Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 53 (1978)

Artikel: Feuilletages de variétés de dimension 3 qui sont des fibrés en cercles.

Autor: Levitt, Gilbert

DOI: https://doi.org/10.5169/seals-40787

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Feuilletages des variétés de dimension 3 qui sont des fibrés en cercles

GILBERT LEVITT

Sauf mention explicite du contraire, toutes les variétés, et toutes les applications entre variétés, que nous considérerons ici seront supposées de classe C^{∞} . Les feuilletages étudiés sur ces variétés seront toujours de codimension 1, de classe au moins C^2 , et transversalement orientables. Un feuilletage sur une variété à bord sera supposé transverse ou tangent au bord.

Un plongement φ d'une variété V_1 dans une variété V_2 sera dit incompressible si l'application induite $\varphi_*: \pi_1(V_1) \to \pi_1(V_2)$ est injective. Par abus de langage, on dira aussi, si aucune confusion n'est possible, que V_1 , ou $\varphi(V_1)$, est incompressible dans V_2 (on se permettra souvent l'abus de langage consistant à identifier $\varphi(V_1)$ à $\cdot V_1$).

Si $p:V\to\Sigma$ définit un fibré (localement trivial) en cercles sur une surface compacte sans bord Σ , avec V une 3-variété orientable, X(p) désignera la classe d'Euler du fibré (considérée comme un entier relatif), et $X(\Sigma)$ désignera la caractéristique d'Euler-Poincaré de Σ (Σ n'est pas supposée orientable).

On désignera par I l'intervalle compact [0,1], par S^n la sphère de dimension n, par D^2 le disque fermé de dimension 2, par P^2 le plan projectif réel, par T^2 le tore de dimension 2, et par K^2 la bouteille de Klein.

Les principaux résultats démontrés ici sont les suivants:

THEOREME. Soit $p: V \to \Sigma$ un fibré en cercles sur une surface compacte sans bord $\Sigma \neq T^2$. Soit \mathcal{F} un feuilletage sur V de codimension 1, de classe C^r ($2 \leq r \leq \infty$), transversalement orientable, dont toutes les feuilles sont orientables, mais dont aucune feuille n'est compacte. Alors \mathcal{F} est C^r -isotope à un feuilletage transverse aux fibres de p.

Remarque. Il suffit, pour être sûr que les feuilles de \mathcal{F} sont orientables, de supposer V orientable.

COROLLAIRE. Soit $p: V \to \Sigma$ un fibré en cercles sur une surface compacte sans bord $\Sigma \neq T^2$, avec V orientable. Si Σ est non-orientable ou si $|X(p)| > \sup(0, -X(\Sigma))$, tout feuilletage de codimension 1, de classe C^2 , transversalement orientable, de V possède une feuille compacte.

La classe d'Euler X(p) intervient dans le corollaire ci-dessus par le biais d'un théorème de Wood [W] selon lequel la condition $|X(p)| \le \sup (0, -X(\Sigma))$ est nécessaire et suffisante pour l'existence d'un feuilletage transverse aux fibres de p. Le corollaire peut être montré à partir des résultats de Novikov [N] si $\Sigma = S^2$ ou P^2 , et de ceux de Plante [P] si $\Sigma = K^2$. Des contre-exemples montrent que l'hypothèse $\Sigma \ne T^2$, ou une hypothèse de différentiabilité du feuilletage, sont nécessaires pour le Théorème ou le Corollaire.

Les résultats ci-dessus ont été montrés par Thurston [T] dans le cas où Σ et V sont orientables. Ses démonstrations sont toutefois assez incomplètes, en particulier dans ce qui correspond à la partie II ci-dessous. Le but de ce travail est donc d'une part de présenter des démonstrations complètes et d'autre part de généraliser les résultats au cas non-orientable (on remarquera que, par exemple, le Corollaire, dans le cas où Σ est non-orientable et |X(p)| "petit," ne peut pas se déduire du cas où Σ est orientable en considérant un revêtement à deux feuillets de V).

La partie I généralise à la bouteille de Klein un résultat de R. Roussarie [R] sur la possibilité, par isotopie, de rendre un tore plongé dans une 3-variété feuilletée transverse au feuilletage. On en déduit une démonstration simple d'un résultat de S. Goodman [G].

On se pose ensuite la question suivante: avec les hypothèses du théorème ci-dessus, si l'on choisit dans Σ deux courbes fermées C_1 et C_2 se coupant transversalement en exactement un point x, la partie I permet, par isotopie, de rendre séparément $p^{-1}(C_1)$ et $p^{-1}(C_2)$ transverses à \mathcal{F} ; mais est-il possible de le faire simultanément pour les deux surfaces, c'est-à-dire peut-on supposer que, après isotopies, les deux surfaces se coupent toujours transversalement selon une courbe fermée simple?

La partie II répond à cette question, tandis qu'il est montré dans la partie III que, sous certaines conditions sur F, on peut de plus supposer que la courbe d'intersection des deux surfaces est transverse au feuilletage.

Les résultats des parties II et III servent finalement dans la partie IV à démontrer le théorème ci-dessus et son corollaire au moyen d'un "découpage" de V selon des surfaces transverses à F, en utilisant comme Thurston [T] un résultat de A. J. Schwartz [S].

Je tiens à exprimer ici mes remerciements à Harold Rosenberg pour tous les conseils et encouragements qu'il m'a donnés et à Madame Barbichon pour la frappe de ce texte.

PARTIE I

Afin d'étudier les plongements du tore T^2 dans les 3-variétés feuilletées, Roussarie a été amené [R] à introduire les composantes de type I ou II. Ce sont 574 GILBERT LEVITT

des variétés compactes à bord, difféomorphes à des fibrés sur S^1 de fibre D^2 ou $S^1 \times I$, munies d'un feuilletage dont les composantes du bord sont les uniques feuilles compactes; ce feuilletage est défini à conjugaison près et fait de la variété une "composante intrinsèque," c'est-à-dire une composante connexe (au sens de [N]) qui reste une composante connexe quand elle est plongée dans une variété feuilletée quelconque (cela revient à dire qu'un champ de vecteurs transverse au feuilletage est simultanément rentrant ou sortant sur toutes les composantes du bord de la variété). Les composantes de type I sont des "composantes de Reeb" (orientable et non-orientable), les composantes de type II sont des "composantes cylindriques" (la composante cylindrique introduite dans [G] s'identifie à la composante II_{b1} de [R].

Cela étant, Roussarie a montré [R] le théorème suivant:

THEOREME 1. Soit V^3 une 3-variété compacte munie d'un feuilletage \mathcal{F} ne possédant pas de composante de type I ou II. Alors tout plongement incompressible φ de T^2 dans int V est isotope dans l'intérieur de V à un plongement transverse à \mathcal{F} ou à un plongement dont l'image est une feuille de \mathcal{F} difféomorphe à T^2 . Rappelons que \mathcal{F} est supposé de codimension 1, de classe C^2 , et transversalement orientable.

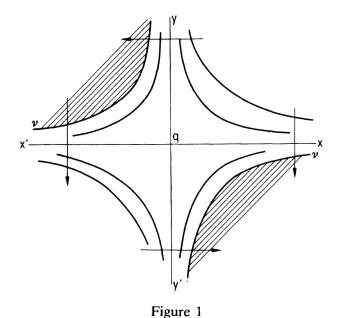
Le Théorème 1 se généralise de la façon suivante:

THEOREME 1 bis. Soit V^3 une 3-variété compacte munie d'un feuilletage \mathcal{F} ne possédant pas de composante de type I ou II et dont toutes les feuilles sont orientables. Alors tout plongement incompressible φ de K^2 dans int V est isotope, dans int V, à un plongement transverse à \mathcal{F} .

Remarque. Dans les hypothèses du théorème 1 ou du théorème 1 bis, l'existence de \mathcal{F} et de φ entraîne l'irréductibilité de $V[R_1]$.

Démonstration du Théorème 1 bis. La démonstration du théorème 1 se généralise presque immédiatement. Il convient de remarquer que, si φ est transverse à \mathcal{F} sauf sur un sous-ensemble compact $S \subset K^2$, le feuilletage obtenu en restreignant le feuilletage singulier $\varphi_0^* \mathcal{F}$ à $K^2 - S$ est transversalement orientable et une feuille de $\varphi_0^* \mathcal{F}_{|K^2-s}$ difféomorphe à S^1 est à fibré normal trivial sur K^2 .

Un point délicat est l'étude de l'ensemble E intervenant dans le Lemme 1, dans le cas b (on se réfère ici à [R], dont on reprend les notations). On dispose d'un plongement $\varphi_0: K^2 \to V$, en position générale par rapport à \mathcal{F} . p est un centre de $\varphi_0^*(\mathcal{F})$ et au voisinage de p les feuilles de $\varphi_0^*(\mathcal{F})$ sont des courbes fermées simples bordant sur K^2 un disque contenant p comme unique singularité de $\varphi_0^*(\mathcal{F})$. On appelle E la fermeture de la réunion des feuilles dé $\varphi_0^*(\mathcal{F})$ vérifiant les propriétés ci-dessus et on suppose que la frontière de E est un bouquet de



deux cercles, le point double du huit étant un point de selle q. Soit γ une feuille de $\varphi_0^*(\mathcal{F})$, contenue dans E et proche de q. γ borde dans K^2 un disque D contenant p, hachuré dans le schéma ci-dessus. Les flèches horizontales et verticales symbolisent'une orientation transverse de $\varphi_0^*(\mathcal{F})_{|K^2-S|}$. Considérons (sur K^2) une séparatrice partant de q, par exemple qx. Elle revient au point q soit par x', soit par y (pas par y' car on serait alors dans le cas a). Il convient de montrer, pour étendre la démonstration de Roussarie, qu'elle revient en fait par y. Supposons au contraire qu'elle revienne par x', ce qui entraîne qu'elle est à fibré normal non trivial et que la séparatrice partant par y revient par y'. L'existence des courbes telles que γ montre que le lacet obtenu en partant de q par qx, en revenant à q par x', en repartant par y et enfin en revenant à q par y' est homotope à 0. Les deux lacets (à point base q) obtenus l'un en partant par x et en revenant par x' et l'autre en partant par y' et en revenant par y sont donc homotopes. Ils sont homotopes sur K^2 , donc dans V, donc, comme \mathcal{F} ne possède pas de composante de type I, sur la feuille L de F contenant q (d'après le théorème de Novikov, cf. [N]). Mais ceci est impossible, car ces deux courbes se coupent transversalement en un point unique, alors que L est orientable. Le reste de la démonstration s'étend sans difficulté particulière en remarquant que le cas y ne peut pas se présenter.

Soit maintenant K^3 l'unique (à difféomorphisme près) 3-variété orientable fibrée sur K^2 de fibre I (K^3 est le support de la composante Π_{b_1} de [R] et possède un bord connexe difféomorphe à T^2). Le théorème 1 bis permet de démontrer le:

COROLLAIRE [G]. Π existe, à équivalence topologique près, un seul feuilletage de K^3 admettant ∂K^3 comme unique feuille compacte.

Démonstration. Soit \mathcal{F} un feuilletage de K^3 , comme dans l'énoncé ci-dessus. On considère une section $\varphi: K^2 \to K^3$ du fibré $\pi: K^3 \to K^2$. Si \mathcal{F} ne fait pas de K^3 une composante Π_{b_1} , φ est isotope à un plongement φ_0 transverse à \mathcal{F} , d'après le Théorème 1 bis. En découpant K^3 selon $\varphi_0(K^2)$, on obtient une variété que l'on identifie à $T^2 \times I$, munie d'un feuilletage \mathcal{F}' tangent à une composante du bord (disons $T^2 \times \{1\}$) et transverse à l'autre. Cela entraîne ([MR], III, Lemme 1, page 164) que le feuilletage \mathcal{G} induit par \mathcal{F}' sur $T^2 \times \{0\}$ est sans holonomie. Comme ce feuilletage doit, par recollement (l'opération inverse du découpage selon $\varphi_0(K^2)$), donner un feuilletage transversalement orientable de $\varphi_0(K^2)$, \mathcal{G} est un feuilletage trivial par cercles bien déterminé à conjugaison près. D'après ([MR], III, Remarque 1, page 164), \mathcal{F}' , et donc \mathcal{F} , est déterminé à conjugaison près. Cela entraîne que \mathcal{F} fait de K^3 une composante Π_{b_1} , d'où la contradiction paradoxalement cherchée.

PARTIE II

Soit \mathcal{G} un feuilletage de T^2 .

DEFINITION 1. Une courbe fermée simple C sur T^2 , image d'un plongement C^{∞} de S^1 dans T^2 non homotope à une application constante, sera dite bien placée par rapport à \mathscr{G} si l'une des trois conditions suivantes est vérifiée:

- (a) C est transverse à \mathcal{G} ;
- (b) \mathscr{G} est un feuilletage trivial par cercles et C est une feuille de \mathscr{G} ;
- (c) \mathcal{G} contient au moins une composante de Reeb (difféomorphe à $S^1 \times I$) et C est tangent à \mathcal{G} en un nombre fini (non nul) de points situés dans les composantes de Reeb de \mathcal{G} , le nombre de points étant le même dans chaque composante et égal à |(C, L)|, où L est un cercle frontière de composante de Reeb.

Les trois conditions a, b, c s'excluant mutuellement, on dira selon le cas que C est bien placée de type a, b ou c.

DEFINITION 2. Une courbe fermée simple C sur T^2 , image d'un plongement C^{∞} par morceaux de S^1 dans T^2 non homotope à une application constante, sera dite presque bien placée par rapport à \mathcal{G} si C est bien placée par rapport à \mathcal{G} , ou peut s'obtenir à partir d'une courbe C_0 bien placée de type c de la manière suivante: On choisit des points x_1, \ldots, x_k où C_0 est tangent à \mathcal{G} et des segments $[b_i, a_i]$ $(1 \le i \le k)$ portés par C_0 , contenant x_i dans leur intérieur et contenus dans l'intérieur de la composante de Reeb \mathcal{R}_i à laquelle appartient x_i . On suppose de plus que, pour tout i, b_i et a_i sont situés sur la même feuille (non compacte) de \mathcal{G} , et que le chemin λ_i joignant b_i à a_i sur cette feuille est homotope au chemin $[b_i, a_i]$ sur C_0 . C est obtenue à partir de C_0 en remplaçant les chemins $[b_i, a_i]$ $(1 \le i \le k)$ par les chemins λ_i .

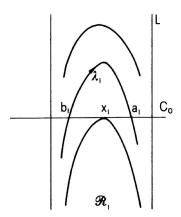


Figure 2

Remarques

- (1) Toute classe d'isotopie de courbes (fermées simples non homotopes à 0) sur T^2 contient une infinité de courbes bien placées par rapport à \mathcal{G} , et le type (a, b ou c) d'une telle courbe ne dépend que de sa classe d'isotopie.
- (2) Si C est bien placée de type c, C coupe un cercle tel que L en exactement |(C, L)| points (en d'autres termes, C coupe toujours L "dans le même sens").
- (3) La définition d'une courbe bien placée s'étend à un feuilletage \mathscr{G} sur K^2 , en considérant le revêtement des orientations $\pi: T^2 \to K^2$; une courbe C sur K^2 est bien placée par rapport à \mathscr{G} si une (ou toute) composante de $\pi^{-1}(C)$ est bien placée par rapport au feuilletage induit $\pi^*(\mathscr{G})$. La définition d'une courbe presque bien placée s'étend sans changement.
- (4) Une courbe presque bien placée peut être transformée en une courbe bien placée par un déplacement arbitrairement petit.

On peut maintenant énoncer:

THEOREME 2. Soit V^3 une 3-variété compacte munie d'un feuilletage \mathcal{F} à feuilles orientables ne possédant pas de composante de type I ou II. On se donne deux plongements $\varphi_1: T_1 \rightarrow \text{int } V$ et $\varphi_2: T_2 \rightarrow \text{int } V$, où T_i est difféomorphe à T^2 ou K^2 (T_1 et T_2 ne sont pas nécessairement difféomorphes). On suppose:

- (1) $\varphi_1(T_1)$ et $\varphi_2(T_2)$ se coupent transversalement selon une courbe fermée simple C qui n'est homotope à 0 ni sur $\varphi_1(T_1)$ ni sur $\varphi_2(T_2)$.
 - (2) ni φ_1 , ni φ_2 n'est isotope à un plongement dont l'image est une feuille de F.
- (3) Un lacet sur $\varphi_1(T_1) \cup \varphi_2(T_2)$ formé d'un chemin sur $\varphi_1(T_1)$ suivi par un chemin sur $\varphi_2(T_2)$, homotope à 0 dans V, est déjà homotope à 0 sur $\varphi_1(T_1) \cup \varphi_2(T_2)$. Alors on peut trouver deux plongements $\varphi_1': T_1 \rightarrow \text{int } V$ et $\varphi_2': T_2 \rightarrow \text{int } V$ isotopes respectivement à φ_1 et φ_2 dans int V et tels que:
 - φ_1' et φ_2' sont transverses à \mathcal{F} .

 $-\varphi_1'(T_1)$ et $\varphi_2'(T_2)$ sont disjoints ou bien se coupent transversalement selon une courbe fermée simple C', qui n'est homotope à 0 ni sur $\varphi_1'(T_1)$, ni sur $\varphi_2'(T_2)$ et qui est bien placée par rapport aux feuilletages induits par \mathscr{F} sur $\varphi_1'(T_1)$ et $\varphi_2'(T_2)$.

Remarques

- (1) L'hypothèse 3 entraı̂ne que les plongements φ_1 et φ_2 sont incompressibles. On pourrait remplacer cette hypothèse par la suivante, plus forte: l'inclusion $\varphi_1(T_1) \cup \varphi_2(T_2) \rightarrow V$ induit une injection sur les groupes fondamentaux.
- (2) $\varphi_1'(T_1)$ et $\varphi_2'(T_2)$ ne peuvent être disjoints que si T_1 et T_2 sont des bouteilles de Klein et C est homologue à 0 sur $\varphi_1(T_1)$ et $\varphi_2(T_2)$ (i.e. C sépare $\varphi_i(T_i)$ en deux rubans de Möbius). Voir plus loin la démonstration du Lemme 2.
- (3) L'hypothèse que les feuilles de \mathcal{F} sont orientables est superflue si T_1 et T_2 sont des tores.

Démonstration du Théorème 2. On identifier souvent T_i à son image par φ_i (ou un plongement isotope à φ_i qu'on aura construit).

On commence, au moyen d'une isotopie de φ_1 , par rendre T_1 transverse à \mathscr{F} (on utilise le théorème 1 ou le Théorème 1 bis), puis on effectue une isotopie de φ_2 de façon que l'hypothèse 1 soit encore vérifiée. Une isotopie de φ_2 (ou plus précisément du plongement isotope à φ_2 que l'on vient de construire) n'agissant que dans un voisinage arbitraire de T_1 , permet de rendre $T_1 \cap T_2$ bien placé par rapport à $\mathscr{F}_{|T_1}$ (le feuilletage induit par \mathscr{F} sur T_1).

La démonstration du théorème 2 va se ramener à celle du

LEMME 1. Supposons, en plus des hypothèses du théorème 2, que T_1 est transverse à \mathcal{F} et que C est bien placé par rapport à $\mathcal{F}_{|T_1}$. Il existe alors un plongement φ_2'' isotope à φ_2 , vérifiant avec $\varphi_1'' = \varphi_1$ les conclusions du théorème à ceci près qu'on n'exige pas que C' soit bien placée par rapport à $\mathcal{F}_{|T_2}$ (si $\varphi_1''(T_1) \cap \varphi_2''(T_2) \neq \emptyset$).

Remarque. Si le Lemme 1 s'applique, C' est isotope à C sur $\varphi_1(T_1)$.

Démonstration de Lemme $1 \Rightarrow Théorème 2$. En utilisant le Lemme 1, on a remplacé les plongements φ_1 et φ_2 intervenant dans l'énoncé du théorème par des plongements φ_1'' et φ_2'' transverses à \mathcal{F} . Si $\varphi''(T_1)$ et $\varphi''(T_2)$ sont disjoints, il n'y a rien à démontrer. On suppose donc que l'intersection est une courbe C'', bien placée par rapport à $\mathcal{F}_{|T_1}$, mais pas forcément par rapport à $\mathcal{F}_{|T_2}$. Plusieurs cas peuvent se présenter:

- (a) C'' est transverse à $\mathcal{F}_{|T_1}$. C'' est alors aussi transverse à $\mathcal{F}_{|T_2}$, donc bien placée par rapport à $\mathcal{F}_{|T_2}$, et on a terminé.
- (b) C'' est une feuille de $\mathcal{F}_{|T_1}$ (feuilletage trivial par cercles). Si $\mathcal{F}_{|T_2}$ est aussi un feuilletage par cercles, on a terminé. Sinon, on effectue une isotopie sur φ_1'' de

façon à rendre C'' transverse à $\mathcal{F}_{|T_2}$, puis une autre isotopie de φ_1'' de façon à rendre φ_1'' transverse à \mathcal{F} (en utilisant le Lemme 1).

(c) C'' est sur T_1 de type c, donc tangent à \mathscr{F} en un nombre fini de points. Si C'' n'est pas bien placé par rapport à $\mathscr{F}_{|T_2}$, on recommence tout en échangeant les rôles de T_1 et T_2 , et ainsi de suite. Le processus s'arrête au bout d'un nombre fini d'opérations, car, si on ne se ramène pas à une des situations étudiées précédemment, le nombre de points de contact de C'' avec \mathscr{F} diminue strictement à chaque étape.

Démonstration du Lemme 1. La démonstration proprement dite va être précédée d'un certain nombre de préliminaires.

On utilise, pour rendre φ_2 transverse, la méthode de [R], en montrant qu'il est possible d'effectuer les isotopies sur φ_2 en gardant un "contrôle" sur $T_1 \cap T_2$: les isotopies se feront à travers des plongements quelconques, mais les plongements intermédiaires construits par Roussarie dans ses lemmes devront, eux, vérifier certaines conditions supplémentaires. Il est conseillé au lecteur de regarder, en même temps que le présent texte, celui de Roussarie auquel on se réfèrera constamment.

La présence de φ_1 nous impose de donner des définitions plus précises que celles de [R].

DEFINITION 3. Un plongement φ de T_2 dans V qui vérifie avec φ_1 les hypothèses du Théorème 2, avec de plus C bien placé par rapport à $\mathcal{F}_{|T_1}$, sera dit:

- —en position générale par rapport à \mathcal{F} , si, en plus des conditions habituelles rappelées page 106 de [R], les points où $\varphi(T_2)$ est tangent à \mathcal{F} n'appartiennent pas à $\varphi_1(T_1)$ et si les séparatrices de T_2 , partant d'un point de selle et y revenant, coupent $\varphi_1(T_1)$ transversalement.
- —réduit s'il est réduit au sens de [R], page 115, et si de plus les cercles de contact de φ sont transverses à $\varphi_1(T_1)$.

Le plongement φ_2 est isotope à un plongement φ^0 en position générale par rapport à \mathcal{F} . Pour éliminer par isotopie les points de contact de φ^0 avec \mathcal{F} , on est d'abord amené à considérer la situation suivante:

 φ est un plongement de T_2 dans V en position générale par rapport à \mathscr{F} (et on identifie $\varphi(T_2)$ avec T_2). D est un disque plongé sur une feuille de \mathscr{F} , avec $D \cap T_2 = \delta D$. ∂D borde sur T_2 un disque E et $D \cup E$, homéomorphe à S^2 , borde dans V une boule B avec $B \cap T_2 = E$. On suppose de plus δD transverse à $C = T_1 \cap T_2$.

On aura également besoin de considérer le cas où φ est un plongement de T_2 dans V réduit et où D est une couronne (difféomorphe à $S^1 \times I$) plongée de façon non contractile sur une feuille de \mathcal{F} , avec $D \cap T_2 = \delta D$ et δD transverse à $T_1 \cap T_2$. On suppose de plus qu'il existe sur T_2 une couronne E, avec $\delta E = \delta D$, telle que

 $D \cup E$ soit homéomorphe à T^2 et borde dans V un tore solide B, avec $B \cap T_2 = E$. On suppose enfin que $\mathcal{F}_{|int\,B}$ est sans holonomie et que l'holonomie de \mathcal{F} au-dessus de D est triviale (pour le lemme 2 ci-dessous, il suffit de supposer cette holonomie triviale seulement du côté de B).

La raison pour laquelle on considère ces deux situations est la suivante: en examinant la démonstration de [R], on constate que toutes les isotopies "effectives" du plongement de T_2 (une isotopie "effective" est une isotopie qui déplace effectivement T_2 dans V, par opposition à une isotopie qui ne modifie le plongement que dans un petit voisinage de son image) consistent à se placer dans l'une de ces situations et à remarquer que le plongement φ est isotope à travers B à un plongement φ'' voisin du plongement (anguleux) φ' d'image $T'_2 = (T_2 - E) \cup D$. Nous allons montrer (lemme 2 ci-dessous) qu'en général $T_1 \cap T'_2$ est sur T_1 une courbe presque bien placée (cf. définition 2 ci-dessus) par rapport à $\mathcal{F}_{|T_1}$, ce qui permettra (cf. Remarque 4 suivant la Définition 2) de modifier légèrement φ' de façon à obtenir un plongement (lisse) φ'' tel que $\varphi''(T_2) \cap T_1$ soit une courbe bien placée par rapport à T_1 .

Lorsque nous aurons accompli ceci, nous aurons presque entièrement démontré l'assertion suivante: le plongement φ_2 est isotope à un plongement réduit (au sens de la définition 3). Il restera à montrer des analogues des lemmes 13, 14 et 15 de [R].

LEMME 2. Dans les deux situations considérées ci-dessus, $T_1 \cap T_2'$ est une courbe fermée simple presque bien placée (cf. définition 2) par rapport à $\mathcal{F}_{|T_1}$, à moins que φ ne soit isotope à un plongement transverse à \mathcal{F} d'image disjointe de T_1 .

Ce lemme constitue la clé de la démonstration du Théorème 2.

Démonstration du Lemme 2. Fixons une orientation transverse de \mathcal{F} telle que B soit situé du côté positif de D et fixons aussi une orientation de $T_1 \cap T_2$.

Considérons $T_1 \cap D$. T_1 est transverse à \mathcal{F} , donc à D, et est aussi transverse à δD car $T_1 \cap T_2$ est transverse à δD . $T_1 \cap D$ se compose donc d'un nombre fini de courbes disjointes qui peuvent être ou bien des segments joignant deux points distincts de δD ou bien, si D est une couronne, des courbes difféomorphes à S^1 , disjointes de δD et isotopes (dans D) aux composantes de δD (car une telle courbe, qui est une feuille de $\mathcal{F}_{|T_1}$, n'est pas homotope à 0 dans T_1 , donc pas non plus dans V).

Distinguons deux cas:

(i) $T_1 \cap \delta D = \emptyset$.

Si D est un disque, cela entraîne $T_1 \cap D = \emptyset$ d'après ce qui précède, et aussi $T_1 \cap E = \emptyset$ puisque $T_1 \cap T_2$ ne rencontre pas $\delta E = \delta D$ et ne peut pas être contenu dans E $(T_1 \cap T_2 \text{ n'est pas homotope à 0 sur } T_2)$. On a donc $T_1 \cap T_2' = T_1 \cap T_2$ et il n'y a pas de problème.

Si D est une couronne, $T_1 \cap D$ se compose d'un nombre fini (éventuellement nul) de courbes fermées isotopes aux composantes de δD . $T_1 \cap E$ est soit vide, soit composé de la courbe $T_1 \cap T_2$ contenue dans l'intérieur de E et isotope dans E aux composantes de δE . Toutes ces courbes (i.e. les composantes de $T_1 \cap$ $(D \cup E)$) sont à fibré normal trivial sur T_1 et les composantes de $T_1 \cap B$ sont des couronnes ou des rubans de Möbius, ne rencontrant δB que selon leur bord. Le cas du ruban de Möbius est à exclure car il est impossible de plonger un ruban de Möbius M dans un tore solide B de façon que $M \cap \delta B = \delta M$ et que δM ne soit pas homotope à 0 dans B. Si maintenant A est une composante de $T_1 \cap B$ difféomorphe à $S^1 \times I$, il est impossible que $\delta A = C_0 \cup C_1$ soit contenu dans D. La condition sur l'absence d'holonomie de \mathcal{F} dans B entraînerait en effet que $\mathcal{F}_{|A}$ serait un feuilletage trivial par cercles et on trouve une contradiction en comparant l'orientation transverse de \mathcal{F} sur C_0 et sur C_1 . $B \cap T_1$ est donc soit vide, soit composé d'une couronne A bordée par $T_1 \cap T_2$ et par une courbe contenue dans l'intérieur de D. Dans les deux cas, l'intersection $T_1 \cap T_2'$ est bien placée par rapport à $\mathcal{F}_{|T_1}$ (si $B \cap T_1$ est non vide, on remarque que $T_1 \cap T_2$ est nécessairement une feuille de $\mathcal{F}_{|T|}$).

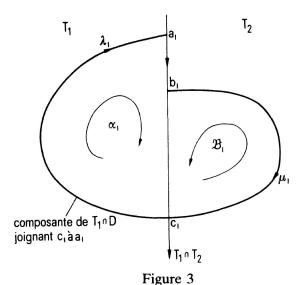
(ii) $T_1 \cap \delta D \neq \emptyset$.

Dans ce cas, $T_1 \cap T_2$ est nécessairement bien placé de type c par rapport à $\mathcal{F}_{|T_1}: T_1 \cap T_2$ n'est pas une feuille de $\mathcal{F}_{|T_1}$, et n'est pas non plus transverse à $\mathcal{F}_{|T_1}$ (comparer aux différents points de $T_1 \cap \delta D$ l'orientation transverse de \mathcal{F} et l'orientation de $T_1 \cap T_2$). En particulier, comme $T_1 \cap T_2$ rencontre toutes les feuilles de $\mathcal{F}_{|T_1}$, toute composante de $T_1 \cap D$ est, même si D est une couronne, un segment joignant deux points distincts de δD (ceci pourrait aussi se voir par des raisonnements analogues à ceux faits en (i), utilisant l'absence d'holonomie de \mathcal{F} dans B).

On numérote les points de $T_1 \cap \delta D$ dans l'ordre où on les rencontre quand on se déplace (dans le sens positif) sur $T_1 \cap T_2 : a_1b_1a_2b_2 \cdots a_nb_n$ $(a_{n+1} = a_1, b_{n+1} = b_1)$, de façon qu'aux points a_i , $T_1 \cap T_2$ "rentre" dans E et on appelle c_i le point de $T_1 \cap \delta D$ relié à a_i par un segment de $T_1 \cap D$. On souhaiterait avoir $c_i = b_i$.

Toutes les homotopies considérées ci-dessous seront des homotopies de chemins avec extrémités fixes pendant l'homotopie ou des homotopies de lacets avec point base c_i .

Il est possible de trouver un chemin μ_i de b_i à c_i dans T_2 tel que le lacet obtenu en allant de c_i à a_i sur $T_1 \cap D$, puis de a_i à b_i sur $T_1 \cap T_2$ dans le sens positif (i.e. dans E), et finalement de b_i à c_i par μ_i , soit homotope à 0 dans B. D'après la Condition 3 de l'énoncé du Théorème 2, ce lacet est homotope à 0 sur $T_1 \cup T_2$. Il en résulte que le lacet α_i sur T_1 obtenu en allant de c_i à a_i sur $T_1 \cap D$, puis de a_i à b_i sur $T_1 \cap T_2$ comme précédemment, et enfin de b_i à c_i sur $T_1 \cap T_2$



(de façon quelconque) est homotope (sur $T_1 \cup T_2$) au lacet \mathcal{B}_i (sur T_2) obtenu en allant de c_i à b_i par μ_i^{-1} , puis de b_i à c_i sur $T_1 \cap T_2$ de la même façon quelconque que pour α_i .

On en déduit, en utilisant le théorème de Seifert-Van Kampen, le fait que $T_1 \cap T_2$ est incompressible sur T_1 et T_2 et le résultat [B], que α_i est homotope sur T_1 à un lacet d'image contenue dans $T_1 \cap T_2$. (Ce dernier point peut se démontrer sans utiliser le théorème de Seifert-Van Kampen, ni [B], s'il existe une rétraction de T_1 ou de T_2 sur $T_1 \cap T_2$, en particulier si T_1 ou T_2 est un tore. Dans les autres cas, il peut se démontrer à partir du théorème de Seifert-Van Kampen en utilisant au lieu de [B] certaines propriétés du groupe $\pi_1(K^2)$. Les détails sont laissés au lecteur.) Le chemin λ_i joignant c_i à a_i sur $T_1 \cap D$ est donc homotope sur T_1 à un chemin V_i d'image contenue dans $T_1 \cap T_2$. Par une homotopie de V_i dans $T_1 \cap T_2$, on peut supposer que $V_i:[0,1] \to T_1 \cap T_2$ est une immersion. Si T_1 est un tore, $V_i(]0, 1[)$ ne coupe aucun cercle L frontière de composante de Reeb de $\mathcal{F}_{|T_1}$ (car λ_i ne coupe pas L et $T_1 \cap T_2$ coupe toujours L "dans le même sens," cf. Remarque 2 suivant la Définition 2). V_i est donc tangent à $\mathcal{F}_{|T_i}$ en au plus un point. Si T_1 est une bouteille de Klein, on montre, en utilisant le revêtement des orientations de T_1 , que V_i est de même tangent à $\mathcal{F}_{|T_1|}$ en au plus un point. Remarquons maintenant que, entre deux points consécutifs d'intersection avec δD , $T_1 \cap T_2$ est tangent à \mathcal{F} au moins une fois (en fait un nombre impair de fois, pour des raisons d'orientation transverse de \mathcal{F} . Le cas où $T_1 \cap T_2$ serait tangent à \mathcal{F} en a_i ou en c_i ne présente pas de difficulté supplémentaire). V_i est donc un chemin standard sur $T_1 \cap T_2$, joignant deux points consécutifs d'intersection avec δD . En particulier, c_i est égal à b_i ou a b_{i-1} .

Si pour tout i, $c_i = b_i$, il suit de la Définition 2 et de ce qui précède que $T_1 \cap T_2'$ est une courbe fermée simple presque bien placée par rapport à $\mathcal{F}_{|T_1}$.

Sinon, on a $c_i = b_{i-1}$ pour tout *i*. Ceci n'est possible que si D est une couronne: si D est un disque, soit λ le lacet sur T_1 obtenu en allant de a_1 à b_1 sur $T_1 \cap T_2$ dans le sens positif, de b_1 à a_2 par λ_2 , de a_2 à b_2 sur $T_1 \cap T_2$ dans le sens positif, et ainsi de suite jusqu'à λ_1 de b_n à a_1 . λ , contenu dans B, est homotope à 0 dans V et donc aussi dans T_1 . Mais, d'après ce qui précède, λ est aussi homotope sur T_1 à $T_1 \cap T_2$ parcouru une fois dans le sens positif, d'où contradiction.

Le raisonnement précédent n'est pas applicable si D est une couronne. Remarquons cependant que l'intersection de T_2' et de T_1 se compose (toujours en supposant $c_i = b_{i-1}$ pour tout i) de n courbes disjointes (formées des images des chemins λ_i et V_i) homotopes à 0 sur T_1 et aussi sur T_2' car T_2' est, comme T_2 , incompressible dans V. Cela entraîne d'ailleurs que $T_1 \cap T_2$ est homologue à 0 sur T_1 et T_2 (c'est-à-dire que T_1 et T_2 sont des bouteilles de Klein, chacune séparée par $T_1 \cap T_2$ en deux rubans de Möbius): sinon, il existerait sur T_1 (resp T_2) une courbe fermée rencontrant T_2 (resp T_1) en exactement un point, alors que cette courbe, après l'isotopie transformant T_2 en T_2' , serait isotope sur T_1 (resp T_2') à une courbe ne rencontrant pas T_2' (resp T_1), ce qui est impossible.

Effectuons maintenant une isotopie sur φ' , agissant dans un voisinage arbitraire de δD , de façon à le rendre lisse. Soit γ une des courbes d'intersection de T_1 et T_2' , minimale sur T_1 , i.e. bordant sur T_1 un disque D_1 dont l'intérieur ne rencontre pas T_2' . γ borde sur T_2' un disque D_2 et, comme V est irréductible, $D_1 \cup D_2$ borde dans V une boule B' dont l'intérieur est disjoint de T_2' . En utilisant cette boule, on voit que T_2' est isotope à une bouteille plongée dont l'intersection avec T_1 ne se compose plus que de n-1 courbes. En itérant l'opération, on arrive à "séparer" T_1 et T_2' . Il ne reste plus alors, pour rendre T_2' transverse à \mathcal{F} , qu'à appliquer le théorème 1 bis à la variété obtenue en découpant V selon T_1 .

Ceci achève la démonstration du Lemme 2.

Suite et fin de la démonstration du lemme 1. Considérons encore une fois les deux situations décrites avant l'énoncé du Lemme 2. On écarte le cas évoqué plus haut où l'on peut "séparer" T_1 et T_2 et on suppose de plus T_2 transverse à \mathcal{F} le long de δD . On va montrer comment modifier (par isotopie) le plongement φ en un plongement φ'' tel que:

- (1) φ'' est en position générale par rapport à \mathcal{F} ou réduit selon que D est un disque ou une couronne.
- (2) L'image de φ'' ne rencontre pas D et ne diffère de T_2' que dans un voisinage arbitraire U de D.
- (3) Les seuls points de contact de φ'' avec \mathcal{F} dans U sont un centre ou un cercle de contact, selon que D est un disque ou une couronne.

Il n'y a pas de difficulté si $T_1 \cap \delta D$ est vide. Supposons donc le contraire, c'est-

à-dire que $T_1 \cap D$ se compose d'un nombre fini de segments joignant deux points distincts de δD . On peut trouver une paramétrisation différentiable de D de la forme:

- —Si D est un disque, $D = \bigcup_{0 \le t \le 1} C_t$ où:
- $-C_0$ est un point de int D et les C_t $(0 \le t \le 1)$ sont des cercles, avec $C_1 = \delta D$;
- —Le point C_0 n'appartient pas à T_1 et chaque segment de $T_1 \cap \delta D$ est tangent aux courbes C_t $(0 < t \le 1)$ en exactement un point (situé dans int D);
- —Si D est une couronne, $D = \bigcup_{-1 \le t \le 1} C_t$ où:
- —Les C_t ($-1 \le t \le 1$) sont des cercles, avec $\delta D = C_{-1} \cup C_1$;
- —Les segments de $D \cap T_1$ joignant C_{-1} à C_1 ne sont jamais tangents aux courbes C_t $(-1 \le t \le 1)$;
- —Les segments de $D \cap T_1$ joignant deux points de la même composante de δD ne rencontrent pas C_0 et sont tangents aux courbes C_t $(-1 \le t \le 1)$ en exactement un point (situé dans int $D C_0$).

On choisit maintenant, dans un voisinage ouvert U suffisamment petit de D dans V, une métrique riemannienne telle que T_1 et T_2 soient, pour cette métrique, normaux à \mathcal{F} . Le fait que D ne porte pas d'holonomie (pour \mathcal{F}) permet [M] de trouver un plongement $i: D \times [0, 1] \rightarrow U$ tel que:

- $-i(D \times \{t\})$ est contenu, pour tout t, dans une feuille de F, avec $i(D \times \{0\}) = D$:
- —Pour tout $x \in D$, le chemin $t \to i(x, t)$ est normal à \mathcal{F} et dirigé en sens contraire de l'orientation transverse de \mathcal{F} (donc $B \cap i(D \times [0, 1]) = D$).

Soit α une fonction de classe C^{∞} de [0, 1] dans $[\frac{1}{4}, \frac{3}{4}]$ dont le graphe, dessiné ci-dessous, est plat (i.e. possède un contact d'ordre infini avec sa tangente) aux points d'abscisses 0 et 1 et n'admet une tangente horizontale qu'au point d'abscisse 0.

 φ est isotope, à travers $B \cup i(D \times [0, \frac{3}{4}])$, à un plongement φ'' d'image

$$(T_2 - E - i(\delta D \times [0, \frac{3}{4}])) \cup \left(\bigcup_{0 \le |t| \le 1} i(C_t \times \{\alpha(|t|)\})\right)$$

qui satisfait, si U est assez petit, toutes les conditions requises.

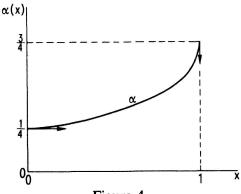


Figure 4

Dans la construction qui vient d'être exposée, on a supposé T_2 transverse à \mathcal{F} le long de δD . Cette condition n'est pas remplie dans le cas suivant: φ est toujours un plongement en position générale par rapport à \mathcal{F} , E est le voisinage adéquat d'un centre p de type a (cf. Lemme 1, [R], page 106) et δE , qui contient un point de selle q, borde sur la feuille de \mathcal{F} passant par q un disque D, avec $D \cap T_2 = \delta D$. On se trouve dans un cas particulier de la première situation décrite avant l'énoncé du Lemme 2: l'existence d'une boule B avec $\delta B = D \cup E$ et $B \cap T_2 = E$ résulte de l'irréductibilité de V et de l'incompressibilité de φ (cf. [R₁], page 50) et δD est transverse à T_1 (cf. Définition 3) et donc à $T_1 \cap T_2$. Le Lemme 2 s'applique donc. De plus, il est possible de trouver un plongement φ'' isotope à φ , en position générale par rapport à \mathcal{F} , dont l'image ne rencontre pas D et ne diffère de T_2' que dans un voisinage U de D, mais qui soit transverse à \mathcal{F} dans U: cela résulte immédiatement du fait que q n'est pas situé sur T_1 par une construction analogue à celle que l'on a exposée plus haut.

Le lecteur se convaincra que nous avons maintenant démontré tout ce qui était nécessaire (et même au delà) pour pouvoir énoncer l'assertion suivante: le plongement φ_2 est isotope à un plongement $\bar{\varphi}$ réduit (bien entendu au sens de la Définition 3). Il nous reste à démontrer des analogues des Lemmes 13, 14 et 15 de [R].

Soit donc $\bar{\varphi}$ un plongement réduit de T_2 dans V et $\gamma^i (1 \le i \le l)$ ses cercles de contact. On définit comme dans [R] des immersions G^i de N_s dans V, et on suppose que, pour un certain i, G^i n'est pas un plongement. γ_i^i est alors contenu dans un nombre fini de couronnes $\gamma^i \subset C^i_{\tau_1} \subset \cdots \subset C^i_{\tau_m}$ (on garde les notations de [R]). On choisit un nombre $\eta > 0$ suffisamment petit pour que $G^i_{|[\tau_m - \mu, \, \tau_m] \times C}$ soit un plongement et que $G^i([\tau_1 - \mu, \tau_1] \times C)$, avec le même abus de langage que dans [R], ne contienne pas de cercle de contact de $\bar{\varphi}$ autre que γ^i (c'est possible car les cercles γ^i sont situés sur des feuilles distinctes de \mathcal{F}). $G^i_{[0,\tau_1-\mu]\times C}$ est un plongement dans V d'une variété (anguleuse) homéomorphe à $D^2 \times S^1$. Soit $B_{\tau_1-\mu}^i$ son image. Considérons l'intersection de $B_{\tau_1-\mu}^i$ avec $\bar{\varphi}(T_2)$. Tout d'abord, $\bar{\varphi}(T_2) \cap$ $C_{\tau_1-\mu}^i$ est formé, en plus de $\delta C_{\tau_1-\mu}^i$, d'un nombre fini de courbes, qui sont isotopes aux composantes de $\delta C^i_{ au_1-\mu}$ (car une telle courbe est une feuille du feuilletage sans singularité induit par \mathcal{F} sur T_2 , et n'est donc pas homotope à 0 sur T_2). Ces courbes sont à fibré normal trivial sur T_2 et séparent T_2 en des couronnes et des rubans de Möbius. Le cas où un ruban de Möbius serait inclus dans $B_{\tau,-\mu}^i$ est exclu pour la même raison que plus haut dans la démonstration du lemme 2. Les composantes de $B^i_{\tau_1-\mu}\cap \bar{\varphi}(T_2)$ sont donc des couronnes E_j $(1\leq j\leq p)$. Nous utilisons maintenant le fait suivant que nous ne démontrerons pas:

LEMME 3. Une couronne plongée dans $D^2 \times S^1$ avec comme bord $\{x, y\} \times S^1$ est isotope à une couronne standard $\gamma \times S^1$, où γ est un arc sur D^2 joignant x à y.

De ce lemme, il résulte d'abord que, si j et k sont deux entiers distincts compris entre 1 et p, δE_i et δE_k bordent sur $C_{\tau_1-\mu}^i$ des couronnes D_i et D_k qui sont disjointes ou emboîtées (i.e. $D_i \cap D_k = \emptyset$, $D_i \subset D_k$ ou $D_k \subset D_i$). On peut donc renuméroter les couronnes E_i de telle façon que $1 \le j < k \le p \Rightarrow D_k - D_i \ne \emptyset$ $(D_p = C^i_{\tau_1 - \mu})$. Le Lemme 3 assure que $D_1 \cup E_1$ borde dans $B^i_{\tau_1 - \mu}$ un tore solide, dont l'intérieur ne rencontre pas $\bar{\varphi}(T_2)$. Le lemme 2, ainsi que la construction exposée après la démonstration de celui-ci, s'appliquent ici et on peut, par une isotopie de $\tilde{\varphi}$ agissant dans un voisinage de E_1 , éliminer une composante de l'intersection $B_{\tau_1-\mu}^i \cap \bar{\varphi}(T_2)$. On effectue ensuite la même opération pour E_2 et, par des isotopies agissant successivement dans des voisinages de E_2, E_3, \ldots, E_p on peut obtenir un plongement $\bar{\varphi}'$ qui possède strictement moins de cercles de contact que $\bar{\varphi}$ si l'un des E_i $(1 \le j < p)$ portait plus d'un cercle de contact, et qui sinon en possède autant (cf. Figures 5 et 6). Dans ce cas, le cercle de contact γ'^i qui a remplacé γ^i n'est plus contenu que dans m-1 couronnes et, si une application G^{i} ($i \neq i$) était un plongement, la nouvelle application qui a remplacé G^i sera encore un plongement.

On arrive finalement à un plongement $\bar{\varphi}_1$ isotope à $\bar{\varphi}$, réduit, avec au plus l cercles de contact, et pour lequel les applications G^i sont des plongements.

Une construction analogue à celle-ci permet de montrer que $\bar{\varphi}_1$ est isotope à un plongement (noté encore $\bar{\varphi}_1$) réduit, possédant au plus l cercles de contact, pour lequel les applications G^i sont des plongements, et qui admet au moins un cercle primitif (cf. Lemme 15 de [R]).

Ce cercle primitif n'est pas de type \mathfrak{B}_2 , ni de type γ (à cause, si T_2 est un tore, de l'hypothèse 2 du Théorème 2). Il reste deux cas à envisager.

Commençons par le plus simple, i.e. celui où le cercle primitif γ^i est de type \mathfrak{B}_1 . dans ce cas, une des composantes de δC_i^1 est un cercle de contact γ^i . $\bar{\varphi}_1$ étant

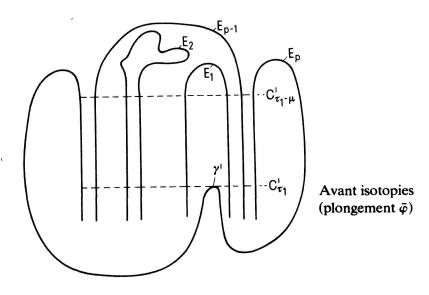
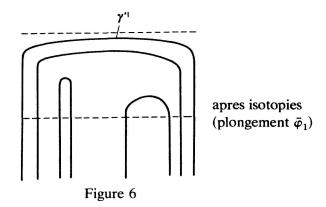


Figure 5



réduit au sens de la Définition 3, γ^i est transverse à T_1 et le Lemme 2 peut s'appliquer (avec $D=C_i^1$ et $E=G_i(D_2)$). Montrons (par l'absurde) que γ^i ne rencontre pas T_1 . Si m est un point de $\gamma^i \cap T_1$, on peut orienter $T_1 \cap T_2$ de façon que m soit un point a_i (on reprend les notations de la démonstration du Lemme 2). De cette démonstration, il résulte que le chemin V_i joignant a_i à b_i sur $T_1 \cap T_2$ (dans E) est homotope sur T_1 à un chemin d'image contenue dans une feuille de $\mathcal{F}_{|T_1}$, ce qui est en contradiction avec le fait que V_i est tangent à \mathcal{F} , à la fois en a_i et en un point situé strictement entre a_i et b_i . Il est maintenant facile de montrer, par une construction analogue à celle exposée après la démonstration du Lemme 2, que $\bar{\varphi}_1$ est isotope à un plongement réduit ne possédant plus les cercles de contact γ^i et γ^j .

Supposons maintenant que γ^i est de type α . Quitte à modifier légèrement $\bar{\varphi}_1$, on peut supposer δC_i^1 transverse à T_1 . Toutes les considérations des préliminaires (en particulier le lemme 2) s'appliquent alors et, pour remplacer $\bar{\varphi}_1$ par un plongement $\bar{\varphi}_2$ possédant au lieu d'un cercle de contact γ^i deux points de contact p et q (cf. [R]) et tel que $\bar{\varphi}_2(T_2) \cap \varphi_1(T_1)$ soit bien placé par rapport à $\mathcal{F}_{|T_1}$, il suffit d'une construction analogue à celle exposée après la démonstration du Lemme 2, rendue possible par le fait suivant dont la démonstration est laissée au lecteur: Soit D une couronne et, tracés sur D, un nombre fini de segments S_j transverses à δD et joignant deux points distincts de δD . Soit d'autre part \mathcal{H} le feuilletage (avec singularités) de D dessiné ci-dessous. Il existe alors un difféomorphisme φ de D tel que chaque segment $\varphi(S_j)$ évite p et q et soit tangent à \mathcal{H} en exactement un point, situé "à l'intérieur du huit" (partie hachurée ci-dessous).

Ceci achève la démonstration du Lemme 1 et donc du Théorème 2.

PARTIE III

THEOREME 3. Soit \mathcal{F} un feuilletage sur une 3-variété fermée V. Soient T_1 et T_2 des surfaces difféomorphes à T^2 ou K^2 , plongées dans V transversalement à \mathcal{F} . On suppose que \mathcal{F} induit sur T_1 et T_2 des feuilletages triviaux par cercles $\mathcal{F}_{|T_1}$ et $\mathcal{F}_{|T_2}$ et que T_1 et T_2 se coupent transversalement selon une feuille de ces feuilletages. On suppose enfin que $T_1 \cap T_2$ n'est pas homotope à 0 dans V. Alors, si T_1 et T_2 ont

chacun un fibré normal non trivial dans V, ils sont isotopes dans V. Sinon, il existe une fibration (localement triviale de fibre S^1) $p: V \to T$, où T est difféomorphe à T^2 ou K^2 , et un feuilletage \mathcal{G} sur T tel que $\mathcal{F} = p^*(\mathcal{G})$.

Remarque. Dire que T_i a un fibré normal trivial dans V revient à dire que T_i a "deux côtés" dans V.

Démonstration. Remarquons tout d'abord que $\mathcal{F}_{|T_1}$ (i=1,2) est transversalement orientable et que $T_1 \cap T_2$ est à fibré normal trivial sur T_1 , sur T_2 , donc sur V et sur la feuille de \mathcal{F} qui le contient. Il en résulte que toute feuille de $\mathcal{F}_{|T_i}$ est à fibré normal trivial sur T_i , sur V, et sur sa feuille (pour \mathcal{F}).

Dans cette démonstration, on notera $H = S^1 \times [-1, 1] \times [-1, 1]$, $K = S^1 \times [-1, 1] \times [0, 1]$, $Z = S^1 \times \{-1, 1\} \times [0, 1]$. π désignera la projection naturelle de H sur $[-1, 1] \times [-1, 1]$ et π' celle de K sur $[-1, 1] \times [0, 1]$.

On peut trouver un plongement $i: H \rightarrow V$ tel que, dans l'image de i paramétrée par $(\theta, x, y) \in H$, T_1 soit défini par y = 0, T_2 par x = 0, et \mathcal{F} par x + y = constante. On peut ensuite, pour $\epsilon > 0$ assez petit, trouver deux plongements φ_1 et φ_2 de K dans V, tels que:

$$--- \varphi_i^{-1}(T_i) = S^1 \times \{0\} \times [0, 1]$$
 et $\varphi_i^{-1}(T_i) = \emptyset$ pour $i \neq j$ (i.e. $i = 3 - j$)

$$- \varphi_1(K) \cap i(H) = i(\{(\theta, x, y) \in H; |y| \le \epsilon; 1 - \epsilon \le |x| \le 1\})$$

$$= \varphi_1(\{(\varphi, a, b) \in K; b \in [0, \epsilon] \cup [1 - \epsilon, 1]\})$$

$$- \varphi_2(K) \cap i(H) = i(\{(\theta, x, y) \in H; |x| \le \epsilon; 1 - \epsilon \le |y| \le 1\})$$

$$= \varphi_2(\{(\varphi, a, b) \in K; b \in [0, \epsilon] \cup [1 - \epsilon, 1]\})$$

- les applications $\pi \circ i^{-1}$ et $\pi' \circ \varphi_i^{-1}$, définies sur $\varphi_i(K) \cap i(H)$, ont les mêmes fibres.
- pour i=1 et 2, \mathcal{F} induit sur K (au moyen de φ_i) un feuilletage \mathcal{H}_i qui est l'image inverse par π' d'un feuilletage \mathcal{H}_i sur $[-1, 1] \times [0, 1]$ transverse à $\{t\} \times [0, 1]$ pour $-1 \le t \le 1$.

Soit C la partie de $[-1,1] \times [-1,1]$ formée des deux courbes dessinées ci-dessous, qui sont supposées avoir un contact d'ordre infini avec leurs tangentes à leurs extrémités.

On raccorde maintenant $\varphi_1(Z)$ et $\varphi_2(Z)$ au moyen de $i(S^1 \times C)$, de façon à obtenir une surface lisse S (non connexe), plongée dans V transversalement à \mathcal{F} , dont le bord est formé de quatre cercles contenus dans i(H). S se compose en fait de deux couronnes, sauf dans le cas où ni T_1 , ni T_2 n'a un fibré normal trivial dans V (S possède alors trois composantes, dont une sans bord).

On choisit dans V une métrique riemannienne telle que S soit normal à \mathcal{F} pour cette métrique (on suppose de plus que, dans i(H) identifié à H, cette métrique

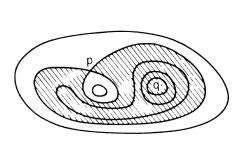


Figure 7

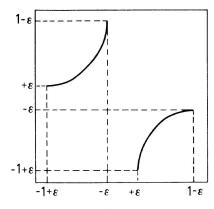


Figure 8

est obtenue par produit avec S^1 d'une métrique sur $[-1,1] \times [-1,1]$), et on considère dans i(H) la couronne A_0 définie par x+y=1 et $\epsilon \le x \le 1-\epsilon$, qui est située dans une feuille de \mathcal{F} et dont le bord est contenu dans celui de S. On essaie, en utilisant les normales à \mathcal{F} , de déplacer A_0 vers l'extérieur de i(H) (i.e. de façon que son bord se déplace sur S). On se sert pour cela de [M], de [R] (I 2, Lemme 11 et Proposition 2) et des remarques suivantes: Si γ est une feuille de $\mathcal{F}_{|T|}$, γ , bien que non contractible sur la feuille de \mathcal{F} qui le contient, ne porte pas d'holonomie pour \mathcal{F} ; de plus, la feuille de \mathcal{F} qui contient γ coupe une transversale fermée à \mathcal{F} (contenue dans T_i), et donc γ ne peut pas appartenir au bord d'une composante connexe de \mathcal{F} . Le déplacement de A_0 ne s'arrête par conséquent que si on arrive à δS . Plus précisément, on peut construire une immersion $F:[0,1] \times S^1 \times [0,1] \rightarrow V$ telle que:

 $-\forall t \in [0, 1], F_t = F_{|\{t\} \times S^1 \times [0, 1]}$ est un plongement sur une couronne A_t contenue dans une feuille de \mathcal{F} , F_0 ayant pour image A_0 .

 $-\forall (\theta, u) \in S^1 \times [0, 1]$, la trajectoire $t \to F(t, \theta, u)$ est normale à \mathcal{F} et $F_{[0, 1] \times S^1 \times \{0, 1\}}$ est un plongement dans S.

 $-\delta A_1$ contient une composante de δS .

Comme ni A_0 , ni S ne rencontre $T_1 \cup T_2$, l'image de F ne rencontre pas $T_1 \cup T_2$. Il en résulte que F est un plongement, que $F([0,1] \times S^1 \times]0,1[)$ ne rencontre pas S, et que A_1 est la couronne définie dans i(H) par x+y=-1 et $-1+\epsilon \le x \le -\epsilon$.

Si T_1 et T_2 ont chacun un fibré normal non trivial dans V, F permet de construire une isotopie entre T_1 et T_2 dans la partie de V formée de l'union des images de F, de φ_1 , de φ_2 et de i. Sinon, les φA_i $(0 \le i \le 1)$ recouvrent entiérement S, et donc l'union des images de F, de φ_1 , de φ_2 , et de i est V tout entier.

On peut alors définir sur V une relation d'équivalence dont les classes sont:

-les $F(\lbrace t\rbrace \times S^1 \times \lbrace u\rbrace)$ pour $(t, u) \in [0, 1] \times [0, 1]$

590 GILBERT LEVITT

--les
$$\varphi_i(S^1 \times \{a\} \times \{b\})$$
 pour $(a, b) \in [-1, 1] \times [0, 1]$

--les
$$i(S^1 \times \{x\} \times \{y\})$$
 pour $(x, y) \in [-1, 1] \times [-1, 1]$.

 \mathcal{R} est compatible avec \mathcal{F} (i.e. les classes de \mathcal{R} sont contenues dans des feuilles de \mathcal{F}) et on peut munir V/\mathcal{R} d'une structure de variété et d'un feuilletage \mathcal{G} , de façon que la projection $p:V\to V/\mathcal{R}$ satisfasse les conditions requises. $T=V/\mathcal{R}$ est un tore si T_1 et T_2 ont chacun un fibré normal trivial dans V, une bouteille de Klein sinon.

THEOREME 4. Soit \mathcal{F} un feuilletage à feuilles orintables d'une variété fermée V. Soient T_1 et T_2 deux surfaces difféomorphes à T^2 ou K^2 plongées dans V transversalement à \mathcal{F} se coupant transversalement selon une courbe simple bien placé par rapport à $\mathcal{F}_{|T_1}$ et à $\mathcal{F}_{|T_2}$ (cf. II, Définition 1). Si $T_1 \cup T_2$ est incompressible dans V et si \mathcal{F} ne possède pas de feuille compacte, $T_1 \cap T_2$ ne peut pas être de type c.

Démonstration. Supposons $T_1 \cap T_2$ de type c (i.e. tangent à F en un nombre fini de points), et soit x un point de contact avec \mathcal{F} . x est contenu sur T_i dans une composante de Reeb \mathfrak{R}_i , et appartient sur $T_1 \cap T_2$ à des intervalles ouverts I_i qui sont des composantes connexes de $\mathfrak{R}_i \cap (T_1 \cap T_2)$. Les feuilles de $\mathfrak{F}_{|T_i|}$ définissent par intersection une involution φ_i sur I_i admettant x comme point double. φ_1 et φ_2 coïncident en fait sur $I_1 \cap I_2$, car sinon on pourrait construire une transversale fermée à ${\mathcal F}$ homotope à 0 dans V. Il en résulte que I_1 et I_2 sont contenus l'un dans l'autre, par exemple $I_1 \subseteq I_2$. Si l'inclusion est stricte, il y a un segment J contenu dans une feuille l de $\mathcal{F}_{|T_2}$ joignant les deux extrémités de I_1 . Le fait que la feuille L de F contenant δR_1 soit orientable entraîne, par des considérations homotopiques analogues à celles de la partie I (démonstration du Théoréme 1 bis), que \Re_1 est une couronne et non un ruban de Möbius. δR_1 borde sur L une couronne A (contenant J). En coupant V selon T_2 , on voit que les intersections de l avec I_2 sont toutes situées sur des feuilles compactes de $\mathcal{F}_{|T_1}$. Il y a ainsi dans L une suite croissante de couronnes $A \subseteq A_1 \subseteq A_2 \subseteq \ldots$, dont les bords sont des feuilles compactes de $\mathcal{F}_{|T_1}$. L'union des feuilles compactes de $\mathcal{F}_{|T_1}$ est compacte (cf. [H]), et donc les extrémités de I_2 sont contenues dans des feuilles compactes de $\mathcal{F}_{|T_i}$, vers lesquelles convergent les bords des A_i . Un analogue "discret" du Lemme 11, page 116 de [R] montre l'existence d'une composante de type II pour F, ce qui est impossible.

Considérons maintenant le cas $I_1 = I_2$. Supposons pour simplifier que \Re_1 et \Re_2 sont des couronnes (et non des rubans de Möbius); appelons u et v les extrémités de I_1 , et L_u et L_v les feuilles de \mathscr{F} correspondantes. Soit H_u (resp. H_v) le

sous-groupe de $\pi_1(L_u, u)$ (resp. $\pi_1(L_v, v)$) engendré par les lacets d'image contenue dans les composantes de $\delta \mathcal{R}_1$ et $\delta \mathcal{R}_2$ passant par u(resp. v). La présence de \mathfrak{R}_1 et \mathfrak{R}_2 fournit un isomorphisme canonique $\psi: H_u \to H_v$ (H_u et H_v sont des groupes libres à deux générateurs; on notera a_1, a_2 un système de générateurs de H_u , a_i étant un lacet d'image contenue dans \mathfrak{R}_i). Si a est un élément de H_u , \mathscr{F} permet de lui associer par holonomie un germe de difféomorphisme de I_1 au voisinage de u, et aussi, par l'intermédiaire de ψ , un germe de difféomorphisme de I_1 au voisinage de v. On remarque que ces germes sont conjugués par l'involution φ_1 (= φ_2).

D'après la Proposition I.1.1 de la thèse de Moussu (voir référence [M]), il existe un élément $h \in H_u$ dont l'holonomie possède une suite u_n de points fixes convergeant vers u ($u_n \in I_1$). En choisissant convenablement un tel h (en particulier en lui imposant d'être de longueur minimale en tant que mot en a_1 et a_2), on peut relever un lacet en u (d'image contenue dans $\delta \mathcal{R}_1 \cup \delta \mathcal{R}_2$) représentant hen une courbe simple (anguleuse) passant par u_n et formée de morceaux de feuilles de \Re_1 et \Re_2 . Le même procédé (appliqué à $\psi(h)$) permet d'obtenir de même une courbe passant par $\varphi_1(u_n)$, et ces deux courbes bordent sur la feuille de \mathcal{F} qui les contient une couronne A_n (car toute feuille de \mathcal{F} est orientable et incompressible dans V). L'existence de cette suite de couronnes dont chaque bord converge vers une courbe (non nécessairement simple) contenue dans $\delta \mathcal{R}_1 \cup \delta \mathcal{R}_2$, permet (voir [GP]) de conclure à l'existence dans V d'une mesure transverse μ invariante par holonomie, dont le support rencontre L_u et L_v . Considérons autour de u un petit intervalle sur $T_1 \cap T_2$. Il est facile de voir que la mesure μ , considérée sur ce segment, se réduit à une masse (non nulle) concentrée en u, ce qui entraîne que L_u est une feuille compacte de \mathcal{F} , d'où contradiction. Ceci achève la démonstration du Théorème 4.

PARTIE IV

Rappelons qu'une C^r -isotopie d'un feuilletage est une conjugaison par un C^r -difféomorphisme isotope à l'identité.

THEOREME 5. Soit $p: V \to \Sigma$ un fibré de fibre S^1 et de base une surface Σ compacte sans bord (non nécessairement orientable). Soit \mathcal{F} un feuilletage transversalement orientable de V, de classe C^r ($2 \le r \le \infty$), dont toutes les feuilles sont orientables, mais sans feuille compacte. Alors \mathcal{F} est C^r -isotope à un feuilletage transverse aux fibres de p, à moins que \mathcal{F} ne soit l'image inverse par une fibration de V sur T^2 d'un feuilletage de T^2 (sans feuille compacte).

Démonstration. Supposons d'abord $\Sigma = S^2$. V est alors difféomorphe à $S^2 \times S^1$ (car sinon $\pi_1 V$ est fini et \mathcal{F} possède une feuille torique) et \mathcal{F} , feuilletage trivial par sphères, est isotope à un feuilletage transverse aux fibres. Le cas $\Sigma = P^2$ se traite de façon analogue.

592 GILBERT LEVITT

Supposons donc $\Sigma \neq S^2$, P^2 . Il est alors possible de découper Σ selon un système de courbes de façon à obtenir une variété homéomorphe à D^2 . Plus précisément, on découpe Σ selon un 1-complexe fini S formé d'une part de couples $(\alpha_i, \mathcal{B}_i)$ de courbes simples se coupant en un point unique δ_i et d'autre part de segments γ_i joignant deux points δ_i (les δ_i sont les seuls sommets de S). Le cas où Σ est orientable est schématisé ci-dessous. Dans le cas non-orientable, le lecteur "dessinera" lui-même un complexe convenable dont le nombre de sommets est la partie entière de g/2, g étant le genre de Σ .

Dans le but d'appliquer les théorèmes démontrés précédemment, remarquons que, comme tout feuilletage de K^2 possède une feuille compacte, \mathcal{F} ne peut pas être l'image inverse (par une fibration de V sur K^2) d'un feuilletage de K^2 . Si donc \mathcal{F} n'est pas l'image inverse d'un feuilletage de T^2 , les Théorèmes 2, 3 et 4 permettent d'effectuer une isotopie sur \mathcal{F} de façon que les surfaces $p^{-1}(\alpha_i)$, $p^{-1}(\mathcal{B}_i)$ et les courbes $p^{-1}(\delta_i)$ soient transverses au feuilletage. Le Théorème I.2 de [R] sur les plongements de couronnes permet de plus de supposer les $p^{-1}(\gamma_i)$ transverses à \mathcal{F} .

Le découpage de Σ selon S et de V selon $p^{-1}(S)$ donne naissance, après arrondissement, à une variété V' difféomorphe à $D^2 \times S^1$, munie d'une projection p' sur D^2 (obtenue à partir de p), et d'un feuilletage \mathcal{F}' transverse à $\delta V'$: (V, \mathcal{F}) s'obtient à partir de (V', \mathcal{F}') par des identifications sur δV .

Considérons le feuilletage \mathcal{G} induit par \mathcal{F}' sur le tore $\delta V'$, Montrons qu'on peut supposer (par une isotopie de \mathcal{F}) que les feuilles de \mathcal{G} sont des fibres de p' ou bien transverses aux fibres de p': comme les fibres $p^{-1}(\delta_i)$ sont transverses à \mathcal{F} , il existe un "difféomorphisme" de $p^{-1}(S)$ (qui n'est pas tout à fait une variété), dont le support ne rencontre pas les $p^{-1}(\delta_i)$, isotope à l'identité (relativement à l'union des $p^{-1}(\delta_i)$), transformant le feuilletage induit par \mathcal{F} sur $p^{-1}(S)$ en un feuilletage dont les feuilles sont des fibres de p ou transverses aux fibres de p. Ce "difféomorphisme" se prolonge à V en le difféomorphisme cherché.

G admet des transversales fermées istopes aux fibres de p', mais pas de transversale homotope à 0 dans V' (cf. [N]). Deux cas sont ainsi possibles:

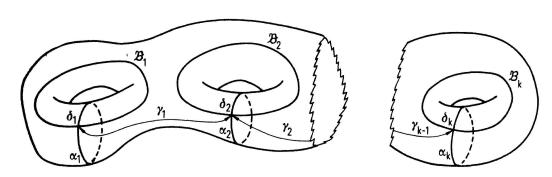


Figure 9

- (a) \mathscr{G} est un feuilletage trivial par cercles homotopes à 0 dans V'. \mathscr{F}' est alors un feuilletage par disques et est C^r -isotope (relativement à $\delta V'$) à un feuilletage transverse aux fibres de p' (car tout difféomorphisme de $D^2 \times S^1$ induisant l'identité sur le bord est isotope à l'identité). Cela signifie que \mathscr{F} est isotope à un feuilletage transverse aux fibres de p.
- (b) \mathcal{G} possède au moins une composante de Reeb, les feuilles compactes de \mathcal{G} étant des fibres de p'. On va alors montrer que toute feuille compacte de \mathcal{G} est contenue dans le bord d'une feuille compacte de \mathcal{F}' difféomorphe à $S^1 \times I$.

D'abord, toute feuille compacte de \mathscr{F}' est une couronne: d'après [N], son groupe fondamental s'identifie à un sous-groupe de $\pi_1(V') \simeq Z$. Les cas d'une feuille compacte difféomorphe à S^2 ou D^2 étant exclus (le premier par stabilité de Reeb, le second parce qu'une feuille compacte de \mathscr{G} ne peut pas border de disque dans V'), il ne reste que la possibilité d'une couronne.

Soit maintenant γ une feuille compacte de \mathcal{G} , isolée au moins d'un côté dans l'ensemble des feuilles compactes de \mathcal{G} (i.e. l'holonomie de γ est contractante au moins d'un côté). Alors la feuille L de \mathcal{F}' contenant γ n'est pas coupée par une transversale fermée (et donc est compacte): s'il existe une transversale fermée coupant L, il en existe une qui rencontre γ en un point x, et est contenue dans $\delta V'$ au voisinage de x. L'hypothèse faite sur γ permet alors de construire une transversale coupant L et homotope à 0 dans V' (en "rajoutant" à la transversale de départ un certain nombre de "tours" sur $\delta V'$ au voisinage de γ), ce qui est impossible.

Une feuille compacte de \mathcal{G} à holonomie (d'un côté) non triviale mais non contractante est limite de feuilles compactes de \mathcal{G} à holonomie contractante et est donc située sur une feuille compacte de \mathcal{F}' (car l'union des feuilles compactes de \mathcal{F}' est compacte, cf. [H]). Enfin, une feuille compacte de \mathcal{G} à holonomie triviale est aussi située sur une feuille compacte de \mathcal{F}' , par stabilité (cf. [M]).

Ceci achève de montrer que toute feuille compacte de \mathcal{G} borde dans V' une feuille de \mathcal{F}' qui est une couronne. Ces couronnes sont plongées dans V' de façon "standard" et on peut supposer qu'elles sont réunion de fibres de p'.

Soit q un point de Σ tel que $p^{-1}(q)$ soit transverse à \mathcal{F} . En enlevant à Σ un petit disque ouvert autour de q, on obtient une surface à bord qui a le type d'homotopie d'un bouquet de cercles et au-dessus de laquelle p admet une section X, que l'on peut supposer en position générale par rapport à \mathcal{F} . \mathcal{F} va induire sur X un feuilletage \mathcal{H} (avec singularités) transverse à δX et de classe au moins C^2 . L'union des feuilles compaxtes de \mathcal{F}' est un compact de V' qui, après identifications sur $\delta V'$, fournit un compact de V. L'intersection de ce compact avec X est un ensemble fermé invariant de \mathcal{H} , contenu dans int X, et qui ne contient ni singularité de \mathcal{H} , ni feuille compacte de \mathcal{H} (car \mathcal{F} n'a pas de feuille torique). Il y a contradiction avec les résultats de [S], ce qui prouve le théorème.

Soit toujours $p: V \to \Sigma$ un fibré de fibre S^1 et supposons V orientable. Le fibré est alors classifié par sa classe d'Euler que l'on notera X(p) et que l'on considèrera, par dualité de Poincaré, comme un entier relatif. Wood a montré [W] le théorème suivant:

THEOREME. Soit $p: V \to \Sigma$ un fibré en cercles sur une surface compacte sans bord Σ , avec V orientable. V admet un feuilletage (différentiable) transverse aux fibres de p si et seulement si $|X(p)| \le \sup(0, -X(\Sigma))$.

Remarque. Contrairement à notre convention, le feuilletage est ici transversalement orientable si et seulement si Σ est orientable (car une orientation transverse du feuilletage équivaut à une orientation des fibres de p).

On peut donc énoncer le

COROLLAIRE. Soit $p: V \to \Sigma$ un fibré en cercles sur une surface compacte sans bord différente de T^2 , avec V orientable. Si Σ est non orientable, ou si $|X(p)| > \sup(0, -X(\Sigma))$, tout feuilletage transversalement orientable de class C^2 de V possède une feuille compacte.

Remarque. Dans le cas où Σ est S^2 , P^2 ou K^2 , ce corollaire peut se déduire de [P]. Si $\Sigma = S^2$ et si X(p) = 0, V est difféomorphe à $S^2 \times S^1$ et tout feuilletage (transversalement orientable de classe C^2) de V possède une feuille compacte, difféomorphe à T^2 ou S^2 .

BIBLIOGRAPHIE

- [B] BOURBAKI, Algèbre, chapitre 1, nouvelle édition, §7, no. 3, cor. de la proposition 5.
- [G] GOODMAN, S., On the structure of foliated 3-manifolds separated by a compact leaf, Inventiones Math., 39 (1977), 213-227.
- [GP] GOODMAN, S. and PLANTE, J., Holonomy and averaging in foliated sets, preprint.
- [H] HAEFLIGER, A., Variétés feuilletées, Ann. scu. norm. sup., Pisa 16 (1962), 367-397.
- [M] Moussu, R., Thèse, Orsay, 1971, I, Théorème 1.2.
- [MR] MOUSSU, R. and ROUSSARIE, R., Relations de conjugaison et de cobordisme entre certains feuilletages, Publ. Math. I.H.E.S. '43 (1974), 143-168.
 - [N] NOVIKOV, S. P., Topology of foliations, Trans. Moscow Mt. Soc. (1965), 268-304.
 - [P] PLANTE, J., Foliations with measure-preserving holonomy, Ann. of Math. 102 (1975), cor. 7.4.
 - [R] ROUSSARIE, R., Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, Publ. Math. I.H.E.S. 43 (1974), 101-141.
- [R₁] ROUSSARIE, R., Sur les feuilletages des variétés de dimension trois, Ann. Inst. Fourier 21 (1971), 13-81.
- [S] SCHWARTZ, A. J., A generalization of a Poincaré-Bendixson theorem to closed two-dimensional manifolds, Amer. Jour. of Math. 85 (1963), 453-458.
- [T] THURSTON, W., Foliations of 3-manifolds which are circle bundles, Thesis, Berkeley, 1972.
- [W] WOOD, J., Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971), 257-273.