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Ideals generated by minors of a symmetric matrix

TADEUSZ JOZEFIAK

§0. Introduction

Let X be an n by n symmetric matrix with entries in a commutative
Noetherian ring R with identity. R. Kutz investigated, in [11], ideals I,(X)
generated by all the p by p minors of X. His main results states:

=(n7—p+1)(n—p+2)
2

depth L (X)<v(p, n):

and in case of equality the ideal I,(X) is perfect, i.e. depth I,(X) = pdR/IL,(X). Kutz
used in his proof a technique applied for the first time by Hochster and Eagon in
[10] to determinantal ideals associated with an arbitrary matrix.

In §2 of the present paper we extend some results of Kutz concerning the
depth of I,(X) and prove that the height of I,(X) is also bounded by v(p, n).

In §3 we construct a free complex, L(X), of length 3 which gives a free
resolution of I,_,(X) when depth I,_,(X)=23.

All the proofs in §§2, 3 depend heavily on a lemma stated in §1 which contains
in particular the structure theorem for non-singular quadratic forms over a local
ring (see [12], Lemme 2).

In §4 we utilize the complex L(X) to describe the relation between the
Poincaré series of local rings R and R/I,_,(X) when depth I,_,(X)=3.

§1. The fundamental lemma

(1.1) LEMMA (Micali-Villamayor). Let R be a commutative ring with identity.
Let X = (x;;) be an n by n symmetric matrix with entries in R. Let I,(X) be the ideal
of R generated by all the p by p minors of X, 1<p<n.

I) If x,, is invertible in R, then there exists an invertible matrix C such that

1)

. (X1 0
exe= (515

595
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2) the n—1 by n—1 matrix X' is symmetric and

X1 Xy .
x;(f=xkj———'x——-" k,]=2,...,n,
11

3) L(X)=L_,(X) for p=1.

X X .. . . . . . .
IT) If det ( 1 12): = a is invertible in R, then there exists an invertible matrix

X21 X22
C such that

9]
(xn X12 \
X21 X2 | O
\ 0 | Xn/’

2) the n—2 by n—2 matrix X" is symmetric and x|;= x,; — a;X,; — b, x,;, where

'‘CXC=

X1k X202 ™ X2 X12 X2k X11 ™ X11X21 :
a, = ’bk= ,k,]:3,...,n,
a a

3) L(X)=I,_,(X") for p=2.
(1.2) Remark. We adopt the convention I(X)= R.

Proof. I) We define

{ 2 ... —Zin
X11 X11
e 1 O
o 1
IT) We define
1 0y —-a; -+ -—a,
(0 l —B:; te _bn\
1
C= O

e
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(1.3) COROLLARY. Let R be a local ring. If I,(X) = R, then the hypothesis of

either I) or II) of Lemma (1.1) holds (possibly after rearrangement of some rows
and the same columns of X).

Proof. From I,(X)=R it follows that some entry of X is invertible. If that
entry lies on the main diagonal the hypothesis of I) holds. If this is not the case
one may assume that x,, is invertible and all the entries on the main diagonal
belong to the maximal ideal of R. Then a = x,,x,,— x?, is invertible.

(1.4) COROLLARY. Let R be a local ring. If I,_,(X) = R, then there exists an
invertible matrix C over R such that

* % O
* %
'CXC=
* %
* %
O *

Tk
u
where the starred i by i minors on the main diagonal are invertible, i =1 and/or 2,
ueR.

Proof. If I,_,(X) =R, then at least one entry of X is invertible. Using Lemma
(1.1) one can transform X into a matrix of the kind I'1) or II1) of the lemma with
an r by r invertible matrix in the upper left corner, r=1or 2. If n—1=r we are
done. If not, then the remaining n —r by n—r matrix in the lower right corner has
also at least one invertible entry. We again apply Lemma (1.1). Proceeding in this
way we get the required result.

§2. Height and Depth of I,(X)

The next theorem can be deduced from Kutz’s results and the general theory
of generically perfect ideals of Eagon and Northcott, [6]. To make the proof of
Theorem (2.3) as self-contained as possible we indicate here a short proof of
Theorem (2.1) along the lines presented in [5] for arbitrary determinantal ideals.

(2.1) THEOREM. Let R be a commutative Noetherian ring with identity and X
an n by n symmetric matrix with entries in R. Every minimal prime ideal of the
ideal I1,(X) has height at most equal to v(p, n).

Proof. We only sketch the proof and refer to [5], pp. 202-203, where possible.
We use induction on n. If n<2 or p=1 the theorem follows from the
generalized principal ideal theorem of Krull.
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Suppose n>2, p>1 and let P be a minimal prime ideal of I,(X). One may
assume that R is local with maximal ideal P and that I,(X) is P-primary. If
I,(X) =R, then by Lemma (1.1) and Corollary (1.3) L (X)= Ip_,(X') where r=1
or 2, and X is an n—r by n—r symmetric matrix over R. By the induction
hypothesis ht P<v(p—r,n—r)=v(p, n).

If I,(X)< P we consider a matrix

X+<—+%Z 0 ,
o

where Z is an indeterminate over R and proceed as in [5].

For the proof of the next theorem we record the following easy lemma.

(2.2) LEMMA. Let K -be a subring of a commutative ring R with identity and
letx,, ..., x, be a sequence of elements in R which are algebraically independent over
K. Assume that t is a non-zero divisor in R belonging to K[x,, ..., x,], s<q, and
write K'=K[x,,..., %]y, R'=Ryx for the localizations of the corresponding
rings at the powers of t; moreover iet al.,, ..., a} be elements of K'.

Then K'c R’ and the elements x,,,—a’.,, ..., x,—a} are algebraically inde-
pendent over K'.

(2.3) THEOREM. Let R be a commutative Noetherian ring with identity, K a
Noetherian subring of R with the same identity. Let {x;}, 1 <i<j<n, be a sequence
of elements of R which are algebraically independent over K. Assume that R is flat
as an algebra over K[{x,}]. If we put x;; = x;; for j <i and define X = (x;;), then depth
L(X) = v(p, n).

Proof. We use certain arguments of Eagon from [4]. If p=1, then L (X) is
generated by {x;}, i <j, and therefore depth I,(X)=»(1, n). In fact, the sequence
{x;}, i=<j, is R-regular since R is flat over K[{x;}].

Now we argue by induction on n, assuming n>1, p>1. Let u,,...,u, be a
maximal R-regular sequence contained in I,(X). By Theorem (2.1) we know that
I <wv(p, n), hence in view of p>1 we have | <(n*+n)/2=v(1,n). Write I=
L(X), J=(uy, ..., u) for short. Since I consists of zero divisors on J, there exists
a prime ideal P associated to J and containing I. Thus [ =depth J=depth
I=depth P. By | <(n”+n)/2 we must have x,;€ P for some i, j. We consider two
cases:

I) i=j; one may assume without loss of generality that i =1. Write t=x,,,
K'=K[xy1, X135« X1, Ji4y -

II) i#j and all elements on the main diagonal belong to P. As above one may
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assume i=1, j=2. Write, in this case, t=x,,;X,,—x3,, K'=K[x;1,..., X1
Xaos « « s XpnJea. Of course t¢ P.

In both cases write R’ = R,«,. For an ideal 2 of R let A’ denote AR’'. Thus we
have J'cI'cP’, P’ is proper and depth J'=1[ since J' is generated by an
R’-regular sequence u, . .., u. On the other hand, P’ is an associated prime of J’
because t£ P. Therefore | =depth J'=depth I'=depth P'. Observe that I'=
I(X)R' is the ideal in R’ generated by all the p by p minors of X. Since t is
invertible in R’ we may apply Lemma (1.1) to R’ and X. We conclude that
I'= Ip_,(f()R’, where r=1 or 2 depending on case I) or II), and X= (x; — ak)) is
the n—r by n—r symmetric matrix with entries in R’, a};€ K', r<k, j<n. By
Lemma (2.2) we infer that the elements {x,; —a};}, r <k <j=<n, are algebraically
independent over K'. Moreover K'[{x,; —a}], r<k<j=<n, is equal to K[{x;}]x,
I<i<j=n, and R’ is flat over K[{x;}], 1<i<j=<n. Hence by the induction
hypothesis we finally get [ =depth I' =depth I,,,,(X)R' =v(p—r,n—r)=v(p, n).

(2.4) COROLLARY. Let K be a commutative Noetherian ring and R =
K[{x;}], 1<i<j=<n, a polynomial ring over K in (n*+n)/2 indeterminates
{x;} - Put X =(x;). Then depth I,(X)=v(p, n).

(2.5) Remark. Corollary (2.4) was proved by R. Kutz in [11, Proposition 6.2]
under the additional assumption that K is an integral domain.

(2.6) COROLLARY. Let R be a local algebra over a field K and let {x;}, 1<
i<j<n, be a regular sequence in R. Then depth L,(X)=v(p, n) for a symmetric
matrix X = (x;).

Proof. Since {x;} are algebraically independent over K and R is flat over
K[{x;}]([8, Proposition 1]), the corollary follows immediately from Theorem (2.3).

Using the method of the proof of Theorem (2.3) one can also prove

(2.7) THEOREM. Let R be a commutative Noetherian ring with identity and K
a Noetherian subring of R with the same identity. Let {x,}, 1<i<r, 1<j<s, be a
sequence of elements of R which are algebraically independent over K and let X
denote an r by s matrix (x;;). Assume that R is flat as an algebra over K[{x,}]. Then
depth I(X)=(r—t+1)(s—t+1) where I,(X) is an ideal of R generated by all the t
by t minors of X.

(2.8) COROLLARY. Let R be a local algebra over a field K and let {x;},
1<i<r 1<j=<s, be a regular sequence in R. Then epth [(X)=(r—t+1)(s—t+1)
where X = (x;;).

§3.. A Free Resolution of I, ,(X)

Let R be a commutative ring with identity and X =(x;) a symmetric n by n
matrix with entries in R. Write Y =(y;) for the matrix of cofactors of X, i.e.
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y; = (—1)""X} where X stands for the minor of X obtained by deleting the i-th
column and the j-th row of X. The matrix Y is also symmetric. We are fixing the
matrix X (and hence Y) throughout this section.

Let M, (R) be the free R-module of all n by n matrices over R and A, (R) the
free submodule of M, (R) consisting of all alternating matrices. Furthermore, let
tr: M, (R)— R denote the trace map.

We have a free complex of length 3 associated with X:

d

L(X):0—> A, (R)— Ker (M, (R) —> R)—2> M_(R)/A,(R)— R,

where the corresponding differentials are defined as follows:

d,(M mod A, (R))=tr (YM),
d,(N)= XN mod A, (R),
ds(A)=AX.

d, and d; are well defined because the trace of the product of a symmetric and an
alternating matrices is 0. Observe that Hy(L(X))= R/I,_,(X).
Now we can state the main result of this section.

(3.1) THEOREM. Let R be a commutative Noetherian ring with identity. Let
X =(x;) be an n by n symmetric matrix with entries in R. If depth I, _(X)=3 (the
largest possible), then the complex L(X) is acyclic and gives a free resolution of
R/In—l(X)-

The proof of (3.1) requires several preliminary lemmata.

(3.2) LEMMA. Let ¢:R — R’ be a ring homomorphism, X = (x;;) a symmetric
matrix over R, and X' =(¢(x;)). Then the complexes L(X)®zR' and L(X') are
isomorphic over R'.

(3.3) LEMMA. lThe ‘complexes L(‘'CXC) and L(X) are isomorphic for an
arbitrary invertible n by n matrix C.

Proof. Let F be a free R-module of rank n and let F* be the dual module of
F. A map f:F* — F is said to be symmetric if, with respect to some (and therefore
every) basis and dual basis of F and F*, the matrix of f is symmetric.

We are going to prove the lemma by assigning to a symmetric map f: F*— F
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a free complex L(f) of length 3 and showing that L(X) and L(‘CXC) are both
isomorphic with L(f). The passage from L(f) to L(X) corresponds to fixing a basis
of F and taking the dual basis of F*, and further passage to L(‘CXC) corresponds
to a change of bases.

An invariant basis-free description of our complex can be given as follows:

L(f): 0 —> A’(F*) — Ker (F*® F—=> R) —> §,(F) —> R,

where ev stands for the evaluation map, S,(F) is the second symmetric power of
F, and A*(F™*) the second exterior power of F*.

To determine the differentials of L(f) we define a map g: F — F* by requiring
commutativity of the following diagram:

A" F*) = A" (F)
U !
F—— F*

where the vertical maps are the canonical isomorphisms. Then the composition

FRQF- 2% FQF*—=>> R induces 9, on S,(F) and the map F*QF12L F®
F —> S,(F) induces d,, where n is the canonical epimorphism. Finally, d; is

induced by AX(F*) > F*Q F* -2 F*®F, where y(uAaw)=uQ®@w-w®u.

The next lemma needs some information about the n —2 by n—2 minors of X.
To fix the notation let X} be the minor of X obtained by leaving out the i-th and
j-th rows, and the k-th and [-th columns of X, i#j, k# L Observe that X{'= X},
because X is symmetric.

We define two functions:

1 if i<j
o(i,j)=¢ 0 if i=j, i jeN;
-1 if i>j

TG, j, k, )= (1" "o, o(k, DXE, ij k1, eN
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By the Laplace expansion we get the following formulas:

) if S# I, §# |,
" —ya if s=i %]
@ Y x TG k=] % o TR
=1 Yao if s=J,i#],
L 0 if l=]

We write {E;;} for the standard basis of M, (R); if F; = E; — E;, then {F,}, i <j, is
a basis of A,(R).

(3.4) LEMMA. Fori<j
YF; = ( Y (—l)‘+f+"+qX5f‘qu>X.
rp<q
Proof. Write a =i+ j+p+q for short. Using (#) we have

Z (—1)*XPF, X =

p<q

Y (—1)*Xra (gxqups - g X Eqs) -

p<aq

Y (L DX T (1) Xy =
ps \q>p

aq<p

2 (szqT(i, P, q))E,,s S

p,ss * q

Z YirEpi — Z YieEpi = Y(E; — E;;) = YF;,.
p p

(3.5) COROLLARY. For an arbitrary alternating matrix B there exists an
alternating matrix A such that YB = AX.

(3.6) LEMMA. If X is a symmetric invertible matrix, then L(X) is exact.

Proof. Ker d,=Im d,. Let M mod A, (R) € Ker d;; this means that tr(YM)=0
and therefore YM € Ker(M, (R) —> R). Hence

M mod A,(R)=d,[(det X)"*YM]eIm d,.
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Ker d,=Imd;. Let NeKer d,, i.e. B:= XN is alternating. Multiplying by Y and
using Corollary (3.5) we get N=[(det X)"'A]X eIm d,, where A is an alternat-
ing matrix.
Ker d;=0 is obvious.

In the course of the proof of Theorem (3.1) we will need the following

corollary from the ‘“Lemme d’acyclicit¢” of Peskine-Szpiro.(see [3], Corollary
4.2).

(3.7) LEMMA. Let R be a Noetherian ring, and let
L:0—»L;,—»>L,—-L,—L,

be a complex of finitely generated free R-modules. If for every prime ideal P< R
with depth P <3 the localized complex L, is exact, then L is exact.

Proof of Theorem (3.1). By Lemma (3.7) it is enough to prove that L(X), is
exact for every prime P with depth P<3. Since depth I,_,(X)=3 we infer that
I,_,(X)Z P for such a P, and hence I, ,(Xp)= R, where Xp is a matrix X
considered over Rp. Since L(X)p=L(Xp) by Lemma (3.2) it suffices to prove the
theorem for R local and X with I, _,(X)=R.

Under these assumptions and by Corollary (1.4) there exists an invertible
matrix C such that ‘CXC = X'X" where x/;=0fori<n,j=n,i=n, j<n, x},=1,
xii=1for i<n, x;, =u, x=0 for i# j, and the matrix X' is invertible. Observe
that X' and X" commute with each other. By Lemma (3.3) it is enough to prove
that L(X'X") is exact. By direct computation one proves that L(X") is exact.

Write d,,, d}, d, for the differentials-of L(X'X"), L(X"), L(X"), respectively, and
Y’, Y” for the matrices of cofactors of X', X", respectively. Note that Y=Y'Y".
Ker d,=Imd,

For any matrix Q =(g;) we have an equality

Q=X"Q+(1-u)} q,E, (##)
i<n
where §; = q; for (i, j) #(n, n), and G,, = —Y72{q;; hence tr Q=0.

Suppose that M mod A,(R)eKer d;; one can assume that M is triangular
with zeros under the main diagonal. Since y,;=0 for j<n we get, by applying
(##) to Y'M, an equality Y'M = X"W with tr W= 0. Multiplying both sides by
X' and using the invertibility of det X' we finally get:

M mod A, (R)=X'X"[(det X')"'W]mod A,(R)eIm d.,.

Ker d,=Im d,
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We can assume that the entry u in the lower right corner of X” belongs to the
maximal ideal of R because otherwise X'X" is invertible and we are done by
Lemma (3.6).

Let QeKer d,, i.e. tr Q=0 and B:= X'X"Q is alternating. Multiplying by Y’
gives X"Q =(det X")"'Y'B and tr (X"Q)=0. This together with tr Q =0 implies
that g,, =0, because 1—u is invertible. Note that X"QY’=(det X')"'Y’'BY’ is
alternating and a simple calculation shows that tr (QY’)=0. This means that
QY'eKer (M,(R)—— R). Since X"(QY") is alternating we get QY' = DX", for
some alternating D, from the exactness of L(X"). Therefore Q=
[(det X)'D]X'X"eIm d,.

Ker d;=0 is obvious.

(3.8) Remark. The proof simplifies considerably when 2 is invertible in R. In
this case one can transform X as in Corollary (1.4) to a diagonal matrix and the
proof of the exactness of L(X) for a diagonal matrix is straightforward.

(3.9) COROLLARY (Kutz). If depth I,_,(X) =3, then I,_,(X) is perfect.
From Corollary (2.4) we infer

(3.10) COROLLARY. I,_,(X) is a generically perfect ideal (see [6], §8, for the
definition).
Corollaries (2.7) and (3.9) give together

(3.11) COROLLARY. Let R be a local algebra over a field K and X =(x;) a
symmetric matrix over R such that {x;}, 1<i<j<n, form an R-sequence. Then
a) I,_,(X) is perfect and L(X) is the minimal free resolution of R/I,_,(X).

b) if R is regular, R/I,_,(X) is a Cohen-Macaulay ring of type (n>*—n)/2.
The results of Eagon, Northcott and Hochster (see in particular [9, Theorem
3]) lead to the following corollary.

(3.12) COROLLARY. Let X be a symmetric matrix over a Noetherian ring R. The
complex L(X) is depth-sensitive, i.e. for any finitely generated R-module E such
that I,_,(X)E+# E we have

depth' (In—-l(X)’ E)+q = 3’

where q is the index of the largest non-vanishing homology module of the complex
L(X)®rE.

(3.13) Remark. When the first version of this paper had been written I
received from J. Herzog a preprint of S. Goto and S. Tachibana, [7]. The authors
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constructed a complex of length 3 identical with L(X) when 2 is invertible in R,
and proved in this case (by different methods) Theorem (3.1).

§4. An Application to the Poincaré Series

We recall that if R is a local ring with residue field K, the Poincaré series Pg
of R is the power series

Z (dimg Tory (K, K))tP.
p=0

(4.1) THEOREM®. Let R be a local ring, Z an n by n symmetric matrix with
entries in the maximal ideal m of R, n>1, and S = R/I,_(Z). Assume that depth
I_,(Z)=3. If n>2, then I,_,(Z) is a Golod ideal (see [1], Definition 3.6), and

PrlPs =1+ /(1—t3*T"if n=2, where r=dim(I,(Z)+m?)/m>,

)tz—(nz—l)ﬁ—(n

n’+n

2

2

2

Pl Ps = 1—( ”)t“ if n>2.

Proof. If n=2, then the ideal I,_,(Z) is a complete intersection and the
corresponding formula is well known.

Let n>2; since I,_,(Z) generically perfect (Corollary (3.10)) we can use
Theorem 6.2 of [1] which states that I,_,(Z) is a Golod ideal in R if and only if
I,_,(X) is a Golod ideal in the power series ring K[[x;]], 1<i<j<n, where
X =(x;). Observe that depth I,_;(X) =3 by Corollary (2.6). (It is Theorem 6.2 of
[1] which needs the hypothesis that the entries of Z belong to the maximal ideal
of R) Write R'=K][[x;]], 1<i<j<n, §'=R'/I,_,(X) for short. To prove that
I,_(X) is Golod it suffices (by Theorems 3.5 and 6.2 of [1]) to show that the
algebra Tor®'(S’, K) has trivial Massey products. Since L(X) is a free resolution of
S’ over R’ we know that Tor®(S’, K)=L(X) ®x K.

We are going to prove that L(X) can be endowed with the structure of a
differential graded commutative algebra over R’ in such a way that the induced
multiplication on L(X)®y K is trivial. This result implies that Tor?(S’, K) has
trivial Massey products, hence I, ,(X) is a Golod ideal and consequently,

applying once again Theorems 3.5 and 6.2 of [1], we get the required formula for
Pl Ps.

* 1 am grateful to L. Avramov who drew my attention to an erroneous formulation of Thm. (4.1) in
an earlier version of the paper.
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Write L = L(X) for short. Let S,(L) denote the second symmetric power of the
complex L. A commutative multiplication on L defines a differential graded
homomorphism S,(L)— L, which is the identity on the canonical image of L in
S,(L), and vice versa (by Proposition (1.1) of [2]). Moreover, this multiplication is
associative because L is of length 3. So we only must define a map of complexes:

S,L): -+ —>L,®L,+L;—2>L,QL,+L,-2>L, -2 L,
! =\ / N/
> L, > L, d

L : 0 d

> L, —> L,

To define ¢, we fix a basis U; =E; mod A,(R), 1<i<j<n, of L,, and a basis
We=E, p#q, W,=E,,—E,,,p=1,...,n—1, of L,.
We put

(Pl(ljij® Ukl)= Z T(k9 j, i, a)Wa1+ Z T(L i’ k, a)qu' +

a#l a#j

T(k,j, i, D(W,=W)) if j#n,1#n,

T(k,j, i, )W, if j=nl#n,
=T(k, j, i, )W, if j#nl=n,
0 if j=Il=n.

Let m' denote the maximal .ideal of R’. Note that ¢,(L,®L,)< m'L, because
n>2. It follows from this definition of ¢, that ¢,8;(L;®L,)< m’’L,. Since L is
exact there exists presisely one map ¢, making the above diagram commutative.
We show that ¢,(L,®L,)c m'L;. But this is equivalent to the implication
ds(b)e M?L,=>b e m'L,, b € L,. The last statement follows simply from the defini-
tion of d, and linear independence of {x; mod m'?}, i <j, over K.

(4.2) Remark. If not all entries of Z belong to the maximal ideal of R and
depth I,_,(Z)=3, then by Lemma (1.1) I, ,(Z)=L,(Z’) for some symmetric
matrix Z' with all the entries in the maximal ideal and for some p. Therefore,
Theorem (4.1) applies also for such matrices.

(4.3) Remark. Theorem (4.1) has also been proved independently by J.
Herzog and M. Steurich.
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