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Spectrum of a compact flat manifold

TOSHIKAZU SUNADA

1. Introduction

From the differential geometric view point, the celebrated Jacobi identity for a
Dirichlet series associated with a lattice L in R" is written as

i exp (—A;t) = Vol (L\R™)(4mt) "2 Z exp (—Il(c,)?/4t) (t>0),

i=0 xel

in which the series 0 =A<A;=A,=----1w is the spectrum of the Laplacian
—¥" 1 (8/0x;)* on a flat torus L\R", and I(c,) stands for the length of a closed
geodesic ¢, in L\R" belonging to the homotopy class x. Here we identify L with
the fundamental group = (L\R").

In this paper, we extend the Jacobi identity to the case of compact flat
manifolds with the non trivial holonomy groups and apply to the isospectral
problem of such manifolds.

Before giving the statement of our results, we recall some properties of closed
geodesics in a flat manifold. Let M be an n-dimensional compact Riemannian
manifold with flat curvature. Then the universal covering of M is isometric to the
Euclidean space R" and the covering transformation group C is isomorphic to a
discrete uniform torsion free subgroup of the group of rigid motions acting on R".
We denote by [y] the conjugacy class containing vy in C and by [C] the set of all
conjugacy classes of C, which is naturally identified with the set of all free
homotopy classes of mappings of the circle S'=R/Z into M. If we denote by
Geo (M) the set of all closed geodesics c: S'— M and by M, the set of ones
belonging to the homotopy class [y], then M, is not empty, and we have of
course

GeoM)= | M.,; (disjoint).
(vlelC]

As was shown in [8], each M,; is a finite dimensional compact connected
manifold whose fundamental group is isomorphic to the centralizer C, of vy in C,
and any element in M ; has a common length, to be denoted I(y). Furthermore,
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614 TOSHIKAZU SUNADA

the evaluation mapping M,,— M defined by ¢+~ c(0) is an immersion and
induces a flat metric on M;,;.

Given an element vy of C, let x — Ax + a be the corresponding motion, and we
put

a(y)=|det(A—TI|Im(A-D)|™!

in which A —I'|Im (A —I) stands for the restriction of A —1I to the image of A —1I.
This is well-defined because the restriction gives rise to a non-singular transfor-
mation of the subspace Im (A —1I). We easily observe that a(y) depends only
upon the conjugacy class [vy].

Using these terminologies one of our results is stated as follows:

THEOREM 1. Let 0=A,<A;=A,=--- 1o be the spectrum of the Laplacian
A on M. Then

0

Y exp(=An)= 3 a(y) Vol (M,)(dmt) 4™ Moil2exp (— I(y)?/4t),

i=0 [vle[C]

By a theorem of Bieberbach, any compact flat manifold M admits a normal
Riemannian covering by a flat torus T,, The spectrum of M is therefore a
subsequence of that of T,, But, as an application of the above identity, we can
prove that the spectrum of M determines that of T,,. On the other hand, it was
proved by M. Kneser that the number of isometry classes of flat tori with a given
spectrum is finite (unpublished). Combining these facts, we can deduce the
following.

THEOREM II. There are only finitely many isometry classes of flat manifolds
with a given spectrum.

For fundamental properties of flat manifolds, see J. A. Wolf [9] or S.
Kobayashi and K. Nomizu [4].
2. Proof of Theorem I

We denote by E(n) the group of rigid motions of R".

Let M=C\R" be a compact flat manifold, C being a torsion free discrete
subgroup of E(n), and let D be a fundamental domain of the group C in R". The
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fundamental solution of the heat equation d/dt+A on M is given by

K(t; x, y)= ) k(t; x, vy),

yeC

where k(t; x, y)=(4mt)™™? exp (—||x — y||’/4¢t), and hence we obtain

iexp(—Ait)=J K(t; x, x)dx= Z j k(t; x, yx)dx.
i=0 M D

yeC

By a well-known process (see A. Selberg [7]), the right hand side is rewritten as

Y J k(t; x, yx) dx.
C,\R"

[vlelc]

To transform the expression

J k(t; x, yx) dx (D
C,\R"

still further, we shall make use of the following subset in R":

V,={xeR";|lyx—x||=|lyy—y| forany yeR"}

Evidently, V, is invariant under the action of C, and coincides with the critical
point set of the function f:x—|yx —x|]>. More explicitly, it can be described as
the affine subspace in R" which consists of all x in R" satisfying the equation
v*x—2yx+x=0. Hence, if y:x+— Ax+a, then V, is a translation of the
subspace Ker (A —1I).

Now, if x is an element of V., then setting ¢, (t) = tyx +(1—1t)x, we obtain a
straight line ¢, : R —R" with ¢, (0)=x and ¢,(1)=yx, which satisfies ¢ (t+1)=
vé, (t) for any teR. In fact,

G+ D) —ve, ()= +Dyx—tx—ty*x —(1—t)yx
= —t(y*x—2yx +x)
=().

Therefore, ¢, yields a closed geodesic ¢, : S'— M lying in M,;.

LEMMA 1. The mapping V, — M, given by x — c, induces an isometry ¢, of
C‘V\ V.y onto M[.y].
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Proof. Take a typical element ¢ € M(,;. Then there exist a lifting ¢ : R—>R" of
¢ satisfying ¢(t+1)=yé(t) for any t. Since ¢ is a straight line, it is given by the
equation ¢(t)=tyé(0)+(1-1)é(0) and therefore y>¢(0)=¢c(2)=2v¢(0)—¢(0),
which implies that ¢(0) lies in V,, and ¢, = c. Hence the mapping V, — M, is
surjective.

Next suppose that c, =c,. Then there exists some p of C with ¢ ()=
pé, (1) (teR). Since yuy = ¢,(1) = wyy, it follows that w lies in C, and x = uy. The
converse is obviously true, so the mapping ¢, : C,\V,— M, is bijective.

Finally, notice the following commutative diagram

v .
\|

¢ C\R" =M,
Y| /

i being the isometric immersion induced from the injection: V,cR". It follows
immediately that ¢, is isometric.

From now on we shall identify C,\V, with M,; via ¢,.

Let @ be the orthogonal projection of R" onto the affine sub-space V.. Since
@ is C,-equivariant, it gives rise to a Riemannian submersion @ : C,\R" —
C,\V, with fibers isometric to affine sub-spaces in R", and thus the term (1)
becomes

j dyj k(t; x, yx) dx
CA\V, ey

LEMMA 2. For any ye C\V,,

[ ks %, ) dr = aly)@myam /2 exp (10714,

w N (y)

In particular, its value does not depend upon vy.
Proof. Let yoe V, be an element lying over y, and we put
W,=Im(A—-D)+y,.

Since Im(A —I) is the orthogonal complement of Ker (A —I), it follows easily that
W, is identified with the fiber of @ over y,. Hence, we have

I k(t; x, yx) dx =(4mt)™™? j exp (—||(A —Dx + a|]*/4¢) dx.
@ (y)

W‘Y
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On the other hand, ||[(A—I)(z+yo)+alf=|(A—-Dz|*+1(y)? for any zR" be-
cause 2((A— Dz, (A—D)yo+a)=d, f(z)=0, and |yyo— yol| = [(y). Thus, after the
substitution

1
e A -
" \/4711( e

the right hand side becomes

(4rf)rv2+dim Im (A-D72 |qet (A — I | Im (A — D))" exp (= I(y)*/4t) X

X j; exp (— ||w|?) dw.
m(A—I)

Using here the well-known equality: fg exp (—7x?) dx =1, we get

j K(t; x, vx) dx = a(y)(dmt) 9™ Y72 exp (~1(y)?/41),
@~ Y(y)

as asserted.
Theorem I is an immediate consquence of Lemma 2.

3. Proof of Theorem 11

Let M=C\R" be a compact flat manifold. By a theorem of Bieberbach, C
contains the unique lattice L = CNR" that is normal and maximal abelian in C.
Thus we have exact sequence of groups

0>L5>CS5F—1,

where i denotes the natural inclusion and F is the image of C by the homomorph-
ism 7 : (A, a)e O(n)-R" = E(n)— A € O(n) with kernel R". F is clearly a finite
subgroup of O(n), and F(L)= L. Geometrically speaking, the group F can be
regarded as the holonomy group of M. Further, setting T,, = L\R", we obtain a
normal Riemannian covering by the torus: T,, — M, in which the deck transfor-
mation group is isomorphic to F.

We shall first prove the following.
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LEMMA 3. Let M= C\R" be a compact flat manifold, and let 0 > L — C—
F— 1 be the exact sequence determined by C. Then an element vy of C lies in L if
and only if dim V,=n.

Proof. If v lies in L, then C, contains L, hence dim V, =rank L =n. Con-
versely suppose that dim V, =n. If y=(A, a), then dim V, = dim Ker (A —1I), so
dim V,=n implies A =1

An easy argument shows that the spectrum of M determines the following
Dirichlet series

D(t)=(4mt) ™2 ¥ a(y) Vol (M, exp (—1(y)’/41), (2

summed over [y] with dim M;,,= n, which is a partial sum of the right hand side
of the Jacobi indentity (Theorem I). But from the above lemma such elements -y
lie in L because dim M;,;=dim V,, and in this case [y]=F(y)<L, a(y)=1,
I(y)=||v|. Further, if 0—L,— C,— F,—1 is the exact sequence determined by
C,, then clearly L, =L and F,={ge F; gy=vy}. Hence, we get

Vol (M[.y]) =Vol (‘L\l‘n)/’i‘#}—“,y
Substituting these values into the right hand side of (2), we obtain

D(t) = (4mt)">Vol (L\R") Y. (*E,)‘exp (—|ly|*/4t).

[vleL/F

Now we put
L. ={xeL;|lx|?=c}
for each ¢ = 0. It is clear that F(L.)=L, and L/F={J L./F (disjoint). The number

of elements in L. is calculated as

#IL.= Y (FE)=%F ) (*E)7,
[vleL./F [vleLJ/F

so we obtain

D()=@mt)™2 Vol (L\R™)Y. Y (*F,) ‘exp (—c/4t)
¢ [vleLJF

= (4mt) ™2 Vol (L\R™")(*F)™')_ #L exp (—c/4?)

= (4mt)™2 Vol (L\R")(*F)™' ). exp (—|lv|/4t).

yelL
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If we use the Jacobi identity for the flat torus T,, = L\R", this last expression is
equal to

P L exp (—4a |xlP0),

xel™*

in which L* denotes the dual lattice of L consisting of vectors x with (x, L)< Z.
Since 47 ||x|*(x € L*) is the spectrum of T,,, we have consequently the following.

PROPOSITION. The spectrum of M determines that of Ty, and the order of the
holonomy group of M.

Now we consider the correspondence M~ T,,. It gives rise to a mapping, with
finite fibers, of the set of isometry classes of compact flat manifolds into that of flat
tori. To prove this, let Aut (L) be the subgroup of O(n) consisting of A € O(n) with
A(L) = L, which is obviously finite. Hence there are only finitely many subgroups
of Aut (L). Let M’ = C"\R" be any flat manifold such that the corresponding torus
Tw, is isometric to Ty, = L\R". Then there exists an element k of O(n) with
k~'C'k \R" = L, and therefore an exact sequence 0— L > k~'C'k > F— 1 with
Fc Aut(L). On the other hand, it is a standard fact that for each subgroup
Fc Aut (L) the cohomology group H*(F, L) is finite, whence there are finitely
many torsion free discrete subgroups C,, C,, ..., G, of E(n) such that C;NR" =
L w(CG)=F (i=1,2,..., h), and any subgroup of E(n) with same properties is
equivalent to certain C; as group extension of L by F. Especially, k™'C'k is
equivalent to some C,. Then, there exists an element a of R" with (I,
a)C/(I,a) =k 'C'k, from which it follows that M'=C’\R" is isometric to
C\R". This completes the proof.

In order to prove Theorem II, it is therefore enough to show that there are
only finite number of isometry classes of flat tori with a given spectrum. But this is
just a Kneser’s result.

For the sake of completeness, we present here the proof which is based on the
so-called Mahler’s criterion (see A. Borel [2]). For this we denote by H" the set
of positive definite symmetric matrices of degree n, that is naturally identified with
the coset space O(n)\GL(n,R). The group GL(n,Z) of all integer matrices of
determinants +1 acts on H" as A+~ ‘gAg. Then the isometry classes of n-
dimensional flat tori are parametrized by the quotient H"/GL(n, Z) via the
correspondence gZ"\R" © ‘gg. Further, if A =‘gg, then the Jacobi identity for the
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torus gZ"\R" can be rewritten as

o

Y exp (—Agf)=|det A|V2@mt)™? Y. exp (—'zAz/4t).

i=0 zed"

Therefore the spectrum determines the value |det A|, the set {zAz; z€Z"}, and

especially the value min ‘zAz.
zeZ"—0

Given a A, of H", we consider the set

X= {A e H"; Z exp (—‘zAzt)= Z exp (—‘zAqzt) for any positive t}.

zed" zed"

whichisclearlya GL(n, Z)-invariant real analytic subset of H", and the image of
X by the canonical projection p: H" — H"/GL(n,Z) coincides with the set of
isometry classes of flat tori with the same spectrum as gyZ"\R", g, being an
element of GL(n, R) with ‘g,g,= A,. Since the functions A —det A and A —
(min, .z»_¢'zAz)™! are constant on X, it follows from Mahlar’s criterion that the
image p(X) is compact in H"/GL(n, Z).

On the other hand, X is discrete in H". To prove this, let X, be any connec-
ted component of X. Then any two points of X, are joined by a piecewise analytic
curve in X,. Let ¢ : s — ¢(s) be any analytic curve in X,. Then as mentioned
above, the subset {z¢(s)z; z€Z"} of R does not depend upon s, and hence for
each ze€Z" s — ‘z¢(s)z is a constant function. From this ¢ is a constant curve and
thus X consists of only one point. The analyticity of X implies discreteness of X
as desired.

Finally, noting that GL(n, Z) acts discontinuously on H", we see that p(X) is a
finite subset of H"/GL(n, Z).
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