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Comment. Math. Helvetici 53 (1978) 572-594 Birkhâuser Verlag, Basel

Feuilletages des variétés de dimension 3 qui sont des fibres en
cercles

Gilbert Levitt

Sauf mention explicite du contraire, toutes les variétés, et toutes les applications

entre variétés, que nous considérerons ici seront supposées de classe C°°. Les

feuilletages étudiés sur ces variétés seront toujours de codimension 1, de classe au
moins C2, et transversalement orientables. Un feuilletage sur une variété à bord
sera supposé transverse ou tangent au bord.

Un plongement ç d'une variété Vt dans une variété V2 sera dit incompressible

si l'application induite ç* : Tri{V1)-*"ir1(V2) est injective. Par abus de langage,
on dira aussi, si aucune confusion n'est possible, que Vu ou <p( VJ, est incompressible

dans V2 (on se permettra souvent l'abus de langage consistant à identifier

Si p : V—? X définit un fibre (localement trivial) en cercles sur une surface

compacte sans bord X, avec V une 3-variété orientable, X(p) désignera la classe

d'Euler du fibre (considérée comme un entier relatif), et X(X) désignera la

caractéristique d'Euler-Poincaré de 2 (X n'est pas supposée orientable).
On désignera par I l'intervalle compact [0,1], par Sn la sphère de dimension n,

par D2 le disque fermé de dimension 2, par P2 le plan projectif réel, par T2 le

tore de dimension 2, et par K2 la bouteille de Klein.
Les principaux résultats démontrés ici sont les suivants:

THEOREME. Soit p : V^X un fibre en cercles sur une surface compacte sans
bord Xi* T2. Soit & un feuilletage sur V de codimension 1, de classe Cr (2^ r ^°°),
transversalement orientable, dont toutes les feuilles sont orientables, mais dont

aucune feuille n'est compacte. Alors 3F est Cr-isotope à un feuilletage transverse aux
fibres de p.

Remarque. Il suffit, pour être sûr que les feuilles de 9 sont orientables, de

supposer V orientable.

COROLLAIRE. Soit p : V—>X un fibre en cercles sur une surface compacte
sans bord X^T2, avec V orientable. Si X est non-orientable ou si |X(p)|>
sup (0, -X(X)), tout feuilletage de codimension 1, de classe C2, transversalement

orientable, de V possède une feuille compacte.
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La classe d'Euler X(p) intervient dans le corollaire ci-dessus par le biais d'un
théorème de Wood [W] selon lequel la condition |X(p)|<sup (0, -X(X)) est

nécessaire et suffisante pour 4'existence d'un feuilletage transverse aux fibres de p.

Le corollaire peut être montré à partir des résultats de Novikov [N] si X S2 ou
P2, et de ceux de Plante [P] si X K2. Des contre-exemples montrent que
l'hypothèse X^T2, ou une hypothèse de différentiabilité du feuilletage, sont
nécessaires pour le Théorème ou le Corollaire.

Les résultats ci-dessus ont été montrés par Thurston [T] dans le cas où X et V
sont orientables. Ses démonstrations sont toutefois assez incomplètes, en
particulier dans ce qui correspond à la partie II ci-dessous. Le but de ce travail est

donc d'une part de présenter des démonstrations complètes et d'autre part de

généraliser les résultats au cas non-orientable (on remarquera que, par exemple,
le Corollaire, dans le cas où X est non-orientable et |X(p)| "petit," ne peut pas
se déduire du cas où X est orientable en considérant un revêtement à deux

feuillets de V).
La partie I généralise à la bouteille de Klein un résultat de R. Roussarie [R]

sur la possibilité, par isotopie, de rendre un tore plongé dans une 3-variété
feuilletée transverse au feuilletage. On en déduit une démonstration simple d'un
résultat de S. Goodman [G].

On se pose ensuite la question suivante: avec les hypothèses du théorème
ci-dessus, si l'on choisit dans X deux courbes fermées Ct et C2 se coupant
transversalement en exactement un point x, la partie I permet, par isotopie, de

rendre séparément p"1^) et p"\C^ transverses à SF; mais est-il possible de le
faire simultanément pour les deux surfaces, c'est-à-dire peut-on supposer que,
après isotopies, les deux surfaces se coupent toujours transversalement selon une
courbe fermée simple?

La partie II répond à cette question, tandis qu'il est montré dans la partie III
que, sous certaines conditions sur 99 on peut de plus supposer que la courbe
d'intersection des deux surfaces est transverse au feuilletage.

Les résultats des parties II et III servent finalement dans la partie IV à

démontrer le théorème ci-dessus et son corollaire au moyen d'un "découpage" de

V selon des surfaces transverses à 3F, en utilisant comme Thurston [T] un résultat
de A. J. Schwartz [S].

Je tiens à exprimer ici mes remerciements à Harold Rosenberg pour tous les

conseils et encouragements qu'il m'a donnés et à Madame Barbichon pour la
frappe de ce texte.

PARTIE I
Afin d'étudier les plongements du tore T2 dans les 3-variétés feuilletées,

Roussarie a été amené [R] à introduire les composantes de type I ou IL Ce sont
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des variétés compactes à bord, difféomorphes à des fibres sur S1 de fibre D2 ou
S1*!, munies d'un feuilletage dont les composantes du bord sont les uniques
feuilles compactes; ce feuilletage est défini à conjugaison près et fait de la variété

une "composante intrinsèque," c'est-à-dire une composante connexe (au sens de

[N]) qui reste une composante connexe quand elle est plongée dans une variété
feuilletée quelconque (cela revient à dire qu'un champ de vecteurs transverse au

feuilletage est simultanément rentrant ou sortant sur toutes les composantes du
bord de la variété). Les composantes de type I sont des "composantes de Reeb"
(orientable et non-orientable), les composantes de type II sont des "composantes
cylindriques" (la composante cylindrique introduite dans [G] s'identifie à la

composante IIbl de [R].
Cela étant, Roussarie a montré [R] le théorème suivant:

THEOREME 1. Soit V3 une 3-variété compacte munie d'un feuilletage 3F ne

possédant pas de composante de type I ou IL Alors tout plongement incompressible

<p de T2 dans int V est isotope dans V intérieur de V à un plongement transverse à ^
ou à un plongement dont l'image est une feuille de 9 difféomorphe à T2.

Rappelons que 9 est supposé de codimension 1, de classe C2, et transversalement
orientable.

Le Théorème 1 se généralise de la façon suivante:

THEOREME 1 bis. Soit V3 une 3-variété compacte munie d'un feuilletage 9
ne possédant pas de composante de type I ou II et dont toutes les feuilles sont
orientables. Alors tout plongement incompressible <p de Kz dans int V est

isotope, dans int V, à un plongement-transverse à 3*.

Remarque. Dans les hypothèses du théorème 1 ou du théorème 1 bis, l'exis-

tpnce de 9 et de <p entraîne l'irréductibilité de V [RJ.
Démonstration du Théorème 1 bis. La démonstration du théorème 1 se

généralise presque immédiatement. Il convient de remarquer que, si <p est

transverse à 9 sauf sur un sous-ensemble compact S c= K2, le feuilletage obtenu
en restreignant le feuilletage singulier <p*& à X2- S est transversalement orientable

et une feuille de <p*^|k2-s difféomorphe à S1 est à fibre normal trivial sur
K2.

Un point délicat est l'étude de l'ensemble E intervenant dans le Lemme 1,

dans le cas b (on se réfère ici à [R], dont on reprend les notations). On dispose
d'un plongement <p0 : K2-* V, en position générale par rapport à 3F. p est un
centre de <p*(^) et au voisinage de p les feuilles de <p*(^) son* des courbes
fermées simples bordant sur K2 un disque contenant p comme unique singularité
de <p*(&). On appelle E la fermeture de la réunion des feuilles de <p*{&) vérifiant
les propriétés ci-dessus et on suppose que la frontière de E est un bouquet de
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Figure 1

deux cercles, le point double du huit étant un point de selle q. Soit y une feuille
de <p*(^), contenue dans E et proche de q. y borde dans K2 un disque D
contenant p, hachuré dans le schéma ci-dessus. Les flèches horizontales et
verticales symbolisent une orientation transverse de <Po(^)|k2-s- Considérons (sur
K2) une séparatrice partant de q, par exemple qx. Elle revient au point q soit par
x', soit par y (pas par y' car on serait alors dans le cas a). Il convient de montrer,
pour étendre la démonstration de Roussarie, qu'elle revient en fait par y.

Supposons au contraire qu'elle revienne par x', ce qui entraîne qu'elle est à fibre
normal non trivial et que la séparatrice partant par y revient par y'. L'existence
des courbes telles que y montre que le lacet obtenu en partant de q par qx, en
revenant à q par x', en repartant par y et enfin en revenant à q par y' est

homotope à 0. Les deux lacets (à point base q) obtenus l'un en partant par x et en
revenant par x' et l'autre en partant par y' et en revenant par y sont donc

homotopes. Ils sont homotopes sur K2, donc dans V, donc, comme ^ ne possède

pas de composante de type I, sur la feuille L de 9* contenant q (d'après le
théorème de Novikov, cf. [N]). Mais ceci est impossible, car ces deux courbes se

coupent transversalement en un point unique, alors que L est orientable. Le reste
de la démonstration s'étend sans difficulté particulière en remarquant que le cas y
ne peut pas se présenter.

Soit maintenant K3 l'unique (à difféomorphisme près) 3-variété orientable
fibrée sur K2 de fibre I (K3 est le support de la composante JIbl de [R] et possède

un bord connexe difféomorphe à T2). Le théorème 1 bis permet de démontrer le:

COROLLAIRE [G]. II existe, à équivalence topologique près, un seul feuilletage

de K3 admettant dK3 comme unique feuille compacte.
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Démonstration. Soit 3F un feuilletage de K3, comme dans l'énoncé ci-dessus.

On considère une section <p : K2^>K3 du fibre tt : K3-*K2. Si ^ ne fait pas de K3

une composante IIbl, ç est isotope à un plongement q>0 transverse à SF, d'après le
Théorème 1 bis. En découpant K3 selon <po(K2), on obtient une variété que l'on
identifie à T2xl9 munie d'un feuilletage 3F' tangent à une composante du bord
(disons T2x{l}) et transverse à l'autre. Cela entraîne ([MR], III, Lemme 1, page
164) que le feuilletage <S induit par 3F' sur T2x{0} est sans holonomie. Comme ce

feuilletage doit, par recollement (l'opération inverse du découpage selon <po(K2)),

donner un feuilletage transversalement orientable de (po(K2), <S est un feuilletage
trivial par cercles bien déterminé à conjugaison près. D'après ([MR], III, Remarque

1, page 164), 9*', et donc ^, est déterminé à conjugaison près. Cela entraîne

que SF fait de K3 une composante Ubl, d'où la contradiction paradoxalement
cherchée.

PARTIE II
Soit <S un feuilletage de T2.

DEFINITION 1. Une courbe fermée simple C sur T2, image d'un plongement
C°° de S1 dans T2 non homotope à une application constante, sera dite bien placée

par rapport à <§ si l'une des trois conditions suivantes est vérifiée:
(a) C est transverse à %
(b) ^ est un feuilletage trivial par cercles et C est une feuille de <§;

(c) <§ contient au moins une composante de Reeb (difïéomorphe à S1 x ï) et C
est tangent à ^ en un nombre fini (non nul) de points situés dans les composantes
de Reeb de <8, le nombre de points étant le mêmç dans chaque composante et
égal à |(Ç L)|, où L est un cercle frontière de composante de Reeb.

Les trois conditions a, b, c s'excluant mutuellement, on dira selon le cas que C
est bien placée de type a, b ou c.

DEFINITION 2. Une courbe fermée simple C sur T2, image d'un plongement

C°° par morceaux de S1 dans T2 non homotope à une application constante,
sera dite presque bien placée par rapport à <$ si C est bien placée par rapport à %
ou peut s'obtenir à partir d'une courbe Co bien placée de type c de la manière
suivante: On choisit des points xu xk où Co est tangent à ^ et des segments
[bh at] (1 < i < fc) portés par Co, contenant xt dans leur intérieur et contenus dans

l'intérieur de la composante de Reeb dtt à laquelle appartient xt. On suppose de

plus que, pour tout i, bt et ax sont situés sur la même feuille (non compacte) de (S,

et que le chemin \{ joignant bx à ax sur cette feuille est homotope au chemin
[bi9 at] sur Co. C est obtenue à partir de Co en remplaçant les chemins [bh at]

(l<i<fc) par les chemins Àf.
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Figure 2

Remarques
(1) Toute classe d'isotopie de courbes (fermées simples non homotopes à 0)

sur T2 contient une infinité de courbes bien placées par rapport à <§, et le type (a,
b ou c) d'une telle courbe ne dépend que de sa classe d'isotopie.

(2) Si C est bien placée de type c, C coupe un cercle tel que L en exactement
|(C, L)\ points (en d'autres termes, C coupe toujours L "dans le même sens").

(3) La définition d'une courbe bien placée s'étend à un feuilletage <S sur K2,
en considérant le revêtement des orientations tt : T2—>K2\ une courbe C sur K2

est bien placée par rapport à ^ si une (ou toute) composante de ir^iC) est bien

placée par rapport au feuilletage induit tt*(^). La définition d'une courbe presque
bien placée s'étend sans changement.

(4) Une courbe presque bien placée peut être transformée en une courbe bien

placée par un déplacement arbitrairement petit.
On peut maintenant énoncer:

THEOREME 2. Soit V3 une 3-variété compacte munie d'un feuilletage 9 à

feuilles orientables ne possédant pas de composante de type I ou IL On se donne

deux plongements çx : T^int V et ç2 '• T2—»int V, où T, est difféomorphe à T2 ou
K2 (Ti et T2 ne sont pas nécessairement difféomorphes). On suppose:

(1) <pi(Tx) et <p2(T2) se coupent transversalement selon une courbe fermée simple
C qui n'est homotope à 0 ni sur (pi(Tx) ni sur ç2(T2).

(2) ni (pu ni <p2 n'est isotope à un plongement dont Vimage est une feuille de &>.

(3) Un lacet sur (piiT^Uç^TJ formé d'un chemin sur <Pi(Tx) suivi par un
chemin sur <p2(T2), homotope à 0 dans V, est déjà homotope à 0 sur ç^T^U
92(^2)- Alors on peut trouver deux plongements <p[ : Tx—>int V et ç2 : T2-»int V
isotopes respectivement à <px et <p2 dans int V et tels que:

<p( et ç2 sont transverses à 9.
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t ^2(^2) sont disjoints ou bien se coupent transversalement selon une
courbe fermée simple C", qui n'est homotope à 0 ni sur ^[(TJ, ni sur <p2(T2) et qui
est bien placée par rapport aux feuilletages induits par 9 sur <p[(Tt) et <p2(T2).

Remarques
(1) L'hypothèse 3 entraîne que les plongements <pt et <p2 sont incompressibles.

On pourrait remplacer cette hypothèse par la suivante, plus forte: l'inclusion
<Pi(7\)U<p2(T2)—> V induit une injection sur les groupes fondamentaux.

(2) <pi(Ti) et 92(^2) ne peuvent être disjoints que si Tt et T2 sont des

bouteilles de Klein et C est homologue à 0 sur (pxiT^ et <p2(T2) (i.c C sépare
cpXTt) en deux rubans de Môbius). Voir plus loin la démonstration du Lemme 2.

(3) L'hypothèse que les feuilles de 9 sont orientables est superflue si Tt et T2

sont des tores.
Démonstration du Théorème 2. On identifiera souvent T, à son image par <pt

(ou un plongement isotope à <pt qu'on aura construit).
On commence, au moyen d'une isotopie de <pl5 par rendre 7\ transverse à 9

(on utilise le théorème 1 ou le Théorème 1 bis), puis on effectue une isotopie de

<p2 de façon que l'hypothèse 1 soit encore vérifiée. Une isotopie de <p2 (ou plus
précisément du plongement isotope à <p2 que l'on vient de construire) n'agissant

que dans un voisinage arbitraire de Tu permet de rendre Tx H T2 bien placé par
rapport à 3F(Tl (le feuilletage induit par 3* sur 7\).

La démonstration du théorème 2 va se ramener à celle du

LEMME 1. Supposons, en plus des hypothèses du théorème 2, que 7\ est

transverse à 9 et que C est bien placé par rapport à 9\Tl. Il existe alors un
plongement <p2 isotope à <p2, vérifiant avec <pï <Pi les conclusions du théorème à

ceci près qu'on n'exige pas que C" soit bien placée par rapport à &\T2 (si (p'KT^n

Remarque. Si le Lemme 1 s'applique, C est isotope à C sur <Pi(Tx).

Démonstration de Lemme 1=£> Théorème 2. En utilisant le Lemme 1, on a

remplacé les plongements <px et <p2 intervenant dans l'énoncé du théorème par des

plongements <pï et <p2 transverses à 9. Si <p"(T\) et (p"(T2) sont disjoints, il n'y a

rien à démontrer. On suppose donc que l'intersection est une courbe C", bien
placée par rapport à &\Tl, mais pas forcément par rapport à 3FjT2. Plusieurs cas

peuvent se présenter:
(a) C" est transverse à 9\Tt. C" est alors aussi transverse à 9\Tl, donc bien

placée par rapport à ^|T2, et on a terminé.
(b) C" est une feuille de 9\Tl (feuilletage trivial par cercles). Si 9\T2 est aussi un

feuilletage par cercles, on a terminé. Sinon, on effectue une isotopie sur <pï de



Feuilletages des variétés de dimension 3 579

façon à rendre C" transverse à 9\T7} puis une autre isotopie de ç" de façon à

rendre <pï transverse à 9 (en utilisant le Lemme 1).

(c) C" est sur Tt de type c, donc tangent à 9 en un nombre fini de points. Si
C" n'est pas bien placé par rapport à 9\T^ on recommence tout en échangeant les
rôles de 7\ et T2, et ainsi de suite. Le processus s'arrête au bout d'un nombre fini
d'opérations, car, si on ne se ramène pas à une des situations étudiées
précédemment, le nombre de points de contact de C" avec 9 diminue strictement
à chaque étape.

Démonstration du Lemme 1. La démonstration proprement dite va être
précédée d'un certain nombre de préliminaires.

On utilise, pour rendre <p2 transverse, la méthode de [R], en montrant qu'il est

possible d'effectuer les isotopies sur <p2 en gardant un "contrôle" sur T1D T2: les

isotopies se feront à travers des plongements quelconques, mais les plongements
intermédiaires construits par Roussarie dans ses lemmes devront, eux, vérifier
certaines conditions supplémentaires. Il est conseillé au lecteur de regarder, en
même temps que le présent texte, celui de Roussarie auquel on se référera
constamment.

La présence de ç1 nous impose de donner des définitions plus précises que
celles de [R].

DEFINITION 3. Un plongement <p de T2 dans V qui vérifie avec <p1 les

hypothèses du Théorème 2, avec de plus C bien placé par rapport à &\Tx> sera dit:
—en position générale par rapport à 3F, si, en plus des conditions habituelles

rappelées page 106 de [R], les points où (p(T2) est tangent à 3F n'appartiennent
pas à <Pi(Tx) et si les séparatrices de T2, partant d'un point de selle et y revenant,
coupent «PiCTx) transversalement.
—réduit s'il est réduit au sens de [R], page 115, et si de plus les cercles de contact

de <p sont transverses à (piCTx).

Le plongement <p2 est isotope à un plongement <p° en position générale par
rapport à $F. Pour éliminer par isotopie les points de contact de <p° avec 9, on est
d'abord amené à considérer la situation suivante:

(p est un plongement de T2 dans V en position générale par rapport à 3F (et on
identifie <p(T2) avec T2). D est un disque plongé sur une feuille de 9, avec
D fl T2 8D. dD borde sur T2 un disque E et D U E, homéomorphe à S2, borde
dans V une boule B avec B H T2 E. On suppose de plus 8D transverse à

c=r1nr2.
On aura également besoin de considérer le cas où <p est un plongement de T2

dans V réduit et où D est une couronne (difféomorphe à S1^!) plongée de façon

non contractile sur une feuille de 3% avec D H T2 8D et 8D transverse à Tt D T2.

On suppose de plus qu'il existe sur T2 une couronne E, avec SE 8D, telle que
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DUE soit homéomorphe à T2 et borde dans V un tore solide B, avec BCiT2
E. On suppose enfin que ^|intB est sans holonomie et que Pholonomie de 9
au-dessus de D est triviale (pour le lemme 2 ci-dessous, il suffit de supposer cette
holonomie triviale seulement du côté de JB).

La raison pour laquelle on considère ces deux situations est la suivante: en
examinant la démonstration de [R], on constate que toutes les isotopies "effectives"

du plongement de T2 (une isotopie "effective" est une isotopie qui déplace
effectivement T2 dans V, par opposition à une isotopie qui ne modifie le

plongement que dans un petit voisinage de son image) consistent à se placer dans

l'une de ces situations et à remarquer que le plongement <p est isotope à travers B
à un plongement <p" voisin du plongement (anguleux) <p' d'image T2

(T2-E) U D. Nous allons montrer (lemme 2 ci-dessous) qu'en général 7\ H T2 est

sur 7\ une courbe presque bien placée (cf. définition 2 ci-dessus) par rapport à

2F|Tl, ce qui permettra (cf. Remarque 4 suivant la Définition 2) de modifier
légèrement <p' de façon à obtenir un plongement (lisse) <p" tel que (p"(T2) C\ Tt soit

une courbe bien placée par rapport à Tx.

Lorsque nous aurons accompli ceci, nous aurons presque entièrement
démontré l'assertion suivante: le plongement <p2 est isotope à un plongement
réduit (au sens de la définition 3). Il restera à montrer des analogues des lemmes

13, 14 et 15 de [R].

LEMME 2. Dans les deux situations considérées ci-dessus, T^flT^ est une
courbe fermée simple presque bien placée (cf. définition 2) par rapport à &\Tl, à

moins que (p ne soit isotope à un plongement transverse à 9 d'image disjointe de Tx.

Ce lemme constitue la clé de la démonstration du Théorème 2.

Démonstration du Lemme 2. Fixons une orientation transverse de S? telle que
B soit situé du côté positif de D et fixons aussi une orientation de 7\ fl T2.

Considérons Tx H D. Tt est transverse à ^, donc à D, et est aussi transverse à

ÔD car 7\ H T2 est transverse à 8D. Tx D D se compose donc d'un nombre fini de

courbes disjointes qui peuvent être ou bien des segments joignant deux points
distincts de ÔD ou bien, si D est une couronne, des courbes difféomorphes à S1,

disjointes de ÔD et isotopes (dans D) aux composantes de 8D (car une telle
courbe, qui est une feuille de &\ti9 n'est pas homotope à 0 dans Tl9 donc pas non
plus dans V).

Distinguons deux cas:

(i) Ttn8D 0.
Si D est un disque, cela entraîne T1HD=:0 d'après ce qui précède, et aussi

Tx H E 0 puisque 7\ H T2 ne rencontre pas SE 8D et ne peut pas être contenu
dans E (Tt (1T2 n'est pas homotope à 0 sur T2). On a donc T\ H T2 Tx fi T2 et il
n'y a pas de problème.
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Si D est une couronne, T1C\D se compose d'un nombre fini (éventuellement
nul) de courbes fermées isotopes aux composantes de 8D. TXC\E est soit vide,
soit composé de la courbe 7\ fi T2 contenue dans l'intérieur de JE et isotope dans

E aux composantes de SE. Toutes ces courbes (i.e. les composantes de TlC\
(D U E)) sont à fibre normal trivial sur Tx et les composantes de T1DB sont des

couronnes ou des rubans de Môbius, ne rencontrant 8B que selon leur bord. Le
cas du ruban de Môbius est à exclure car il est impossible de plonger un ruban de

Môbius M dans un tore solide B de façon que MPI8B 8M et que 8M ne soit

pas homotope à 0 dans B. Si maintenant A est une composante de TlC\B
difféomorphe à S1 x 2, il est impossible que 8A C0U Cx soit contenu dans D. La
condition sur l'absence d'holonomie de 9* dans B entraînerait en effet que 9\A
serait un feuilletage trivial par cercles et on trouve une contradiction en comparant

l'orientation transverse de 9 sur Co et sur Cx. B(1T1 est donc soit vide, soit

composé d'une couronne A bordée par Tx H T2 et par une courbe contenue dans

l'intérieur de D. Dans les deux cas, l'intersection 7\ H T2 est bien placée par
rapport à 2F|Tl (si BDT1 est non vide, on remarque que 7\ H T2 est

nécessairement une feuille de &\Tl)>

(ii) T^&DïfS.
Dans ce cas, 7\ fi T2 est nécessairement bien placé de type c par rapport à

&\tx : T\ fl T2 n'est pas une feuille de &\Tl, et n'est pas non plus transverse à &\Tl

(comparer aux différents points de TxHSD l'orientation transverse de 2F et
l'orientation de Tx D T2). En particulier, comme Tt H T2 rencontre toutes les

feuilles de &\Tl, toute composante de Tx flD est, même si D est une couronne, un

segment joignant deux points distincts de 8D (ceci pourrait aussi se voir par des

raisonnements analogues à ceux faits en (i), utilisant l'absence d'holonomie de 9
dans B).

On numérote les points de ï\ fi 8D dans l'ordre où on les rencontre quand on
se déplace (dans le sens positif) sur T1C\T2: a1bla2b2' * • anbn (an+1 au
frn+i= bi), de façon qu'aux points a,, Tx H T2 "rentre" dans E et on appelle cx le

point de TlD8D relié à a, par un segment de T1DD. On souhaiterait avoir

c, b,
Toutes les homotopies considérées ci-dessous seront des homotopies de

chemins avec extrémités fixes pendant l'homotopie ou des homotopies de lacets avec

point base cr
II est possible de trouver un chemin /ut, de 5, à c, dans T2 tel que le lacet

obtenu en allant de c, à a, sur 7\ H D, puis de a, à fc, sur 7\ H T2 dans le sens

positif (i.e. dans E), et finalement de bt à c, par ju,,, soit homotope à 0 dans B.

D'après la Condition 3 de l'énoncé du Théorème 2, ce lacet est homotope à 0 sur

7\ U T2. Il en résulte que le lacet a, sur 7\ obtenu en allant de c, à a, sur Tx H D,
puis de a, à bx sur 7\ H T2 comme précédemment, et enfin de bt à ct sur T\ Pi T2
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composante de T^ n D

joignant c,aai

(de façon quelconque) est homotope (sur Tt U T2) au lacet 08, (sur T2) obtenu en
allant de c, à bt par /ut"1, puis de b, à cx sur Tx H T2 de la même façon quelconque

que pour ar
On en déduit, en utilisant le théorème de Seifert-Van Kampen, le fait que

T1H T2 est incompressible sur 7\ et T2 et le résultat [B], que a, est homotope sur

7\ à un lacet d'image contenue dans Tt H T2. (Ce dernier point peut se démontrer
sans utiliser le théorème de Seifert-Van Kampen, ni [B], s'il existe une rétraction
de Tt ou de T2 sur Tx H T2, en particulier si T\ ou T2 est un tore. Dans les autres

cas, il peut se démontrer à partir du théorème de Seifert-Van Kampen en utilisant
au lieu de [B] certaines propriétés du groupe tt^K2). Les détails sont laissés au

lecteur.) Le chemin À, joignant c, à a, sur T1C\D est donc homotope sur 7\ à un
chemin V, d'image contenue dans Tx Ci T2. Par une homotopie de V, dans

Tj H T2, on peut supposer que V, : [0,1]—» Tx C\ T2 est une immersion. Si Tx est

un tore, V,(]0,1[) ne coupe aucun cercle L frontière de composante de Reeb de

2F|Tl (car À, ne coupe pas L et Tt H T2 coupe toujours L "dans le même sens," cf.

Remarque 2 suivant la Définition 2). V, est donc tangent à 9\Tl en au plus un
point. Si 7\ est une bouteille de Klein, on montre, en utilisant le revêtement des

orientations de Tî9 que Vt est de même tangent à ^(Ti en au plus un point.
Remarquons maintenant que, entre deux points consécutifs d'intersection avec

ÔD, T\ H T2 est tangent à 9 au moins une fois (en fait un nombre impair de fois,

pour des raisons d'orientation transverse de 9. Le cas où Tx fi T2 serait tangent à

9 en ax ou en c% ne présente pas de difficulté supplémentaire). V, est donc un
chemin standard sur Tx H T2, joignant deux points consécutifs d'intersection avec
8D. En particulier, ct est égal à b, ou a b,_!.

Si pour tout i, ct bt9 il suit de la Définition 2 et de ce qui précède que Tt C\ T2

est une courbe fermée simple presque bien placée par rapport à 9\Tl.
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Sinon, on a c, fc,_! pour tout i. Ceci n'est possible que si D est une couronne:
si D est un disque, soit A le lacet sur 7\ obtenu en allant de ax à bx sur Tl C\ T2

dans le sens positif, de bx à a2 par À2, de a2 à b2 sur 7\ fl T2 dans le sens positif, et
ainsi de suite jusqu'à Àx de bn à ax. À, contenu dans B, est homotope à 0 dans V
et donc aussi dans T\. Mais, d'après ce qui précède, À est aussi homotope sur Tx à

7\ fl T2 parcouru une fois dans le sens positif, d'où contradiction.
Le raisonnement précédent n'est pas applicable si D est une couronne.

Remarquons cependant que l'intersection de T2 et de 7\ se compose (toujours en

supposant c, bv_x pour tout i) de n courbes disjointes (formées des images des

chemins Àt et Vt) homotopes à 0 sur 7\ et aussi sur T2 car T2 est, comme T2,

incompressible dans V. Cela entraîne d'ailleurs que 7\ D T2 est homologue à 0 sur
7\ et T2 (c'est-à-dire que T1 et T2 sont des bouteilles de Klein, chacune séparée

par TtH T2 en deux rubans de Môbius): sinon, il existerait sur Tx (resp T2) une
courbe fermée rencontrant T2(resp Tx) en exactement un point, alors que cette
courbe, après l'isotopie transformant T2 en T2, serait isotope sur 7\ (resp T2) à

une courbe ne rencontrant pas T2 (resp Tx), ce qui est impossible.
Effectuons maintenant une isotopie sur q>\ agissant dans un voisinage arbitraire

de ÔD, de façon à le rendre lisse. Soit y une des courbes d'intersection de 7\
et T2, minimale sur Tu i.e. bordant sur Tx un disque Dx dont l'intérieur ne
rencontre pas T2. y borde sur T2 un disque D2 et, comme V est irréductible,
D1UD2 borde dans V une boule Bf dont l'intérieur est disjoint de T2. En
utilisant cette boule, on voit que T2 est isotope à une bouteille plongée dont
l'intersection avec Tt ne se compose plus que de n -1 courbes. En itérant
l'opération, on arrive à "séparer" 7\ et T2. Il ne reste plus alors, pour rendre T2
transverse à SF, qu'à appliquer le théorème 1 bis à la variété obtenue en

découpant V selon Tx.

Ceci achève la démonstration du Lemme 2.

Suite et fin de la démonstration du lemme 1. Considérons encore une fois les

deux situations décrites avant l'énoncé du Lemme 2. On écarte le cas évoqué plus
haut où l'on peut "séparer" 7\ et T2 et on suppose de plus T2 transverse à 9 le

long de 8D. On va montrer comment modifier (par isotopie) le plongement <p en
un plongement <p" tel que:

(1) <p" est en position générale par rapport à 9 ou réduit selon que D est un
disque ou une couronne.

(2) L'image de <p" ne rencontre pas D et ne diffère de T2 que dans un
voisinage arbitraire U de D.

(3) Les seuls points de contact de <p" avec 3F dans U sont un centre ou un
cercle de contact, selon que D est un disque ou une couronne.

Il n'y a pas de difficulté si 7\ fl 8D est vide. Supposons donc le contraire, c'est-
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à-dire que 7\ H D se compose d'un nombre fini de segments joignant deux points
distincts de SD. On peut trouver une paramétrisation différentiable de D de la

forme:
—Si D est un disque, D= U0=st<i Q où:

—Co est un point de int D et les Ct (0< t < 1) sont des cercles, avec C1 8D;
—Le point Co n'appartient pas à T\ et chaque segment de T\ H ôD est tangent

aux courbes Ct (0<f<l) en exactement un point (situé dans int D);
—Si D est une couronne, D= U-x^^i Ct où:
—Les Cf (-1 < f < 1) sont des cercles, avec ÔD C_2U Ci;
—Les segments de D H 7\ joignant C_t à Q ne sont jamais tangents aux

courbes Q (-l<f<l);
—Les segments de D H Tt joignant deux points de la même composante de 8D

ne rencontrent pas Co et sont tangents aux courbes Ct (— 1 < f < 1) en exactement
un point (situé dans int D — Co).

On choisit maintenant, dans un voisinage ouvert U suffisamment petit de D
dans V, une métrique riemannienne telle que 7\ et T2 soient, pour cette métrique,
normaux à 9^. Le fait que D ne porte pas d'holonomie (pour 8F) permet [M] de

trouver un plongement i : D x[0,1]—> U tel que:
—i(Dx{t}) est contenu, pour tout f, dans une feuille de 3% avec i(Dx{0}) D:
—Pour tout x g D, le chemin f —» î(x, t) est normal à 8F et dirigé en sens contraire

de l'orientation transverse de 9 (donc BfM(Dx[09 l]) D).
Soit a une fonction de classe C°° de [0,1] dans [|, |] dont le graphe, dessiné

ci-dessous, est plat (i.e. possède un contact d'ordre infini avec sa tangente) aux

points d'abscisses 0 et 1 et n'admet une tangente horizontale qu'au point d'abscisse

0.

<p est isotope, à travers BUi(Dx[0,|]), à un plongement <p" d'image

(T2-E-i(8Dx[0j]))u( U i(Ctx{a(\t\)}))
\O=s|t|=s;l /

qui satisfait, si U est assez petit, toutes les conditions requises.

Figure 4
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Dans la construction qui vient d'être exposée, on a supposé T2 transverse à 3F

le long de 8D. Cette condition n'est pas remplie dans le cas suivant: <p est toujours
un plongement en position générale par rapport à 3F, E est le voisinage adéquat
d'un centre p de type a (cf. Lemme 1, [R], page 106) et SE, qui contient un point
de selle q, borde sur la feuille de 3F passant par q un disque D, avec DC]T2 8D.
On se trouve dans un cas particulier de la première situation décrite avant
l'énoncé du Lemme 2: l'existence d'une boule B avec 8B D U E et B H T2 E
résulte de l'irréductibilité de V et de l'incompressibilité de <p (cf. [Ra], page 50) et
8D est transverse à Tt (cf. Définition 3) et donc à TxnT2. Le Lemme 2

s'applique donc. De plus, il est possible de trouver un plongement <p" isotope à <p,

en position générale par rapport à 3F, dont l'image ne rencontre pas D et ne
diffère de T2 que dans un voisinage U de D, mais qui soit transverse à 3F dans U:
cela résulte immédiatement du fait que q n'est pas situé sur 7\ par une
construction analogue à celle que l'on a exposée plus haut.

Le lecteur se convaincra que nous avons maintenant démontré tout ce qui était
nécessaire (et même au delà) pour pouvoir énoncer l'assertion suivante: le

plongement <p2 est isotope à un plongement <p réduit (bien entendu au sens de la
Définition 3). Il nous reste à démontrer des analogues des Lemmes 13, 14 et 15

de [R].
Soit donc <p un plongement réduit de T2 dans V et y'(l < i < l) ses cercles de

contact. On définit comme dans [R] des immersions G1 de Ns dans V, et on
suppose que, pour un certain i, G1 n'est pas un plongement. yl est alors contenu
dans un nombre fini de couronnes y1 <= ClTi cz • • • c OTm (on garde les notations de

[R]). On choisit un nombre t)>0 suffisamment petit pour que Gf^-^,Tm]Xc soit

un plongement et que Gl([Tr — jll, tJ x C), avec le même abus de langage que dans

[R], ne contienne pas de cercle de contact de <p autre que y1 (c'est possible car les

cercles y1 sont situés sur des feuilles distinctes de 3F). Gf[0,Tl_M.]xc est un plongement

dans V d'une variété (anguleuse) homéomorphe à D2xS1. Soit BlTi^^ son
image. Considérons l'intersection de B^.^ avec ^(T2). Tout d'abord, <jp(T2)H

OTx_^ est formé, en plus de 8Ori^^ d'un nombre fini de courbes, qui sont isotopes
aux composantes de 8OTl-yu (car une telle courbe est une feuille du feuilletage sans

singularité induit par 2F sur T2, et n'est donc pas homotope à 0 sur T2). Ces

courbes sont à fibre normal trivial sur T2 et séparent T2 en des couronnes et des

rubans de Môbius. Le cas où un ruban de Môbius serait inclus dans B!^-^ est
exclu pour la même raison que plus haut dans la démonstration du lemme 2. Les

composantes de B^-^fï<p(T2) sont donc des couronnes E, (l</<p). Nous
utilisons maintenant le fait suivant que nous ne démontrerons pas:

LEMME 3. Une couronne plongée dans D2xS1 avec comme bord {x, yjxS1
est isotope à une couronne standard y x S1, où y est un arc sur D2 joignant x à y.
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De ce lemme, il résulte d'abord que, si / et k sont deux entiers distincts

compris entre 1 et p, ôE, et ôEk bordent sur OTl-^ des couronnes D, et Dk qui
sont disjointes ou emboîtées (i.e. D;nDk=J0f, D}<^Dk ou Dk(^DJ). On peut
donc renuméroter les couronnes E, de telle façon que l</<k<p^>Dk—D^0
(Dp OTl-J. Le Lemme 3 assure que D1UE1 borde dans B^^ un tore solide,
dont l'intérieur ne rencontre pas <p(T2). Le lemme 2, ainsi que la construction
exposée après la démonstration de celui-ci, s'appliquent ici et on peut, par une
isotopie de <p agissant dans un voisinage de Eu éliminer une composante de

l'intersection BlTl-ti.r\<p(T2). On effectue ensuite la même opération pour E2 et,

par des isotopies agissant successivement dans des voisinages de JE2, E3,..., Ep,

on peut obtenir un plongement <p' qui possède strictement moins de cercles de

contact que <p si l'un des E} (l</<p) portait plus d'un cercle de contact, et qui
sinon en possède autant (cf. Figures 5 et 6). Dans ce cas, le cercle de contact
y'1 qui a remplacé y1 n'est plus contenu que dans m -1 couronnes et, si une
application G] (jV ï) était un plongement, la nouvelle application qui a remplacé
G1 sera encore un plongement.

On arrive finalement à un plongement ïpx isotope à <p, réduit, avec au plus /

cercles de contact, et pour lequel les applications G1 sont des plongements.
Une construction analogue à celle-ci permet de montrer que ip1 est isotope à

un plongement (noté encore <px) réduit, possédant au plus / cercles de contact,
pour lequel les applications G1 sont des plongements, et qui admet au moins un
cercle primitif (cf. Lemme 15 de [R]).

Ce cercle primitif n'est pas de type 882> fli de type y (à cause, si T2 est un tore,
de l'hypothèse 2 du Théorème 2). Il reste deux cas à envisager.

Commençons par le plus simple, i.e. celui où le cercle primitif y1 est de type
2&!. dans ce cas, une des composantes de 8C\ est un cercle de contact y1. ip1 étant

Avant isotopies
(plongement <p)

Figure 5
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après isotopies
(plongement çj

Figure 6

réduit au sens de la Définition 3, y1 est transverse à Tt et le Lemme 1 peut
s'appliquer (avec D C) et E G^Dt))- Montrons (par l'absurde) que y1 ne

rencontre pas TV Si m est un point de y1 H T\, on peut orienter T1 C\ T2 de façon

que m soit un point a, (on reprend les notations de la démonstration du Lemme
2). De cette démonstration, il résulte que le chemin V, joignant ax à bt sur T\ H T2

(dans E) est homotope sur T\ à un chemin d'image contenue dans une feuille de

^)Tl, ce qui est en contradiction avec le fait que Vt est tangent à ^, à la fois en ax

et en un point situé strictement entre ax et bv II est maintenant facile de montrer,
par une construction analogue à celle exposée après la démonstration du Lemme
2, que <px est isotope à un plongement réduit ne possédant plus les cercles de

contact y1 et y1.

Supposons maintenant que y1 est de type a. Quitte à modifier légèrement <pu

on peut supposer 8C] transverse à TV Toutes les considérations des préliminaires
(en particulier le lemme 2) s'appliquent alors et, pour remplacer <px par un plongement

<p2 possédant au lieu d'un cercle de contact y1 deux points de contact p et q

(cf. [R]) et tel que ip2(T2) H <Pi(T\) soit bien placé par rapport à 9\Tl> il suffit d'une
construction analogue à celle exposée après la démonstration du Lemme 2,

rendue possible par le fait suivant dont la démonstration est laissée au lecteur:
Soit D une couronne et, tracés sur D, un nombre fini de segments S, transverses à

8D et joignant deux points distincts de 8D. Soit d'autre part 3€ le feuilletage (avec

singularités) de D dessiné ci-dessous. Il existe alors un difféomorphisme <p de D
tel que chaque segment <p(S;) évite p et q et soit tangent à 3f en exactement un
point, situé "à l'intérieur du huit" (partie hachurée ci-dessous).

Ceci achève la démonstration du Lemme 1 et donc du Théorème 2.

PARTIE III
THEOREME 3. Soit 9 un feuilletage sur une 3-variété fermée V. Soient T\ et

T2 des surfaces difféomorphes à T2 ou K2, plongées dans V transversalement à 9.
On suppose que 9 induit sur Tx et T2 des feuilletages triviaux par cercles &\Tx et 3F\T2

et que Tt et T2 se coupent transversalement selon une feuille de ces feuilletages. On

suppose enfin que TtDT2 n'est pas homotope à 0 dans V. Alors, si T\ et T2 ont
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chacun un fibre normal non trivial dans V, ils sont isotopes dans V. Sinon, il existe

une fibration (localement triviale de fibre S1) p : V—» T, où T est difféomorphe à T2

ou K2, et un feuilletage <S sur T tel que & p*((8).

Remarque. Dire que T, a un fibre normal trivial dans V revient à dire que T, a

"deux côtés" dans V.

Démonstration. Remarquons tout d'abord que &\Tl (i 1, 2) est transversalement

orientable et que 7\ H T2 est à fibre normal trivial sur 7\, sur T2, donc sur V
et sur la feuille de 8F qui le contient. Il en résulte que toute feuille de 9\Tt est à

fibre normal trivial sur T,, sur V, et sur sa feuille (pour 2F).

Dans cette démonstration, on notera H= S1x[-1, l]x[-l, 1], K
S^f-l, l]x[0,1], Z S1x{-l, l}x[0,1]. tt désignera la projection naturelle de

H sur [-1, l]x[-l, 1] et tt' celle de K sur [-1, l]x[0,1].
On peut trouver un plongement i : H-» V tel que, dans l'image de i

paramétrée par (6,x,y)eH, 7\ soit défini par y 0, T2 par jc O, et ^ par
x + y constante. On peut ensuite, pour e>0 assez petit, trouver deux plonge-
ments cpt et <p2 de K dans V, tels que:

S1x{0}x[0,l] et <P;1(TJ) 0 pour

Çl({(<P, a, b) e K; b e [0, e] U [1 - €, 1]})

<P2({(<P, a, b) e K; b e [0, e] U [1 - €, 1]})

— les applications ir ° i"1 et tt' ° ç'1, définies sur <p,(K)ni(H), ont les mêmes

fibres.
— pour i 1 et 2, SF induit sur K (au moyen de <p,) un feuilletage %t qui est

l'image inverse par tt' d'un feuilletage <SCl sur [—1, l]x[0,1] transverse à {f}x
[0,1] pour -l<t<l.

Soit C la partie de [-1, l]x[-l, 1] formée des deux courbes dessinées

ci-dessous, qui sont supposées avoir un contact d'ordre infini avec leurs tangentes
à leurs extrémités.

On raccorde maintenant <pi(Z) et <p2(Z) au moyen de i(Sx x C), de façon à

obtenir une surface lisse S (non connexe), plongée dans V transversalement à 9,
dont le bord est formé de quatre cercles contenus dans i(H). S se compose en fait
de deux couronnes, sauf dans le cas où ni Tu ni T2 n'a un fibre normal trivial dans

V (S possède alors trois composantes, dont une sans bord).
On choisit dans V une métrique riemannienne telle que S soit normal à 3* pour

cette métrique (on suppose de plus que, dans i(H) identifié à H, cette métrique
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-1+6

Figure 7 Figure 8

est obtenue par produit avec S1 d'une métrique sur [-1, l]x[-l, 1]), et on
considère dans i(H) la couronne Ao définie par x + y 1 et € < x < 1 - e, qui est
située dans une feuille de 9 et dont le bord est contenu dans celui de S. On essaie,

en utilisant les normales à 9, de déplacer Ao vers l'extérieur de i(H) (i.e. de façon

que son bord se déplace sur S). On se sert pour cela de [M], de [R] (I 2, Lemme
11 et Proposition 2) et des remarques suivantes: Si 7 est une feuille de £F|T, y,
bien que non contractible sur la feuille de 3F qui le contient, ne porte pas d'holo-
nomie pour 3F \ de plus, la feuille de 9 qui contient y coupe une transversale
fermée à 3F (contenue dans Tt), et donc y ne peut pas appartenir au bord d'une

composante connexe de 9. Le déplacement de Ao ne s'arrête par conséquent que
si on arrive à ÔS. Plus précisément, on peut construire une immersion F:[0, l]x
S*x[0,1]->V telle que:

—Vfe[0,1], Ft F|{t}xSix[0fi] est un plongement sur une couronne At contenue
dans une feuille de 9, Fo ayant pour image Ao.
—V(0, u)e S1 x[0,1], la trajectoire t -*F(t, 0, u) est normale à et

Fico.uxs^o.i) est un plongement dans S.

—8Al contient une composante de 8S.

Comme ni Ao, ni S ne rencontre 7\ U T2, l'image de F ne rencontre pas
TxUTV II en résulte que F est un plongement, que F([0, l]x S^O, 1[) ne
rencontre pas S, et que At est la couronne définie dans i(H) par x + y -1 et

Si 7\ et T2 ont chacun un fibre normal non trivial dans V, F permet de

construire une isotopie entre 7\ et T2 dans la partie de V formée de l'union des

images de F, de <pu de <p2 et de i. Sinon, les <pAt (0<£<l) recouvrent
entièrement S, et donc l'union des images de F, de <pu de <p2, et de i est V tout
entier.

On peut alors définir sur V une relation d'équivalence dont les classes sont:

—les F({t} x S1 x {u}) pour (t, u) e [0,1] x [0,1]
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—les (pl(S1x{a}x{b}) pour (a, b)e[-l, l]x[0,1]

—les KS'xMxiy}) pour (x, y)e[-l, l]x[-l, 1].

91 est compatible avec & (i.e. les classes de 9i sont contenues dans des feuilles
de SF) et on peut munir V/9t d'une structure de variété et d'un feuilletage <ê, de

façon que la projection p : V—>V/9l satisfasse les conditions requises. T= VI91

est un tore si T1 et T2 ont chacun un fibre normal trivial dans V, une bouteille de

Klein sinon.

THEOREME 4. Soit SF un feuilletage à feuilles orintables d'une variété fermée
V. Soient Tt et T2 deux surfaces difféomorphes à T2 ou K2 plongées dans V
transversalement à & se coupant transversalement selon une courbe simple bien

placé par rapport à &\Tl et à ^\T% (cf. II, Définition 1). Si Tx U T2 est incompressible
dans V et si & ne possède pas de feuille compacte, Tx H T2 ne peut pas être de type
c.

Démonstration. Supposons Tx H T2 de type c (i.e. tangent à ^ en un nombre
fini de points), et soit x un point de contact avec 9. x est contenu sur Tt dans une
composante de Reeb 9^, et appartient sur Tx D T2 à des intervalles ouverts It qui
sont des composantes connexes de 91, n(T1D T2). Les feuilles de 3F|Ti définissent

par intersection une involution <p, sur I, admettant x comme point double. <pj et
<p2 coïncident en fait sur It HI2, car sinon on pourrait construire une transversale
fermée à ^ homotope à 0 dans V. Il en résulte que It et I2 sont contenus l'un
dans l'autre, par exemple Ii<=I2. Si l'inclusion est stricte, il y a un segment /
contenu dans une feuille / de ^|T2 joignant les deux extrémités de It. Le fait que
la feuille L de 9 contenant ôRx soit orientable entraîne, par des considérations

homotopiques analogues à celles de la partie I (démonstration du Théorème 1

bis), que 9tx est une couronne et non un ruban de Môbius. 8R1 borde sur L une
couronne A (contenant J). En coupant V selon T2, on voit que les intersections
de l avec I2 sont toutes situées sur des feuilles compactes de 9\Tl. Il y a ainsi dans

L une suite croissante de couronnes A c Ax<= A2<= dont les bords sont des

feuilles compactes de 9\Tl. L'union des feuilles compactes de &\Tx est compacte
(cf. [H]), et donc les extrémités de I2 sont contenues dans des feuilles compactes
de 9\Tl9 vers lesquelles convergent les bords des A,. Un analogue "discret" du
Lemme 11, page 116 de [R] montre l'existence d'une composante de type II pour
9, ce qui est impossible.

Considérons maintenant le cas Ix I2. Supposons pour simplifier que 91 x et 9l2
sont des couronnes (et non des rubans de Môbius); appelons u et v les extrémités
de Iu et Lu et Lv les feuilles de 9 correspondantes. Soit Hu (resp. Hv) le
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sous-groupe de 7rt(Lu, u) (resp. ttx(Lv, v)) engendré par les lacets d'image
contenue dans les composantes de 8911 et 80t2 passant par u(resp. v). La présence de

(3i1 et 8ft2 fournit un isomorphisme canonique if/ : HM—>Hv (Hu et Hv sont des

groupes libres à deux générateurs; on notera au a2 un système de générateurs de

Hu, ax étant un lacet d'image contenue dans 2ft,). Si a est un élément de Hu, 9
permet de lui associer par holonomie un germe de difféomorphisme de lx au

voisinage de w, et aussi, par l'intermédiaire de $, un germe de difféomorphisme de

Ix au voisinage de v. On remarque que ces germes sont conjugués par l'involution

D'après la Proposition 1.1.1 de la thèse de Moussu (voir référence [M]), il
existe un élément heHu dont l'holonomie possède une suite un de points fixes

convergeant vers u (uneli). En choisissant convenablement un tel h (en
particulier en lui imposant d'être de longueur minimale en tant que mot en ax et a2),

on peut relever un lacet en u (d'image contenue dans 89ll{J8$l2) représentant h

en une courbe simple (anguleuse) passant par un et formée de morceaux de

feuilles de $H1 et 2ft2. Le même procédé (appliqué à t//(h)) permet d'obtenir de

même une courbe passant par <pa(uM), et ces deux courbes bordent sur la feuille de

9 qui les contient une couronne An (car toute feuille de 9 est orientable et

incompressible dans V). L'existence de cette suite de couronnes dont chaque bord

converge vers une courbe (non nécessairement simple) contenue dans 89llL)89ft,2,

permet (voir [GP]) de conclure à l'existence dans V d'une mesure transverse /ll
invariante par holonomie, dont le support rencontre LM et Lv. Considérons autour
de u un petit intervalle sur Tx H T2. Il est facile de voir que la mesure /ll,
considérée sur ce segment, se réduit à une masse (non nulle) concentrée en u, ce

qui entraîne que Lu est une feuille compacte de 9y d'où contradiction. Ceci
achève la démonstration du Théorème 4.

PARTIE IV
Rappelons qu'une Cr-isotopie d'un feuilletage est une conjugaison par un

C-difféomorphisme isotope à l'identité.

THEOREME 5. Soit p : V->2 un fibre de fibre S1 et de base une surface X
compacte sans bord (non nécessairement orientable). Soit & un feuilletage
transversalement orientable de V, de classe Cr (2<r<oo)j dont toutes les feuilles sont
orientables, mais sans feuille compacte. Alors & est Cr-isotope à un feuilletage
transverse aux fibres de p, à moins que 9 ne soit Vimage inverse par une fibration de

V sur T2 d'un feuilletage de T2 (sans feuille compacte).

Démonstration. Supposons d'abord X S2. V est alors difféomorphe à S2xSx
(car sinon t^V est fini et 9 possède une feuille torique) et 9, feuilletage trivial
par sphères, est isotope à un feuilletage transverse aux fibres. Le cas X P2 se

traite de façon analogue.
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Supposons donc X^S2, P2. Il est alors possible de découper X selon un
système de courbes de façon à obtenir une variété homéomorphe à D2. Plus

précisément, on découpe X selon un 1-complexe fini S formé d'une part de

couples (al9 38,) de courbes simples se coupant en un point unique 8t et d'autre

part de segments y} joignant deux points 8l (les 8t sont les seuls sommets de S).

Le cas où X est orientable est schématisé ci-dessous. Dans le cas non-orientable,
le lecteur "dessinera" lui-même un complexe convenable dont le nombre de

sommets est la partie entière de g/2, g étant le genre de X.

Dans le but d'appliquer les théorèmes démontrés précédemment, remarquons
que, comme tout feuilletage de K2 possède une feuille compacte, 9 ne peut pas
être l'image inverse (par une fibration de V sur K2) d'un feuilletage de K2. Si

donc 9 n'est pas l'image inverse d'un feuilletage de T2, les Théorèmes 2, 3 et 4

permettent d'effectuer une isotopie sur 9 de façon que les surfaces p"1^,),
p~x{^t) et les courbes p~1(ôl) soient transverses au feuilletage. Le Théorème 1.2

de [R] sur les plongements de couronnes permet de plus de supposer les p~1(y])
transverses à 9.

Le découpage de X selon S et de V selon p~1(S) donne naissance, après
arrondissement, à une variété V difféomorphe à D2xSx, munie d'une projection
p' sur D2 (obtenue à partir de p), et d'un feuilletage 9' transverse à 8V :(V,&)
s'obtient à partir de (V, SF1) par des identifications sur 5V.

Considérons le feuilletage <§ induit par 9' sur le tore ÔV, Montrons qu'on
peut supposer (par une isotopie de 9) que les feuilles de <S sont des fibres de p' ou
bien transverses aux fibres de p': comme les fibres p~~1{8l) sont transverses à 9, il
existe un "difféomorphisme" de p~x(S) (qui n'est pas tout à fait une variété), dont
le support ne rencontre pas les p~1(8l), isotope à l'identité (relativement à l'union
des p~1(8l)), transformant le feuilletage induit par 9 sur p~x(S) en un feuilletage
dont les feuilles sont des fibres de p ou transverses aux fibres de p. Ce

"difféomorphisme" se prolonge à V en le difféomorphisme cherché.
<§ admet des transversales fermées istopes aux fibres de p', mais pas de

transversale homotope à 0 dans V (cf. [N]). Deux cas sont ainsi possibles:

Figure 9
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(a) ^ est un feuilletage trivial par cercles homotopes à 0 dans V. &' est alors

un feuilletage par disques et est Cr-isotope (relativement à 8V) à un feuilletage
transverse aux fibres de p' (car tout difféomorphisme de D2xS1 induisant
l'identité sur le bord est isotope à l'identité). Cela signifie que 9 est isotope à un
feuilletage transverse aux fibres de p.

(b) ^ possède au moins une composante de Reeb, les feuilles compactes de ^
étant des fibres de p'. On va alors montrer que toute feuille compacte de ^ est

contenue dans le bord d'une feuille compacte de 9' difféomorphe à Sxxl.
D'abord, toute feuille compacte de 9' est une couronne: d'après [N], son

groupe fondamental s'identifie à un sous-groupe de 7r1(V') —Z. Les cas d'une
feuille compacte difféomorphe à S2 ou D2 étant exclus (le premier par stabilité de

Reeb, le second parce qu'une feuille compacte de <S ne peut pas border de disque
dans V), il ne reste que la possibilité d'une couronne.

Soit maintenant y une feuille compacte de (S, isolée au moins d'un côté dans

l'ensemble des feuilles compactes de ^ (i.e. l'holonomie de y est contractante au
moins d'un côté). Alors la feuille L de $F' contenant y n'est pas coupée par une
transversale fermée (et donc est compacte): s'il existe une transversale fermée

coupant L, il en existe une qui rencontre y en un point x, et est contenue dans 8Y
au voisinage de jc. L'hypothèse faite sur y permet alors de construire une
transversale coupant L et homotope à 0 dans V (en "rajoutant" à la transversale
de départ un certain nombre de "tours" sur 8V au voisinage de y), ce qui est

impossible.
Une feuille compacte de ^ à holonomie (d'un côté) non triviale mais non

contractante est limite de feuilles compactes de ^ à holonomie contractante et est
donc située sur une feuille compacte de fF (car l'union des feuilles compactes de
3*' est compacte, cf. [H]). Enfin, une feuille compacte de ^ à holonomie triviale
est aussi située sur une feuille compacte de 9\ par stabilité (cf. [M]).

Ceci achève de montrer que toute feuille compacte de ^ borde dans V une
feuille de 91 qui est une couronne. Ces couronnes sont plongées dans V de façon
"standard" et on peut supposer qu'elles sont réunion de fibres de p'.

Soit q un point de X tel que p~1(q) soit transverse à 9. En enlevant à X un

petit disque ouvert autour de q, on obtient une surface à bord qui a le type
d'homotopie d'un bouquet de cercles et au-dessus de laquelle p admet une section

X, que l'on peut supposer en position générale par rapport à 9. 9 va induire sur
X un feuilletage $f (avec singularités) transverse à 8X et de classe au moins C2.

L'union des feuilles compaxtes de 3? est un compact de V qui, après identifications
sur 8V\ fournit un compact de V. L'intersection de ce compact avec X est un
ensemble fermé invariant de 3€, contenu dans int X, et qui ne contient ni

singularité de 3£, ni feuille compacte de Vt (car 9 n'a pas de feuille torique). Il y a

contradiction avec les résultats de [S], ce qui prouve le théorème.
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Soit toujours p : V-+X un fibre de fibre S1 et supposons V orientable. Le
fibre est alors classifié par sa classe d'Euler que Ton notera X(p) et que l'on
considérera, par dualité de Poincaré, comme un entier relatif. Wood a montré [W]
le théorème suivant:

THEOREME. Soit p : V—> X un fibre en cercles sur une surface compacte sans
bord X> avec V orientable. V admet un feuilletage (différentiable) transverse aux
fibres de p si et seulement si |X(p)|<sup (0, -X(X)).

Remarque. Contrairement à notre convention, le feuilletage est ici transversalement

orientable si et seulement si X est orientable (car une orientation
transverse du feuilletage équivaut à une orientation des fibres de p).

On peut donc énoncer le

COROLLAIRE. Soit p : V—>.£ un fibre en cercles sur une surface compacte
sans bord différente de T2, avec V orientable. Si X est non orientable, ou si

\X(p)\>sup (0, -X(X)), tout feuilletage transversalement orientable de class C2 de

V possède une feuille compacte.

Remarque. Dans le cas où X est S2, P2 ou K2, ce corollaire peut se déduire de

[P]. Si X S2 et si X(p) 0, V est difféomorphe à S2xS1 et tout feuilletage
(transversalement orientable de classe C2) de V possède une feuille compacte,
difféomorphe à T2 ou S2.
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