,<PÎ('k))dsdt

fonction C°° à support compact et

i(<ps) A{li(ijjt)n a Onl dsdt dans H2cn{M).

Démonstration
(1) on pose Hst <pst°(At, on a alors:

Ys,t(x) t<pst(x) et XSJ(x) s<pst

(en posant (pft(ij/t)(x) ^^(^((p^U))). Et de plus Xu ^^i; X0,t ifc; YS)1

<PS? Yso 0. Le Lemme 2.1 montre donc que

avec

f f tfJ(<pst, 4p*(«fc)) Ads f f

d'où la première formule.
(2) en appliquant le lemme 2.2, on obtient:

ffîn n

Mais ([3; IV 1.8, p. 89]) i(q>*(tfc))Û ipf1 (î(<fc)<p*(fl)) <pr(î(tfc)fl),

et cette dernière forme est cohomologue à i(ij/t)O d'après 1.1, d'où la seconde

formule.
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DEFINITIONS 2.4
(1) On note Isotope (M) l'ensemble des isotopies ht de Isotop^ (M) vérifiant

les conditions équivalentes suivantes:
(a) ï(/it)il est indépendant de t à un bord près;
(b) Si hst désigne l'isotopie t^>hst alors: S(hst) sS(ht), VseL

[D'après la proposition 1.4, Isotope (M) est un sous-groupe de Isotope (M)].
(2) Isotop (Ker S) {hte Isotopn (M)lht e Ker S, Vf e I).

[Isotop (Ker S) est donc le sous-groupe Ker S H Isotope M)].
(3) Une belle section de S: Isotope (M) -> H\ (M) est une section L de S telle

que:
(a) L induit une application R-linéaire de H\ (M) dans CVP (M) (voir notation

au §1.)
(b) L(Hl(M))^ Isotop^ (M).

LEMME 2.5. V<pf, if/t e Isotop^ (M), les égalités suivantes ont lieu modulo des

éléments df tels que fOn soient des bords:

„ d

Démonstration. Par définition, on a, pour tout r, i(<pt)O S(<pt) dans H^ (M),
la première formule est donc une reformulation de 2.3, la troisième en découle
aussitôt, ainsi que la seconde en dérivant.

PROPOSITION 2.6. H existe des belles sections de S; toutes sont continues.
Pour construire une belle section, on peut choisir dans Isotope (M) Vimage d'une
base (at) de H\ (M), (sous la seule condition que S(L(al)) at).

Démonstration. Si (a,) est une base de H\ (M), choisissons des 1-forms a, dont
les classes sont a,; si on pose L(^Àlal) ht avec iiK)^ HKai-> VU alors L est

une belle section.
La continuité équivaut à celle d'une application linéaire de H\ (M) dans

FDP(M)(voir notation au §1); elle est évidente puisque l'image dans H\ (M) du

sous-espace de FDP(M) des formes à support dans un compact donné est un
espace de dimension finie.

La troisième assertion est évidente.
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Remarque 2.7. Les applications S et L sont (au moins) para-
métriquement différentiables, c'est-à-dire que VneN, S et L changent les

chemins différentiables à n paramètres dans Isotope (M) à support compact (i.e.
les chemins différentiables à n +1 paramètres dans Gn (M) à support compact) et
les chemins différentiables à n paramètres à support compact dans H] (M) ("à
support compact" signifie ici que l'image de F est dans un sous-espace de
dimension finie).

On déduit de ceci que:
(1) Tout ]% e Isotope (M) est différentiablement homotope à extrémités fixées

à un gt e Isotope (M). Ainsi Isotope (M) s'envoie surjectivement dans Go (M).
(La démonstration est écrite, sans parler de L, en [1;II.3.1].)
(2) Deux isotopies de Isotop^ (M) (resp Isotop (Ker S)) différentiablement

homotopes à extrémités fixées dans Isotopfi (M) le sont dans Isotope (M) (resp

Isotop (ker S)).

PROPOSITION 2.8.
(1) Ker S est connexe par arc différentiable, [donc Ker S est un quotient de

Isotop (Ker S)].
(2) Isotop (Ker S) {hte Isotop (M)/i(ht)n e B\ (M), Vr g I}.

Démonstration
(1) Par définition, si h e Ker S, il existe ^elsotop^ (M), tel que h h1 et

S(ht) 0; d'après 2.7.1, on peut supposer ^ g Isotope (M) H Ker S Isotop
(Ker S).

(2) Si fi, e Isotop (M)et i{ht)fteBl{M)y Vf; alors ht e Isotop^ (M) (1.2 et
2.4.1) et S(^) 0, donc ht e Isotop (Ker S).

Réciproquement. Si h, g Isotop (Ker S), alors, Vs, JisGKerS, donc S(hst)e
T(notation de 2.4.1b); mais S(hst) est une fonction continue de sg[0, 1] à valeur
dans r dénombrable. Donc Vs, on a: 0 §(hst) iso iifaOdteHl (M); en
dérivant par rapport à s, on obtient: i(ht)OeBl (M), Vf.

3. Cas non compact: L'invariant R

On suppose dorénavant M non compacte.

3.1. L'INVARIANT R. ([5]). Si ^ g Isotop (Ker S), alors, d'après 2.8, £(&,) est

un bord, i.e. X (K) df où f est une fonction C°° à support compact, mais comme
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M est non compacte, ces deux conditions déterminent uniquement /, et on pose:

R(h,)=\ fnneR.
•'/Vf

On note Ker S Isotop (Ker S)/(homotopie C00 dans Ker S à extrémités
fixées). D'après 2.7.2, Kei\S s'identifie à un sous-groupe de Gn.

PROPOSITION 3.2. ([5]). i? définit un homomorphisme de groupe surjectif et
continu de Ker S sur R.

Démonstration. Si Hst est une famille différentiable à deux paramètres de

difféomorphismes symplectiques dans Ker S telle que Hsl Hs0= lVs; les Lem-
mes 2.1 et 2.2 montrent que: £ (HUt) E (H0,t) + df où la fonction C°° à support
compact / vérifie:

Mais d'après 2.8, i(Y^)O et i(XM)/2 son^des bords. Donc fM//2n=0 et

jR(Hlt) JR(JFf0,t). Ainsi R se factorise par Ker S, c'est un morphisme de groupe
d'après 2.3 (et 2.8); il est évidemment continu et il est surjectif d'après 3.3.

LEMME 3.3. Il existe une section continue m :R—> Isotop (Ker S) de R qui est

un homomorphisme de groupes.

Démonstration. Soit / une fonction C°° à support compact telle que: JM/^n
1. Pour AgR, le gradient symplectique XA AXa de A/, (i.e. i(Xx)Q d(\f))
fournit par intégration un groupe à un paramètre m(A) h$ tel que R((hî)) — A et
h) h\t\ d'où le lemme.

3.4. L'INVARIANT R. Soit a le sous-groupe ^(^(Ker S)) de R, £ induit
donc un homomorphisme de groupes surjectif et continu JR : Ker S —> R/ a

D'après 2.7.2, Tr^Ker S) s'identifie à un sous-groupe de tt^Gq) et est donc
dénombrable. Ainsi a est dénombrable et R/a est non nul.

Si £1 est une forme exacte, F est nul ainsi que a ([1; cor. II.4.3]). De plus,
Banyaga donne alors des définitions directes des invariants £ et S sans l'aide des

isotopies.
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THEOREME 3.5 ([1; II.6.2]). (Si M est non compacte), Ker R est un groupe
simple, il agit transitivement sur M.

Ainsi Gn se dévisse en un sous-groupe simple non commutatif et un groupe
quotient résoluble. C'est la structure de ce dernier qui nous occupe au paragraphe
suivant.

4. Cas non compact: Le plus grand quotient résoluble de Gn.

On suppose toujours M non compacte. On note la forme bilinéaire alternée

sur H] (M) définie par:

(a,b)=\

PROPOSITION 4.1. Pour tous ht, gt e Isotope (M), leur commutateur [h,, gt]
est dans Isotop (Ker S) et vérifie R&ht, &]) n (S(h,), §(&)).

Démonstration. Comme G^/Ker S — H\ (M)/F est commutatif, [1%, gt]
^1 g^1 est dans Ker S, VfeJ et, de plus, si h, ou gt est modifié par une

homotopie, [ht, gt] est modifié par une homotopie dans Ker S. Ceci et la remarque
2.7.1 nous autorisent à ne vérifier la dernière assertion que pour h*, gfe
Isotop^ (M).

D'après le Lemme 2.5, les égalités ci-dessous ont lieu modulo un terme df où /
est une fonction C°° à support compact telle que fOn soit un bord.

n J
2 d\
n JS(h,)A(-(S(&)) + Sjh,))aO-l
2 d\

n J/(-g(ft))A(-g(/i,))Afl"-11\ n JSW
)+2d\ 7r

D'où la proposition.

COROLLAIRE 4.2. T<= H,1 (M)± {a e Hl {M)l{a, b) 0, Vfe e H\ (M)}.
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Démonstration. On sait que Trx{Ga (M)) est dans le centre de Gn (M); le

corollaire résulte donc de la proposition et de la surjectivité de S.

COROLLAIRE 4.3.
(1) Vg, h e Gn leur commutateur [g, h] est dans Ker S et on a:

(2) Ker R est distingué dans Gn (M).
(3) Le centre de Gn (M)/Ker R est S-\Hl (M)"7r)/Ker R.

(4) G^/Ker R est extension centrale de H\ (M)IF par R/a

Remarque. Comme F<=H* (M)\ la forme <,) est définie sur H\ (M)/T.

Démonstration. Ce sont des conséquences immédiates de 4.1.

COROLLAIRE 4.4. Le sous-groupe [Gn, Gn] des commutateurs de Gn est

égal à Ker R ou Ker S selon que la forme bilinéaire alternée Q sur H\ (M) est

identiquement nulle ou non.

Démonstration. Comme Keri? est simple et non commutatif, il est parfait,
donc [Gq, Gn]=>[Ker R, Ker R] Ker R; le corollaire résulte donc de 4.3.1, la
surjectivité de S et la bilinéarité de Q.

Remarque 4.5. Si fi est une forme exacte et si n>2, alors la forme est

nulle et [Gn, Gr2] Ker R est simple; on retrouve ainsi [1; II.6.3 ii)].
Si n 1 (auquel cas fl est exacte), cela n'est pas forcément vrai; il suffit de

prendre pour M le tore de genre 1 auquel on a retiré un point.
On obtient ainsi des exemples où [Gn, Gn] n'est pas simple.

PROPOSITION 4.6. Soit L une belle section de S, alors

(1) Va, b € Hl (M), L(a)L(b)L(a + b)'1 e Isotop(Ker S) et

R(L(a)L(b)L(a + b)"1) (n/2)<a, b).

(2) Isotope (M)/Ker R est extension centrale de Isotope (M)/Isotop (Ker S) —

Hl(M) par Isotop (KerS)/KerjR—R, et la 2-classe de cohomologie correspondante

est la classe du 2-cocycle (n/2)(a, b).
Plus précisément Vapplication

Isotopi, (Afl/Ker R -JL^ H
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est un isomorphisme de groupes topologiques, si Von munit ff*(M)xR de la
multiplication

Remarque. D'après 2.7.2 on peut considérer Ker S comme un sous-groupe de

Gn, donc cette proposition donne en fait la structure du groupe G^/Ker R.

Démons tra tion
(1) L(a)L(b)L(a + b)'1 e Ker S Pllsotop^ (M) Isotop (Ker S). Les égalités

suivantes ont lieu modulo un terme df où / est une fonction C°° à support
compact telle que filn soit un bord.

X (L(a)L(b)L(a + è)"1) X (L(a)) + X (Ub)L(a
n Ja/\{-a)/\fln

X (Ua)) + X (£(&)) + X (£(a + b)'1)
n

i. pU1sque, par définition d une belle

section, X ° £ est une application linéaire.
La première assertion résulte de cette formule.
(2) Soit v l'application de H^(M)xR dans Isotope (M)/Ker R définie par

v(a, A) m(A) • L(a) (Lemme 3.3); m et d sont deux applications continues
inverses l'une de l'autre. Il reste à voir que la structure de groupe induite sur
Hl (M)xR est celle indiquée; mais cela résulte aussitôt de 1) et de 4.1.

THEOREME 4.7. Gn(M)/Kerl? est extension centrale de Gft(M)/KerS-
H] (M)/F par .Ker S/Ker R ^R/ a et la 2-classe de cohomologie correspondante est

la classe du 2-cocycle (n/2)(a, b).

Remarque. Il existe donc un isomorphisme de groupe de Gn (M)/Ker R sur
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Hj(M)/rxR/A, (pour la multiplication (a, A)(b, ii) (a + b, À + jn + n/2<a, b))).
Mais cet isomorphisme n'est pas forcément un homéomorphisme. La proposition
ci-dessous montre que c'est cependant vrai avec une petite condition sur F. Il est

probable que cette condition est toujours remplie; de toute façon, si F ne la

vérifie pas, les topologies qui interviennent ne sont pas jolies.

Démonstration. Le centre de G^/Ker R est un groupe commutatif extension
de Hl(M)±IF par le groupe divisible R/a (4.3.3), il est donc isomorphe au

produit de ces deux groupes ([2; I §3]). Ainsi, il existe un morphisme de group Lt
(éventuellement non continu) de H\ (M)1-/F dans le centre de G^/Ker R qui est

une section de S.

Soient V un supplémentaire de H\ (M)x dans H\ (M) et tt la projection de

Isotop^ (M) sur Gn (M), (tt^) h^. Si L est une belle section de S, L2 tt ° L/v
est sur V une section de S.

Tout élément a de H\ (M)IF s'écrit d'une manière unique a b + c avec

beHliM^/F et ce V; posons alors L(a) L1(b)-L2(c) L2(c)-L1(b). L'application

L de H\ (M)/F dans Gn est une section de S et on vérifie aussitôt que
R(L(a)L(b)L(a 4- b)"1) (n/2)<a, b), ce qui démontre le théorème.

PROPOSITION 4.8. Supposons qu'il existe une base (et)ieJ du R-espace
vectoriel H\ (M) et un sous-ensemble Jo de J tels que (et)ieJo soit une base du
Z-module F, alors,

(1) II existe une belle section L de S telle que L(F)cz irx{Gn (M))Ker R.

(2) une telle section L définit par passage au quotient une section continue de S,

L:Hl(M)IF-*GJKerR.
(3) L'application

Gn/Ker R -^-*H\ (M)IF x R/ a

est un isomorphisme de groupes topologiques si Von munit H\ (M)/FxR/a de la

multiplication (a, A)(b, ix) (a 4- b, A + /ll + (n/2)<a, b)).

Remarque. Banyaga ([1; II.6.3]) a montré par d'autres méthodes cette proposition

dans le cas particulier O exacte et n ^ 2; ses méthodes s'étendent au cas n 1

Dans tous ces cas, on a F 0.

Démonstration. D'après 2.6, 2.7.1 et la définition de F, on peut trouver une
belle section L telle que L{ei)s7r1 (Ga (M)), Vi€ Jo. Mais d'après 4.6.1, L induit
un homomorphisme de groupe de H\ (M)x 3 F dans Isotop^ (M)/Ker R ; d'où la
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première assertion. La seconde assertion en découle aussitôt. Enfin, on voit
facilement que, Va, b g H\ (M)/r, on a R(L(a)L(b)L(a + b)'1) n/2(a, b), ce qui
montre la dernière assertion.
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