

Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft
Band: 53 (1978)

Artikel: Reconstructing 1-coherent locally finite trees.
Autor: Thomassen, Carsten
DOI: <https://doi.org/10.5169/seals-40789>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 25.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

Reconstructing 1-coherent locally finite trees

CARSTEN THOMASSEN

Abstract. We prove a theorem implying the conjecture of J. A. Bondy and R. L. Hemminger that an infinite, locally finite tree containing no two-way infinite path is uniquely determined, up to isomorphism, from its collection of vertex-deleted subgraphs.

Introduction and terminology

We say that two graphs G_1 and G_2 are *weakly hypomorphic* if there exist maps $\varphi: V(G_1) \rightarrow V(G_2)$ and $\psi: V(G_2) \rightarrow V(G_1)$ such that $G_1 - x \simeq G_2 - \varphi(x)$ and $G_2 - y \simeq G_1 - \psi(y)$ for each vertex x and y in $V(G_1)$ and $V(G_2)$, respectively. In other words, G_1 and G_2 have the same isomorphism classes of vertex-deleted subgraphs. If φ and ψ can be chosen to be bijections, then G_1 and G_2 are *hypomorphic*. The reconstruction conjecture asserts that any two hypomorphic graphs are isomorphic. The conjecture is open for finite graphs and false for infinite graphs in general (see e.g. [5]). However, no counter-examples are known to the Harary–Schwenk–Scott conjecture [6] that any two hypomorphic, locally finite trees are isomorphic. As a first step towards a proof of this conjecture, Bondy and Hemminger [1] demonstrate the validity of the conjecture for m -coherent, locally finite trees for $m \geq 2$ (a tree is m -coherent if it contains a set of m , but not $m+1$, pairwise disjoint one-way infinite paths) and conjecture in an early version of [4] (the problem first appear in [3], but is mistakenly listed as being for 2-coherent locally finite trees) that any two hypomorphic 1-coherent locally finite trees are isomorphic. In this note we prove that the same conclusion holds under the weaker assumption that the trees are weakly hypomorphic.

If F is a forest and x, y are distinct vertices of F , then $F[x, y]$ denotes the component of $F - x$ containing y rooted at y . A *branch* of F at x is a rooted tree of the form $F[x, y]$ where y is adjacent to x . When we speak of isomorphisms of branches we always mean root-preserving isomorphisms. The *height* $h(x, T)$ of a vertex x in a tree T is the total number of vertices belonging to finite branches at x . If x has finite degree in T , then obviously $h(x, T)$ is finite.

If T is a 1-coherent, locally finite tree, and P is a one-way infinite path of T , then the forest obtained from T by deleting all edges of P has only finite

components, by König's Lemma. Furthermore, if P' is any one-way infinite path of T , then P and P' have an infinite path in common.

Isomorphism between weakly hypomorphic, 1-coherent, locally finite trees

THEOREM. *Let T_1 be a 1-coherent, locally finite tree and let T_2 be any graph which is weakly hypomorphic to T_1 . Then $T_1 \simeq T_2$.*

Proof. Let $\varphi: V(T_1) \rightarrow V(T_2)$ and $\psi: V(T_2) \rightarrow V(T_1)$ be maps such that

$$T_1 - x \simeq T_2 - \varphi(x) \quad \text{and} \quad T_2 - y \simeq T_1 - \psi(y)$$

for each x and y in $V(T_1)$ and $V(T_2)$, respectively. It is easily verified that T_2 is a 1-coherent, locally finite tree. Let x be any endvertex of T_1 and $P_1: x_1 x_2 x_3 \dots$ be a one-way infinite path of $T_1 - x$. Let $P_2: y_1 y_2 y_3 \dots$ be the image of P_1 under some isomorphism of $T_1 - x$ onto $T_2 - \varphi(x)$. With no loss of generality we can assume that x (resp. $\varphi(x)$) is joined to a vertex in a branch of $T_1 - x$ (resp. $T_2 - \varphi(x)$) at x_1 (resp. y_1) for otherwise we consider paths of the form $x_k x_{k+1} \dots$ and $y_k y_{k+1} \dots$ instead of P_1 and P_2 , respectively.

If T is a tree and x a vertex of T , then the degree of x in T equals the number of components of $T - x$. From this it follows that if one of T_1 , T_2 has maximum degree 2, then each of T_1 , T_2 is a one-way path, and hence $T_1 \simeq T_2$ in this case. So we can assume that each of T_1 , T_2 contains a vertex of degree 3 or more.

If each of the vertices x_2, x_3, \dots has degree 2 in T_1 (and hence each of y_2, y_3, \dots has degree 2 in T_2), then we denote by k (resp. m) the maximum distance in T_1 (resp. T_2) between an endvertex and a vertex of degree 3 or more and we put $n = \max \{k, m\}$. It is obvious that for each $i \geq 1$, no vertex of T_2 other than y_i has height $h(y_i, T_2)$. Since

$$h(y_i, T_2) = h(x_i, T_1) = h(\varphi(x_i), T_2)$$

We conclude that $\varphi(x_i) = y_i$ for each $i \geq 1$. Now let

$$\sigma: T_1 - x_{n+3} \rightarrow T_2 - y_{n+3}$$

be an isomorphism. By definition of n , x_{n+2} (resp. y_{n+2}) is the only vertex of the finite component of $T_1 - x_{n+3}$ (resp. $T_2 - y_{n+3}$) which has distance greater than n to a vertex of degree 3 or more. Hence

$$\sigma(x_{n+2}) = y_{n+2}$$

and σ can be extended to an isomorphism of T_1 onto T_2 .

So we assume that for some $t \geq 2$, the degree of x_t and y_t is at least 3. The union of finite branches of T_1 at x_t (except $T_1[x_t, x_{t-1}]$) is isomorphic to the union of finite branches of T_2 at y_t (except $T_2[y_t, y_{t-1}]$). We want to prove that

$$T_1[x_t, x_{t-1}] \simeq T_2[y_t, y_{t-1}].$$

This will imply $T_1 \simeq T_2$. If all finite branches at x_t are pairwise isomorphic and all finite branches at y_t are pairwise isomorphic, then obviously

$$T_1[x_t, x_{t-1}] \simeq T_2[y_t, y_{t-1}],$$

so we can assume, with no loss of generality, that there is a branch $B = T_1[x_t, z_1]$ which is not isomorphic to $T_1[x_t, x_{t-1}]$.

Consider a vertex z_2 of T_2 such that $T_2 - z_2 \simeq T_1 - z_1$. Let s be the integer such that z_2 and y_s belong to the same component of the forest obtained by deleting all edges of P_2 . Suppose z_2 is chosen such that s is minimal. Let

$$\pi: T_1 - z_1 \rightarrow T_2 - z_2$$

be an isomorphism, and let

$$P'_2: y'_1 y'_2 y'_3 \dots$$

be the image of P_1 under π . Since T_2 is 1-coherent, the intersection of P_2 and P'_2 is an infinite path $y'_r y'_{r+1} \dots = y_q y_{q+1} \dots$. For i sufficiently large, x_{r+i} and y'_{r+i} have the same height in T_1 and T_2 , respectively, so

$$h(y_{q+i}, T_2) = h(y'_{r+i}, T_2) = h(x_{r+i}, T_1) = h(y_{r+i}, T_2).$$

However,

$$h(y_1, T_2) < h(y_2, T_2) < \dots,$$

so, for i sufficiently large, $y_{q+i} = y_{r+i}$ and hence $r = q$. Suppose π is chosen such that r is minimal.

We now prove by contradiction that

$$r \leq \max \{t, s\}.$$

For suppose $r > t$ and $r > s$. The union of branches of T_1 at x_r (except $T_1[x_r, x_{r-1}]$)

is isomorphic to the union of branches of T_2 at y_r (except $T_2[y_r, y_{r-1}]$) and since $\pi(x_r) = y_r$, the union of branches of $T_1 - z_1$ at x_r is isomorphic to the union of branches of $T_2 - z_2$ at y_r . Combining these observations, we conclude that

$$(T_1 - z_1)[x_r, x_{r-1}] \simeq (T_2 - z_2)[y_r, y_{r-1}]$$

and hence we can modify π so as to obtain an isomorphism $T_1 - z_1 \rightarrow T_2 - z_2$ which takes x_{r-1} to y_{r-1} . This contradicts the minimality of r . Hence $r \leq \max\{t, s\}$.

We next prove that $s \leq t$. For suppose $s > t$. (Hence $\pi(x_s) = y_s$). Since

$$h(y_s, T_2) = h(x_s, T_1) > h(z_1, T_1) = h(z_2, T_2),$$

we have $z_2 \neq y_s$, so z_2 belongs to a finite branch B' of T_2 at y_s (distinct from $T_2[y_s, y_{s-1}]$). Since $T_1 - x$ and $T_2 - \varphi(x)$ have the same branches at x_s and y_s , respectively, and since deleting z_2 from T_2 results in a forest with fewer branches at y_s isomorphic to B' , it follows that π^{-1} maps $T_2[y_s, y_{s-1}]$ onto a branch of T_1 isomorphic to B' . But then $T_2[y_s, y_{s-1}]$ contains a vertex z'_2 s.t. $T_2 - z_2 \simeq T_2 - z'_2$, a contradiction to the minimality of s .

Summarizing, $s \leq t$ and π maps the path $x_t x_{t+1} \dots$ onto $y_t y_{t+1} \dots$. In particular, x_t and y_t have the same degree in $T_1 - z_1$ and $T_2 - z_2$, respectively. So z_2 is adjacent to y_t . Since the number of branches at x_t isomorphic to B is one less in $T_1 - z_1$ than in T_1 and since $T_1[x_t, x_{t-1}]$ is not isomorphic to B , it follows that $T_2[y_t, y_{t-1}]$ is not isomorphic to B (again using the isomorphism between $T_1 - x$ and $T_2 - \varphi(x)$) and that z_2 is the root of a branch at y_t isomorphic to B . In particular, $z_2 \neq y_{t-1}$ and π maps $T_1[x_t, x_{t-1}]$ onto a branch isomorphic to $T_2[y_t, y_{t-1}]$. Since $T_1[x_t, x_{t-1}] \simeq T_2[y_t, y_{t-1}]$ implies $T_1 \simeq T_2$, the proof is complete.

Further results and conjectures

We can prove that any two weakly hypomorphic, locally finite, m -coherent trees are isomorphic for $m \geq 3$ and believe that with a little more effort the same can be proved for $m = 2$. Furthermore, we can prove that any two hypomorphic m -coherent trees are isomorphic for $m \geq 3$ and Nešetřil [7, 8] proves it for $m = 0$. We conjecture that it also holds for $m = 1, 2$.

Halin (see [2]) conjectures that if G_1 and G_2 are infinite hypomorphic graphs, then G_i contains a subgraph isomorphic to G_{3-i} for $i = 1, 2$. We conjecture that the same conclusion holds under the weaker assumption that G_1 and G_2 are weakly hypomorphic.

REFERENCES

- [1] J. A. BONDY and R. L. HEMMINGER, *Reconstructing infinite graphs*, Pacific J. Math. 52 (1974), 331–340.
- [2] —— and ——, *Almost reconstructing infinite graphs*, in: Recent Advances in Graph Theory (Proc. of the Symposium held in Prague, 1974, M. Fiedler, ed.) Academia, Prague, 69–73.
- [3] —— and ——, *Problem in the Proceedings of the Fifth British Combinatorial Conference*, Congressus Numerantium XV, C. St. J. A. Nash-Williams and J. Sheehan, Eds., Utilitas Mathematica Publishing Inc., Winnipeg, 1976, p. 696.
- [4] —— and ——, *Graph Reconstruction – A Survey*, J. Graph Theory 1 (1977), 227–268.
- [5] J. FISHER, R. L. GRAHAM and F. HARARY, *A counterexample to the countable version of a conjecture of Ulam*, J. Combinatorial Theory (B) 12 (1972), 203–204.
- [6] F. HARARY, A. J. SCHWENK and R. L. SCOTT, *On the reconstruction of countable forests*, Publ. Math. Inst. (Beograd) 13 (1972), 39–42.
- [7] J. NEŠETŘIL, *On reconstructing of infinite forests*, Comment. Univ. Math. Carolinæ 13 (1972), 503–510.
- [8] ——, *On reconstruction of infinite forests II*, Comment. Math. Univ. Carolinæ, to appear.

Received January 28, 1977