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Comment. Math. Helvetici 53 (1978) 595-607 Birkhauser Verlag, Basel

Ideals generated by minors of a symmetric matrix

Tadeusz Jôzefiak

§0. Introduction

Let X be an n by n symmetric matrix with entries in a commutative
Noetherian ring R with identity. R. Kutz investigated, in [11], ideals IP(X)
generated by ail the p by p minors of X. His main results states:

depth IP(X) ^ v(p, n) :

and in case of equality the idéal IP(X) is perfect, i.e. depth IP(X) pdR/Ip(X). Kutz
used in his proof a technique applied for the first time by Hochster and Eagon in
[10] to determinantal ideals associated with an arbitrary matrix.

In §2 of the présent paper we extend some results of Kutz concerning the

depth of JP(X) and prove that the height of IP(X) is also bounded by v{p, n).
In §3 we construct a free complex, L(X), of length 3 which gives a free

resolution of 4_i(X) when depth Jn_1(X) 3.

Ail the proofs in §§2, 3 dépend heavily on a lemma stated in §1 which contains
in particular the structure theorem for non-singular quadratic forms over a local

ring (see [12], Lemme 2).

In §4 we utilize the complex L(X) to describe the relation between the
Poincaré séries of local rings R and jR/In_1(X) when depth In-i(X) 3.

§1. The fundamental lemma

(1.1) LEMMA (Micali-Villamayor). Let R be a commutative ring with identity.
Let X=(xlJ) be an n by n symmetric matrix with entries in R. Let IP(X) be the idéal

of R generated by ail the p by p minors of X, 1 ^ p ^ n.

I) // xtl is invertible in R, then there exists an invertible matrix C such that

1)

¦cxc=ft
' °
X'.
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596 TADEUSZ JÔZEFIAK

2) the n — 1 by n — 1 matrix X1 is symmetric and

x'kj *kj ——~, fc, / 2,..., n,

3) /P(X) 7P_1(X') for p&l.

12
}: a is invertible in R, then there exists an invertible matrix

C such thaï
1)

*cxc=
0 X"

2) fhe n — 2 fey n — 2 matrix X" is symmetric and xk} xk] — akxl7 — fekx2j, where

_ XlkX22 ~ ^2k^l2 i _ ^2^11 ~ XlkX21 i *— ^
a 'k a

3) /P(X) IP_2(X'O /or p^2.
(1.2) Remark. We adopt the convention I0(X) R.

Proof. I) We define

c= 1

O 1

77) We define

C

/l
0

\

0

1

o

-a3 •••
-b3 ¦¦¦

1

O

-K

O

1/
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(1.3) COROLLARY. Let R be a local ring. If IX(X) R, then the hypothesis of
either I) or II) of Lemma (1.1) holds (possibly after rearrangement of some rows
and the same columns of X).

Proof. From I1(X) R it foliows that some entry of X is invertible. If that
entry lies on the main diagonal the hypothesis of /) holds. If this is not the case
one may assume that xl2 is invertible and ail the entries on the main diagonal
belong to the maximal idéal of R. Then a xlxx22- x\2 is invertible.

(1.4) COROLLARY. Let R be a local ring. If In_x{X) R, then there exists an
invertible matrix C over R such that

*
*

o

*
*

*

o

*
*

u I
where the starred i by i minors on the main diagonal are invertible, i 1 and/or 2,

ueR.

Proof If In-i(X) R, then at least one entry of X is invertible. Using Lemma

(1.1) one can transform X into a matrix of the kind II) or III) of the lemma with
an r by r invertible matrix in the upper left corner, r 1 or 2. If n-l rwe are

done. If not, then the remaining n-rby n-r matrix in thelower right corner has

also at least one invertible entry. We again apply Lemma (1.1). Proceeding in this

way we get the required resuit.

§2. Height and Depth of IP(X)
The next theorem can be deduced from Kutz's results and the gênerai theory

of generically perfect ideals of Eagon and Northcott, [6]. To make the proof of
Theorem (2.3) as self-contained as possible we indicate hère a short proof of
Theorem (2.1) along the lines presented in [5] for arbitrary determinantal ideals.

(2.1) THEOREM. Let Rbe a commutative Noetherian ring with identity and X
an n by n symmetric matrix with entries in R. Every minimal prime idéal of the

idéal IP(X) has height at most equal to v(p, n).

Proof. We only sketch the proof and refer to [5], pp. 202-203, where possible.
We use induction on n. If n^2 or p l the theorem follows from the

generalized principal idéal theorem of Krull.
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Suppose n>2, p>l and let P be a minimal prime idéal of IP(X). One may
assume that R is local with maximal idéal P and that IP(X) is P-primary. If
I1(X) R, then by Lemma (1.1) and Corollary (1.3) /p(X) Jp_r(X) where r= 1

or 2, and X is an n-r by n-r symmetric matrix over R. By the induction
hypothesis ht P^ v(p — r,n — r) v(p, n).

If J^X^czP we consider a matrix

where Z is an indeterminate over R and proceed as in [5].

For the proof of the next theorem we record the following easy lemma.

(2.2) LEMMA. Let K be a subring of a commutative ring R with identity and
let xu xq be a séquence of éléments in R which are algebraically independent over
K. Assume that t is a non-zéro divisor in R belonging to K[xu..., jcs], s < q, and
write Kf - K[xu xs]{tk}, Rr R{t*} for the localizations of the corresponding
rings at the powers of t; moreover let a's+1,..., a'q be éléments of Kf.

Then K'<^ R' and the éléments xs+1—a's+u..., xa - aq are algebraically
independent over K'.

(2.3) THEOREM. Let R be a commutative Noetherian ring with identity, K a

Noetherian subring of R with the same identity. Let {jci;}, l^i^j^n, be a séquence

of éléments of R which are algebraically independent over K. Assume that R is flat
as an algebra over K[{xtJ}]. If we put xn xt] for j < i and define X (xtJ then depth

Ip(X)=v(p,n).

Proof. We use certain arguments of Eagon from [4]. If p —1, then IP(X) is

generated by {xtJ}, i^j, and therefore depth Il(X) v(l, n). In fact, the séquence
{**,}, i^h is lî-regular since R is flat over X[{jctJ}].

Now we argue by induction on n, assuming n > 1, p > 1. Let uu ux be a

maximal i?-regular séquence contained in IP(X). By Theorem (2.1) we know that

l^v{p,n), hence in view of p>l we hâve / <(n2 + rc)/2 i/(l, n). Write 1

IP(X), J (uu ui) for short. Since I consists of zéro divisors on J, there exists

a prime idéal P associated to / and containing L Thus i depth / depth

/ depth P. By / <(n2 + n)/2 we must hâve xtJfÉP for some i,j. We consider two
cases:

I) i /; one may assume without loss of generality that i l. Write f x11,

K K[xlu xl2,..., xln\tk}.
II) iV/ and ail éléments on the main diagonal belong to P. As above one may
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assume i l, 7 2. Write, in this case, t x11x22~xl2, Kf K[xll9..., xln,
*22, • • • > *2Jir"}- Of course f je P.

In both cases write R' R{t*}. For an idéal 51 of J? let 2T dénote 5I1T. Thus we
hâve /'cj'cp', p' is proper and depth f / since f is generated by an
JR'-regular séquence ul5..., u{. On the other hand, P' is an associated prime of /'
because téP. Therefore / depth f depth I' depth P'. Observe that I'
IP(X)R' is the idéal in R' generated by ail the p by p minors of X. Since t is

invertible in R' we may apply Lemma (1.1) to R' and X. We conclude that
/' Ip_r(X)R\ where r 1 or 2 depending on case /) or II), and X (xk] - ak]) is

the n — r by n-r symmetric matrix with entries in R\ a'k]çK\ r<k,j*cn. By
Lemma (2.2) we infer that the éléments {xkj ~ak), r<k^j^n, are aigebraically
independent over Kf. Moreover K'[{xkj — «£,}], r<k^j^n,is equal to Kftjt,,}]^^,
l^i^j^n, and R' is flat over i^[{jcI7}]{tk}, l^i^/=^n. Hence by the induction
hypothesis we finally get l depth I' depth Ip_r(X)R' v{p ~r,n~r)= v(p, n).

(2.4) COROLLARY. Let K be a commutative Noetherian ring and R
K[{*ij}]i l^i^j^n, a polynomial ring over K in (n2 + n)l2 indeterminates

{xtI} • Put X (jc(J). Then depth IP(X) v(p, n).

(2.5) Remark. Corollary (2.4) was proved by R. Kutz in [11, Proposition 6.2]
under the additional assumption that K is an intégral domain.

(2.6) COROLLARY. Let R be a local algebra over a field K and let {xj, 1 ^
i^j^n, be a regular séquence in R. Then depth Ip(X) v(p, n) for a symmetric
matrix X (xt]).

Proof. Since {xl}} are aigebraically independent over K and R is flat over
^[{*tJ}]([8, Proposition 1]), the corollary follows immediately from Theorem (2.3).

Using the method of the proof of Theorem (2.3) one can also prove

(2.7) THEOREM. Let Rbea commutative Noetherian ring with identity and K
a Noetherian subring of R with the same identity. Let {xt]}, 1 ^ i: ^ r? 1 ^/^ s, be a

séquence of éléments of R which are aigebraically independent over K and let X
dénote anrby s matrix (jcy). Assume that R is flat as an algebra over K[{jctJ}]. Then

depth It(X) (r- f + l)(s - f +1) where It(X) is an idéal of R generated by ail the t

by t minors of X.

(2.8) COROLLARY. Let R be a local algebra over a field K and let {xj,
1 =ss jl ^ r, 1 ^ / ^ s, be a regular séquence in R. Then epth It(X) (r-t +l)(s -1 + 1)

where X (xt1).

§3,. A Free Resolution of In^(
Let R be a commutative ring with identity and X (xl]) a symmetric n by n

matrix with entries in JR. Write Y=(yIJ) for the matrix of cofactors of X, i.e.
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ytJ (-l)l+JXJ where X) stands for the minor of X obtained by deleting the i-th
column and the /-th row of X. The matrix Y is also symmetric. We are fixing the
matrix X (and hence Y) throughout this section.

Let Mn(R) be the free R-module of ail n by n matrices over R and An(R) the
free submodule of Mn(R) consisting of ail alternating matrices. Furthermore, let
tr : Mn(R) —> jR dénote the trace map.

We hâve a free complex of length 3 associated with X:

L(X):0 >An(R)

where the corresponding differentials are defined as follows:

dx{Mmod An(R)) tr (YM),

d2(N) XNmodAn(R),

d3(A)

dx and d3 are well defined because the trace of the product of a symmetric and an

alternating matrices is 0. Observe that H0(L,(X)) R/In_{(X).
Now we can state the main resuit of this section.

(3.1) THEOREM. Let R be a commutative Noetherian ring with identity. Let
X (xt]) be an n by n symmetric matrix with entries in R. If depth In_!(X) 3 (the
largest possible), then the complex L(X) is acyclic and gives a free resolution of

The proof of (3.1) requires several preliminary lemmata.

(3.2) LEMMA. Let ç:R^> Rf be a ring homomorphism, X= (xtJ) a symmetric
matrix over R, and X'= (cp(xl])). Then the complexes L(X)®RJR' and L(X') are

isomorphic over R\

(3.3) LEMMA. The complexes L(*CXC) and L(X) are isomorphic for an
arbitrary invertible n by n matrix C.

Proof. Let F be a free R -module of rank n and let F* be the dual module of
F. A map /: F* —? F is said to be symmetric if, with respect to some (and therefore
every) basis and dual basis of F and F*, the matrix of / is symmetric.

We are going to prove the lemma by assigning to a symmetric map f:F*-*F
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a free complex L(/) of length 3 and showing that L(X) and L(rCXC) are both

isomorphic with L(/). The passage from L(/) to L(X) corresponds to fixing a basis

of F and taking the dual basis of F*, and further passage to L(fCXC) corresponds

to a change of bases.

An invariant basis-free description of our complex can be given as follows:

R,

where ev stands for the évaluation map, S2(F) is the second symmetric power of
F, and /\2(F*) the second exterior power of F*.

To détermine the differentials of L(/) we define a map g : F—> F* by requiring
commutativity of the following diagram:

where the vertical maps are the canonical isomorphisms. Then the composition

F®F^**F®F*-?L>R induces d, on S2(F) and the map F*®F-^F®
F-JL^S2(F) induces d2, where t] is the canonical epimorphism. Finally, d3 is

induced by /\2(F*)-^> F*<g)F*^> F*®F, where y(uAw)

The next lemma needs some information about the n - 2 by n - 2 minors of X.
To fix the notation let X*1 be the minor of X obtained by leaving out the i-th and

/-th rows, and the fc-th and f-th columns of X, i^j, k^l Observe that X™ Xlh
because X is symmetric.

We define two functions:

<r(i, j)

1 if i<j
0 if ï=/, i,jeN;

l-l if î>/

T(U h K D (-DI+J+k+lcr(î, ;V(fc, l)xy, U h KU
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By the Laplace expansion we get the following formulas:

0 if

-ylk if s i,iïj,
ylk if s=/, iV/,
0 if i j.

We write {EtJ} for the standard basis of Mn(R); if FtJ E^-E^ then {Fl}}, i<j, is

a basis of /

(3.4) LEMMA. For i<j

Proof. Write a — i + / + p + q for short. Using (#) we hâve

p<q

X (-irX-
p<q

q<p

(3.5) COROLLARY. For an arbitrary alternating matrix B there exists an
alternaiing matrix A such thaï YB AX.

(3.6) LEMMA. If X is a symmetric invertible matrix, then L(X) is exact.

Proof. Ker dx Im d2. Let M mod An(R) g Ker dû this means that tr( YM) 0

and therefore YMe Ker(Mn(#)-^-> R). Hence

M mod An(JR) d2[(detX)-1YM]€lmd2.
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Ker d2 Im d3. Let Ne Ker d2, i.e. B : XN is alternating. Multiplying by Y and

using Corollary (3.5) we get N [(detX)~1A]Xelmd3, where A is an alternating

matrix.
Ker d3 - 0 is obvious.

In the course of the proof of Theorem (3.1) we will need the following
corollary from the "Lemme d"acyclicité" of Peskine-Szpiro (see [3], Corollary
4.2).

(3.7) LEMMA. Let R be a Noetherian ring, and let

L : 0 —» L3 —> L2 —» Lt —» Lo

fee a complex of finitely generated free R-modules. If for every prime idéal Pc R
with depth P < 3 the localized complex LP is exact, then L is exact.

Proof of Theorem (3.1). By Lemma (3.7) it is enough to prove that L(X)P is

exact for every prime P with depth P<3. Since depth Jn_1(X) 3 we infer that
In_1(X)<^P for such a P, and hence In_1(XP) RP where XP is a matrix X
considered over RP. Since L(X)P—L(XP) by Lemma (3.2) it suffices to prove the
theorem for R local and X with In_1(X) JR.

Under thèse assumptions and by Corollary (1.4) there exists an invertible
matrix C such that lCXC XX" where jcf, 0 for i <n, j= n, i nj< n, x'nn - 1,

je," 1 for i<n, x'^n u, x^ 0 for i^j, and the matrix X' is invertible. Observe
that X' and X" commute with each other. By Lemma (3.3) it is enough to prove
that L(X'X") is exact. By direct computation one proves that L(X") is exact.

Write dp, d'p, d; for the difïerentialsof L(X'X"), L(X'), L(X"), respectively, and
Y', Y" for the matrices of cofactors of X', X", respectively. Note that Y= Y Y".
Ker dl Im d2

For any matrix O (qlJ) we hâve an equality

Q X"Ô + (l-W)X<?nA,> (##)
;<n

where qt] qtJ for (i, /)* (n, n), and qnn -^~}qu; hence tr Ô 0.

Suppose that M mod An(R)eKer dx\ one can assume that M is triangular
with zéros under the main diagonal. Since Vnj 0 for j<n we get, by applying
(##) to YM, an equality Y'M X"W with tr W 0. Multiplying both sides by
X' and using the invertibility of det X' we finally get:

M mod An(R) X'X'ftdet X')"1 W] mod An(R) e Im d2.

Ker d2 Im d3
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We can assume that the entry u in the lower right corner of X" belongs to the
maximal idéal of R because otherwise X'X" is invertible and we are done by
Lemma (3.6).

Let QeKer d2, i.e. tr Q 0 and B : XX"Q is alternating. Multiplying by Y
gives X"Q (det X')"1 Y'B and tr (X"Q) 0. This together with tr Q 0 implies
that qnn=0, because l-u is invertible. Note that X"QY' (detX^YBY is

alternating and a simple calculation shows that tr(QY') 0. This means that
Or g Ker (Mn(R)-^-*R). Since X'\QY) is alternating we get QY DX\ for
some alternating D, from the exactness of L(X"). Therefore Q —

[(detXT1D]X'X"eImd3.
Ker d3 0 is obvious.

(3.8) Remark. The proof simplifies considerably when 2 is invertible in R. In
this case one can transform X as in Corollary (1.4) to a diagonal matrix and the
proof of the exactness of L(X) for a diagonal matrix is straightforward.

(3.9) COROLLARY (Kutz). If depth Jn_1(X) 3, then In^(X) is perfect.
From Corollary (2.4) we infer

(3.10) COROLLARY. In_x(X) is a generically perfect idéal (see [6], §8, for the

définition).
Corollaries (2.7) and (3.9) give together

(3.11) COROLLARY. Let Rbe a local algebra over a field K and X (xl}) a

symmetric matrix over R such that {xt]}, 1^/^/^n, form an R-sequence. Then
a) /n_1(X) is perfect and L(X) is the minimal free resolution of U//n_1(X).
b) if R is regular, ,R/Jn_1(X) is a Cohen-Macaulay ring of type (n2-n)/2.
The results of Eagon, Northcott and Hochster (see in particular [9, Theorem

3]) lead to the following corollary.

(3.12) COROLLARY. Let Xbea symmetric matrix over a Noetherian ring R. The

complex L(X) is depth-sensitive, i.e. for any finitely generated R-module E such

that In_l(X)E^E we hâve

depth (In_1(X),E) + q 3,

where q is the index of the largest non-vanishing homology module of the complex

L(X)®RE.

(3.13) Remark. When the first version of this paper had been written I
received from J. Herzog a preprint of S. Goto and S. Tachibana, [7]. The authors
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constructed a complex of length 3 identical with L(X) when 2 îs invertible in R,
and proved in this case (by différent methods) Theorem (3.1).

§4. An Application to the Poincaré Séries

We recall that if JR is a local ring with residue field K, the Poincaré séries 5PR

of R is the power séries

£r* (K,K))tp.
p=0

(4.1) THEOREM*. Let R be a local ring, Z an n by n symmetric matrix with
entries in the maximal idéal m of R, n > 1, and S i^//n_1(Z). Assume that depth
In_1(Z) 3. If n>2, then In^(Z) is a Golod idéal (see [1], Définition 3.6), and

where r

if n>2.

Proof If rc 2, then the idéal In_x{Z) is a complète intersection and the
corresponding formula is well known.

Let n>2; since /n_a(Z) generically perfect (Corollary (3.10)) we can use
Theorem 6.2 of [1] which states that /n_i(Z) is a Golod idéal in R if and only if
In-x(X) is a Golod idéal in the power séries ring i^[[x,J], 1^/^/^n, where
X (xlJ). Observe that depth /n_!(X) 3 by Corollary (2.6). (It is Theorem 6.2 of
[1] which needs the hypothesis that the entries of Z belong to the maximal idéal
of R.) Write Rr K[[xjl l^i^j^n, S'= R'/I^iX) for short. To prove that
/n_x(X) is Golod it suffices (by Theorems 3.5 and 6.2 of [1]) to show that the

algebra TorR (S', K) has trivial Massey products. Since L(X) is a free resolution of
S' over R' we know that TorR'(S\ X) L(X) (g)R,K

We are going to prove that L(X) can be endowed with the structure of a

differential graded commutative algebra over R' in such a way that the induced

multiplication on L(X)®RK is trivial. This resuit implies that TorR'(S\ K) has

trivial Massey products, hence /n_i(X) is a Golod idéal and consequently,
applying once again Theorems 3.5 and 6.2 of [1], we get the required formula for

* I am grateful to L. Avramov who drew my attention to an erroneous formulation of Thm. (4.1) in
an earlier version of the paper.
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Write L L(X) for short. Let S2(L) dénote the second symmetric power of the

complex L. A commutative multiplication on L defines a differential graded
homomorphism S2(L) —» L, which is the identity on the canonical image of L in
S2(L), and vice versa (by Proposition (1.1) of [2]). Moreover, this multiplication is

associative because L is of length 3. So we only must define a map of complexes:

S2(L): >L1®L2+L3^^Ll®L1 + L2-^>L1-^>L0

To define <px we fix a basis Ul} Et] mod An(R), 1 =^i^j^n, of Ll5 and a basis

Wm Em, p* q, Wp Epp -Enn, p 1,..., n -1, of L2.
We put

if /*n,Z
T(fc,/,U)Wi if / n,/

if j*nj
if / I

Let m' dénote the maximal idéal of Rf. Note that cp^L^L^c: m'L2 because

n>2. It follows from this définition of <p1 that (p1ô3(L1®L2)<=: m'2L2. Since L is

exact there exists presisely one map <p2 making the above diagram commutative.
We show that <p2(Li®L2)<^m'L3. But this is équivalent to the implication
d3(b) e m'2L2^b e m;L3, b e L3. The last statement follows simply from the définition

of d3 and linear independence of {xl} mod m'2}, i ^/, over K.

(4.2) Remark. If not ail entries of Z belong to the maximal idéal of R and
depth Jn_1(Z) 3, then by Lemma (1.1) /M_1(Z) /P(Z') for some symmetric
matrix Z' with ail the entries in the maximal idéal and for some p. Therefore,
Theorem (4.1) applies also for such matrices.

(4.3) Remark. Theorem (4.1) has also been proved independently by J.

Herzog and M. Steurich.
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