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Comment. Math. Helvetici 53 (1978) 572-594 Birkhauser Verlag, Basel

Feuilletages des variétés de dimension 3 qui sont des fibrés en
cercles

GILBERT LEvVITT

Sauf mention explicite du contraire, toutes les variétés, et toutes les applica-
tions entre variétés, que nous considérerons ici seront supposées de classe C”. Les
feuilletages étudiés sur ces variétés seront toujours de codimension 1, de classe au
moins C?, et transversalement orientables. Un feuilletage sur une variété a bord
sera supposé transverse ou tangent au bord.

Un plongement ¢ d’une variété V; dans une variété V, sera dit incompressi-
ble si I’application induite ¢4 : m,(V;)— 7(V)) est injective. Par abus de langage,
on dira aussi, si aucune confusion n’est possible, que V,, ou ¢(V,), est incompres-
sible dans V, (on se permettra souvent I’abus de langage consistant a identifier
(V1) a-Vy).

Si p: V-3 définit un fibré (localement trivial) en cercles sur une surface
compacte sans bord 3, avec V une 3-variété orientable, X(p) désignera la classe
d’Euler du fibré (considérée comme un entier relatif), et X(3) désignera la
caractéristique d’Euler-Poincaré de 3 (X n’est pas supposée orientable).

On désignera par I I'intervalle compact [0,1], par S" la sphére de dimension n,
par D? le disque fermé de dimension 2, par P? le plan projectif réel, par T° le
tore de dimension 2, et par K? la bouteille de Klein.

Les principaux résultats démontrés ici sont les suivants:

THEOREME. Soit p: V— 3 un fibré en cercles sur une surface compacte sans
bord 3 # T?. Soit F un feuilletage sur V de codimension 1, de classe C" 2=<r=wx),
transversalement orientable, dont toutes les feuilles sont orientables, mais dont

aucune feuille n’est compacte. Alors & est C"-isotope a un feuilletage transverse aux
fibres de p.

Remarque. 11 suffit, pour étre siir que les feuilles de & sont orientables, de
supposer V orientable.

COROLLAIRE. Soit p: V—23 un fibré en cercles sur une surface compacte
sans bord 3# T?, avec V orientable. Si 3 est non-orientable ou si |X(p)|>
sup (0, —X(2)), tout feuilletage de codimension 1, de classe C?, transversalement
orientable, de V posséde une feuille compacte.
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La classe d’Euler X(p) intervient dans le corollaire ci-dessus par le biais d’un
théoreme de Wood [W] selon lequel la condition |X(p)|=sup (0, —X(3)) est
nécessaire et suffisante pour {’existence d’un feuilletage transverse aux fibres de p.
Le corollaire peut étre montré 2 partir des résultats de Novikov [N] si 3 =S? ou
P?, et de ceux de Plante [P] si 3 =K?. Des contre-exemples montrent que
I’hypothése 3 # T?, ou une hypothése de différentiabilité du feuilletage, sont
nécessaires pour le Théoréme ou le Corollaire.

Les résultats ci-dessus ont été montrés par Thurston [T] dans le cas ou 3 et V
sont orientables. Ses démonstrations sont toutefois assez incompletes, en par-
ticulier dans ce qui correspond a la partie II ci-dessous. Le but de ce travail est
donc d’une part de présenter des démonstrations completes et d'autre part de
généraliser les résultats au cas non-orientable (on remarquera que, par exemple,
le Corollaire, dans le cas ou 3 est non-orientable et | X(p)| ‘“petit,” ne peut pas
se déduire du cas ou 3 est orientable en considérant un revétement a deux
feuillets de V).

La partie I généralise a la bouteille de Klein un résultat de R. Roussarie [R]
sur la possibilité, par isotopie, de rendre un tore plongé dans une 3-variété
feuilletée transverse au feuilletage. On en déduit une démonstration simple d’un
résultat de S. Goodman [G].

On se pose ensuite la question suivante: avec les hypothéses du théoréme
ci-dessus, si ’on choisit dans 3 deux courbes fermées C; et C, se coupant
transversalement en exactement un point x, la partie I permet, par isotopie, de
rendre séparément p~'(C,) et p~'(C,) transverses a F; mais est-il possible de le
faire simultanément pour les deux surfaces, c’est-a-dire peut-on supposer que,
apres isotopies, les deux surfaces se coupent toujours transversalement selon une
courbe fermée simple?

La partie II répond a cette question, tandis qu’il est montré dans la partie III
que, sous certaines conditions sur &, on peut de plus supposer que la courbe
d’intersection des deux surfaces est transverse au feuilletage.

Les résultats des parties II et III servent finalement dans la partie IV a
démontrer le théoréme ci-dessus et son corollaire au moyen d’un “découpage” de
V selon des surfaces transverses a %, en utilisant comme Thurston [T] un résultat
de A. J. Schwartz [S].

Je tiens a exprimer ici mes remerciements 8 Harold Rosenberg pour tous les
conseils et encouragements qu’il m’a donnés et a Madame Barbichon pour la
frappe de ce texte.

PARTIE I

Afin d’étudier les plongements du tore T> dans les 3-variétés feuilletées,
Roussarie a été amené [R] a introduire les composantes de type I ou II. Ce sont
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des variétés compactes a bord, difféomorphes a des fibrés sur S* de fibre D? ou
S'x I, munies d’un feuilletage dont les composantes du bord sont les uniques
feuilles compactes; ce feuilletage est défini a conjugaison pres et fait de la variété
une ‘“composante intrinseéque,” c’est-a-dire une composante connexe (au sens de
[N]) qui reste une composante connexe quand elle est plongée dans une variété
feuilletée quelconque (cela revient a dire qu’un champ de vecteurs transverse au
feuilletage est simultanément rentrant ou sortant sur toutes les composantes du
bord de la variété). Les composantes de type I sont des ‘“composantes de Reeb”
(orientable et non-orientable), les composantes de type II sont des ‘“‘composantes
cylindriques” (la composante cylindrique introduite dans [G] s’identifie a la
composante II, de [R].
Cela étant, Roussarie a montré [R] le théoréme suivant:

THEOREME 1. Soit V> une 3-variété compacte munie d’un feuilletage F ne
possédant pas de composante de type I ou II. Alors tout plongement incompressible
¢ de T? dans int V est isotope dans ’intérieur de V a un plongement transverse a ¥
ou a4 un plongement dont I'image est une feuille de ¥ difféomorphe a T2.
Rappelons que ¥ est supposé de codimension 1, de classe C?, et transversalement
orientable.

Le Théoréme 1 se généralise de la fagon suivante:

THEOREME 1 bis. Soit V> une 3-variété compacte munie d’un feuilletage %
ne possédant pas de composante de type I ou II et dont toutes les feuilles sont
orientables. Alors tout plongement incompressible ¢ de K* dans int V est
isotope, dans int V| 2 un plongement-transverse a %.

Remarque. Dans les hypotheéses du théoréme 1 ou du théoréme 1 bis, 'exis-
tence de ¥ et de ¢ entraine l'irréductibilité de V [R,].

Démonstration du Théoreme 1 bis. La démonstration du théoréme 1 se
généralise presque immédiatement. Il convient de remarquer que, si ¢ est
transverse a3 ¥ sauf sur un sous-ensemble compact S < K?, le feuilletage obtenu
en restreignant le feuilletage singulier ¢ F 3 K>— S est transversalement orienta-
ble et une feuille de @&FF x2_, difféomorphe a S' est a fibré normal trivial sur
K>,

Un point délicat ‘est ’étude de I’ensemble E intervenant dans le Lemme 1,
dans le cas b (on se référe ici a [R], dont on reprend les notations). On dispose
d’un plongement ¢,: K*— V, en position générale par rapport 3 ¥. p est un
centre de ¢a(%) et au voisinage de p les feuilles de ¢&(%) sont des courbes
fermées simples bordant sur K* un disque contenant p comme unique singularité
de @3(F). On appelle E la fermeture de la réunion des feuilles dé ¢3(F) vérifiant
les propriétés ci-dessus et on suppose que la frontiere de E est un bouquet de
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deux cercles, le point double du huit étant un point de selle gq. Soit y une feuille
de ¢&(%), contenue dans E et proche de g. y borde dans K? un disque D
contenant p, hachuré dans le schéma ci-dessus. Les fleches horizontales et
verticales symbolisent‘une orientation transverse de <p’0"(9‘)|Kz_s. Considérons (sur
K?) une séparatrice partant de g, par exemple gx. Elle revient au point q soit par
x', soit par y (pas par y’ car on serait alors dans le cas a). Il convient de montrer,
pour étendre la démonstration de Roussarie, qu’elle revient en fait par y.
Supposons au contraire qu’elle revienne par x', ce qui entraine qu’elle est a fibré
normal non trivial et que la séparatrice partant par y revient par y'. L’existence
des courbes telles que y montre que le lacet obtenu en partant de q par gx, en
revenant a q par x’, en repartant par y et enfin en revenant a q par y' est
homotope a 0. Les deux lacets (a point base q) obtenus I'un en partant par x et en
revenant par x' et l'autre en partant par y' et en revenant par y sont donc
homotopes. Ils sont homotopes sur K?, donc dans V, donc, comme % ne posseéde
pas de composante de type I, sur la feuille L de & contenant q (d’aprés le
théoréme de Novikov, cf. [N]). Mais ceci est impossible, car ces deux courbes se
coupent transversalement en un point unique, alors que L est orientable. Le reste
de la démonstration s’étend sans difficulté particuliére en remarquant que le cas ¥y
ne peut pas se présenter.

Soit maintenant K> I'unique (a difféomorphisme prés) 3-variété orientable
fibrée sur K de fibre I (K> est le support de la composante II, de [R] et posséde
un bord connexe difféomorphe & T?). Le théoréme 1 bis permet de démontrer le:

COROLLAIRE [G]. II existe, a équivalence topologique preés, un seul feuillet-
age de K? admettant dK> comme unique feuille compacte.
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Démonstration. Soit ¥ un feuilletage de K>, comme dans I’énoncé ci-dessus.
On considére une section ¢ : K*— K? du fibré 7 : K>*— K?. Si ¥ ne fait pas de K>
une composante I, , ¢ est isotope a un plongement ¢, transverse a ¥, d’apres le
Théoréme 1 bis. En découpant K> selon ¢,(K?), on obtient une variété que 1’on
identifie & T?x I, munie d’un feuilletage ¥ tangent & une composante du bord
(disons T?x{1}) et transverse & I’autre. Cela entraine ((MR], III, Lemme 1, page
164) que le feuilletage 9 induit par ¥’ sur T> X {0} est sans holonomie. Comme ce
feuilletage doit, par recollement (I’opération inverse du découpage selon ¢y(K?)),
donner un feuilletage transversalement orientable de ¢,(K?), ¢ est un feuilletage
trivial par cercles bien déterminé a conjugaison pres. D’apres ((MR], III, Remar-
que 1, page 164), ¥, et donc ¥, est déterminé a conjugaison pres. Cela entraine
que ¥ fait de K> une composante II,, d’oi la contradiction paradoxalement
cherchée.

PARTIE 11
Soit 4§ un feuilletage de T2

DEFINITION 1. Une courbe fermée simple C sur T?, image d’un plongement
C~ de S dans T? non homotope 2 une application constante, sera dite bien placée
par rapport a % si I'une des trois conditions suivantes est vérifiée:

(a) C est transverse a 9;

(b) % est un feuilletage trivial par cercles et C est une feuille de 4;

(c) 6 contient au moins une composante de Reeb (difféomorphe a S'x1I) et C
est tangent a3 9 en un nombre fini (non nul) de points situés dans les composantes
de Reeb de %, le nombre de points étant le méme dans chaque composante et
égal & |(C, L)|, ot L est un cercle frontiére de composante de Reeb.

Les trois conditions a, b, ¢ s’excluant mutuellement, on dira selon le cas que C
est bien placée de type a, b ou .

DEFINITION 2. Une courbe fermée simple C sur T2, image d’un plonge-
ment C” par morceaux de S' dans T non homotope a une application constante,
sera dite presque bien placée par rapport a 4§ si C est bien placée par rapport a 4,
ou peut s’obtenir a partir d’'une courbe C, bien placée de type ¢ de la manicre
suivante: On choisit des points x;, ..., x, ol C, est tangent 3 %4 et des segments
[b;, a;] (1=i=<k) portés par C,, contenant x; dans leur intérieur et contenus dans
'intérieur de la composante de Reeb R; & laquelle appartient x;. On suppose de
plus que, pour tout i, b; et a; sont situés sur la méme feuille (non compacte) de %,
et que le chemin A; joignant b, a a; sur cette feuille est homotope au chemin
[b;, a;] sur C,. C est obtenue a partir de C, en remplagant les chemins [b, a;]
(1=i=k) par les chemins A,.
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Remarques

(1) Toute classe d’isotopie de courbes (fermées simples non homotopes a 0)
sur T2 contient une infinité de courbes bien placées par rapport a 4, et le type (a,
b ou c) d’une telle courbe ne dépend que de sa classe d’isotopie.

(2) Si C est bien placée de type c, C coupe un cercle tel que L en exactement
|(C, L)| points (en d’autres termes, C coupe toujours L “dans le méme sens”).

(3) La définition d’une courbe bien placée s’étend a un feuilletage G sur K2,
en considérant le revétement des orientations 7 : T>— K?; une courbe C sur K?
est bien placée par rapport a 4 si une (ou toute) composante de 7 '(C) est bien
placée par rapport au feuilletage induit 7*(%). La définition d’une courbe presque
bien placée s’étend sans changement.

(4) Une courbe presque bien placée peut étre transformée en une courbe bien
placée par un déplacement arbitrairement petit.

On peut maintenant énoncer:

THEOREME 2. Soit V* une 3-variété compacte munie d’un feuilletage F a
feuilles orientables ne possédant pas de composante de type I ou II. On se donne
deux plongements ¢, : T;—>int V et ¢, : T,—int V, ou T, est difféomorphe a T ou
K? (T, et T, ne sont pas nécessairement difféomorphes). On suppose:

(1) ¢4(T,) et ¢,(T,) se coupent transversalement selon une courbe fermée simple
C qui n’est homotope a 0 ni sur ¢,(T;) ni sur ¢,(T).

(2) ni ¢4, ni ¢, n’est isotope a un plongement dont I’image est une feuille de .

(3) Un lacet sur ¢,(T)U ¢,(T,) formé d’un chemin sur ¢,(T,) suivi par un
chemin sur ¢,(T,), homotope a 0 dans V, est déja homotope a 0 sur ¢,(T,)U
¢,(T,). Alors on peut trouver deux plongements ¢1: T;—>int V et ¢, : T,—int V
isotopes respectivement a ¢, et ¢, dans int V et tels que:

@1 et @, sont transverses a F.
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—@1(T;) et ¢5(T,) sont disjoints ou bien se coupent transversalement selon une
courbe fermée simple C', qui n’est homotope a 0 ni sur ¢1(T,), ni sur ¢5(T,) et qui
est bien placée par rapport aux feuilletages induits par F sur ¢1(T;) et ¢5(T),).

Remarques

(1) L’hypothése 3 entraine que les plongements ¢, et ¢, sont incompressi-
bles. On pourrait remplacer cette hypothese par la suivante, plus forte: I'inclusion
¢1(T;) U ¢,(T,)— V induit une injection sur les groupes fondamentaux.

(2) ¢1(T,) et ¢5(T,) ne peuvent étre disjoints que si T; et T, sont des
bouteilles de Klein et C est homologue a 0 sur ¢,(T,) et ¢,(T,) (i.e. C sépare
¢:(T;) en deux rubans de Mdbius). Voir plus loin la démonstration du Lemme 2.

(3) L’hypothése que les feuilles de- & sont orientables est superflue si T, et T,
sont des tores.

Démonstration du Théoréme 2. On identifiera souvent T; a2 son image par ¢;
(ou un plongement isotope & ¢; qu’on aura construit).

On commence, au moyen d’une isotopie de ¢;, par rendre T, transverse a ¥
(on utilise le théoréme 1 ou le Théoréme 1 bis), puis on effectue une isotopie de
¢, de fagon que I’hypothese 1 soit encore vérifiée. Une isotopie de ¢, (ou plus
précisément du plongement isotope a ¢, que 1’on vient de construire) n’agissant
que dans un voisinage arbitraire de T;, permet de rendre T, N T, bien placé par
rapport a &1, (le feuilletage induit par & sur T)).

La démonstration du théoréme 2 va se ramener a celle du

LEMME 1. Supposons, en plus des hypothéses du théoréeme 2, que T, est
transverse @ F et que C est bien placé par rapport @ Fr,. Il existe alors un
plongement ¢4 isotope a ¢,, vérifiant avec ¢’ = ¢, les conclusions du théoréme a
ceci prés qu’on n’exige pas que C' soit bien placée par rapport a Fr, (si ¢7(T;)N
¢3(T>) # 9).

Remarque. Si le Lemme 1 s’applique, C' est isotope a C sur ¢,(T,).

Démonstration de Lemme 1= Théoréeme 2. En utilisant le Lemme 1, on a
remplacé les plongements ¢, et ¢, intervenant dans I’énoncé du théoréme par des
plongements @] et @5 transverses a &. Si ¢"(T;) et ¢"(T,) sont disjoints, il n’y a
rien & démontrer. On suppose donc que l’intersection est une courbe C”, bien
placée par rapport a &1, mais pas forcément par rapport a ¥ r,. Plusieurs cas
peuvent se présenter:

(@) C” est transverse & &F1,. C" est alors aussi transverse a ¥r,, donc bien
placée par rapport 3 ¥ 1, et on a terminé.

(b) C" est une feuille de Fr, (feuilletage trivial par cercles). Si &/, est aussi un
feuilletage par cercles, on a terminé. Sinon, on effectue une isotopie sur ¢ de
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fagon a rendre C” transverse a &r,, puis une autre isotopie de ¢ de fagon a
rendre ¢} transverse a ¥ (en utilisant le Lemme 1).

(¢) C" est sur T, de type c, donc tangent a & en un nombre fini de points. Si
C" n’est pas bien placé par rapport a %, on recommence tout en échangeant les
réles de T, et T,, et ainsi de suite. Le processus s’arréte au bout d’'un nombre fini
d’opérations, car, si on ne se rameéne pas a une des situations étudiées
précédemment, le nombre de points de contact de C” avec ¥ diminue strictement
a chaque étape.

Démonstration du Lemme 1. La démonstration proprement dite va étre
précédée d’un certain nombre de préliminaires.

On utilise, pour rendre ¢, transverse, la méthode de [R], en montrant qu’il est
possible d’effectuer les isotopies sur ¢, en gardant un “contrdle” sur T; N T,: les
isotopies se feront a travers des plongements quelconques, mais les plongements
intermédiaires construits par Roussarie dans ses lemmes devront, eux, vérifier
certaines conditions supplémentaires. Il est conseillé au lecteur de regarder, en
méme temps que le présent texte, celui de Roussarie auquel on se référera
constamment.

La présence de ¢, nous impose de donner des définitions plus précises que
celles de [R].

DEFINITION 3. Un plongement ¢ de T, dans V qui vérifie avec ¢, les
hypotheses du Théoréme 2, avec de plus C bien placé par rapport a ¥, sera dit:
—en position générale par rapport a &, si, en plus des conditions habituelles
rappelées page 106 de [R], les points ou ¢(T,) est tangent 3 F n’appartiennent
pas a ¢,(T,) et si les séparatrices de T,, partant d’un point de selle et y revenant,
coupent ¢,(T,) transversalement.
—réduit s’il est réduit au sens de [R], page 115, et si de plus les cercles de contact
de ¢ sont transverses a ¢,(T,).

Le plongement ¢, est isotope a un plongement ¢° en position générale par
rapport a F. Pour éliminer par isotopie les points de contact de ¢° avec &, on est
d’abord amené a considérer la situation suivante:

¢ est un plongement de T, dans V en position générale par rapport a2 ¥ (et on
identifie ¢(T,) avec T,). D est un disque plongé sur une feuille de ¥, avec
DN T,=8D. aD borde sur T, un disque E et DU E, homéomorphe a S, borde
dans V une boule B avec BN T,=E. On suppose de plus 8D transverse a
C=T,NT,.

On aura également besoin de considérer le cas ou ¢ est un plongement de T,
dans V réduit et ou D est une couronne (difféomorphe a S* % I) plongée de fagon
non contractile sur une feuille de &, avec D N T, = 8D et 8D transverse a T; N T>.
On suppose de plus qu’il existe sur T, une couronne E, avec 8E = 8D, telle que
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D UE soit homéomorphe 4 T? et borde dans V un tore solide B, avec BN T, =
E. On suppose enfin que F, g est sans holonomie et que I'’holonomie de &
au-dessus de D est triviale (pour le lemme 2 ci-dessous, il suffit de supposer cette
holonomie triviale seulement du c6té de B).

La raison pour laquelle on considére ces deux situations est la suivante: en
examinant la démonstration de [R], on constate que toutes les isotopies “‘effec-
tives” du plongement de T, (une isotopie “‘effective’ est une isotopie qui déplace
effectivement T, dans V, par opposition a une isotopie qui ne modifie le
plongement que dans un petit voisinage de son image) consistent a se placer dans
I’'une de ces situations et a remarquer que le plongement ¢ est isotope a travers B
a un plongement ¢" voisin du plongement (anguleux) ¢’ d’image T;=
(T,— E)U D. Nous allons montrer (lemme 2 ci-dessous) qu’en général T, N T est
sur T, une courbe presque bien placée (cf. définition 2 ci-dessus) par rapport a
Fr,, ce qui permettra (cf. Remarque 4 suivant la Définition 2) de modifier
légérement ¢’ de fagon a obtenir un plongement (lisse) ¢” tel que ¢"(T,) N T soit
une courbe bien placée par rapport a T;.

Lorsque nous aurons accompli ceci, nous aurons presque entierement
démontré I’assertion suivante: le plongement ¢, est isotope a un plongement
réduit (au sens de la définition 3). Il restera & montrer des analogues des lemmes
13, 14 et 15 de [R].

LEMME 2. Dans les deux situations considérées ci-dessus, TN T, est une
courbe fermée simple presque bien placée (cf. définition 2) par rapport a Fr,, a
moins que ¢ ne soit isotope a un plongement transverse a ¥ d’image disjointe de T;.

Ce lemme constitue la clé de la démonstration du Théoréme 2.

Démonstration du Lemme 2. Fixons une orientation transverse de % telle que
B soit situé du coté positif de D et fixons aussi une orientation de T, N T5,.

Considérons T, N D. T, est transverse 3 %, donc & D, et est aussi transverse a
8D car T, N T, est transverse a 8D. T; N D se compose donc d’un nombre fini de
courbes disjointes qui peuvent étre ou bien des segments joignant deux points
distincts de 8D ou bien, si D est une couronne, des courbes difféomorphes a S’,
disjointes de 8D et isotopes (dans D) aux composantes de 8D (car une telle
courbe, qui est une feuille de ¥, n’est pas homotope a 0 dans T, donc pas non
plus dans V). ‘

Distinguons deux cas:

@i T,NéD=4.

Si D est un disque, cela entraine T, N D =& d’aprés ce qui préceéde, et aussi
T, N E = § puisque T; N T, ne rencontre pas 8E = 8D et ne peut pas étre contenu
dans E (T; N T, n’est pas homotope a2 0 sur T,). Onadonc T,NT,=T,NT, et il
n’y a pas de probleme. |
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Si D est une couronne, T, N D se compose d’un nombre fini (éventuellement
nul) de courbes fermées isotopes aux composantes de D. T, NE est soit vide,
soit composé de la courbe T, N T, contenue dans l'intérieur de E et isotope dans
E aux composantes de SE. Toutes ces courbes (i.e. les composantes de T;N
(D U E)) sont a fibré normal trivial sur T, et les composantes de T; N B sont des
couronnes ou des rubans de Mdbius, ne rencontrant 8B que selon leur bord. Le
cas du ruban de Mdbius est a exclure car il est impossible de plonger un ruban de
MGobius M dans un tore solide B de fagon que M N8B =8M et que M ne soit
pas homotope a 0 dans B. Si maintenant A est une composante de T,NB
difféomorphe a S' % I, il est impossible que §A = C,U C, soit contenu dans D. La
condition sur I’absence d’holonomie de ¥ dans B entrainerait en effet que %,
serait un feuilletage trivial par cercles et on trouve une contradiction en compar-
ant I’orientation transverse de ¥ sur C, et sur C;. BN T; est donc soit vide, soit
composé d’une couronne A bordée par T, N T, et par une courbe contenue dans
I'intérieur de D. Dans les deux cas, l'intersection T;N T, est bien placée par
rapport & ¥, (si BNT; est non vide, on remarque que T;NT, est
nécessairement une feuille de ¥ 1,).

(ii) T,N8D#4.

Dans ce cas, T;N T, est nécessairement bien placé de type c par rapport a
Fr,: TN T, n’est pas une feuille de Fr,, et n’est pas non plus transverse a ¥,
(comparer aux différents points de T;N 8D lorientation transverse de ¥ et
l'orientation de T, N T,). En particulier, comme T;N T, rencontre toutes les
feuilles de &/, toute composante de T, N D est, méme si D est une couronne, un
segment joignant deux points distincts de 8D (ceci pourrait aussi se voir par des
raisonnements analogues a ceux faits en (i), utilisant ’absence d’holonomie de %
dans B).

On numérote les points de T; N 6D dans ’ordre ou on les rencontre quand on
se déplace (dans le sens positif) sur T,NT,:a;bjab,---a,b, (a,.1=ay,
b,.,=b,), de fagon qu’aux points a;, T; N T, “rentre”’ dans E et on appelle ¢; le
point de T;N8D relié a a; par un segment de T;ND. On souhaiterait avoir
¢;=b,.

Toutes les homotopies considérées ci-dessous seront des homotopies de che-
mins avec extrémités fixes pendant I’homotopie ou des homotopies de lacets avec
point base c;.

Il est possible de trouver un chemin w; de b; a ¢; dans T, tel que le lacet
obtenu en allant de ¢; a a; sur TN D, puis de a; & b, sur T, N T, dans le sens
positif (i.e. dans E), et finalement de b; a ¢; par w; soit homotope a 0 dans B.
D’apreés la Condition 3 de I'’énoncé du Théoréme 2, ce lacet est homotope a O sur
T, U T,. 1l en résulte que le lacet a; sur T, obtenu en allant de ¢; a a; sur T, N D,
puis de a; a b, sur T, N T, comme précédemment, et enfin de b; a ¢; sur TN T,
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(de fagon quelconque) est homotope (sur T; U T,) au lacet %; (sur T,) obtenu en
allant de ¢; a b, par wu; !, puis de b; a ¢; sur T; N T, de la méme fagon quelconque
que pour a;.

On en déduit, en utilisant le théoreme de Seifert-Van Kampen, le fait que
T, N T, est incompressible sur T; et T, et le résultat [B], que a; est homotope sur
T; a un lacet d’image contenue dans T; N T,. (Ce dernier point peut se démontrer
sans utiliser le théoréme de Seifert—~Van Kampen, ni [B], s’il existe une rétraction
de T, ou de T, sur T; N T,, en particulier si T, ou T, est un tore. Dans les autres
cas, il peut se démontrer a partir du théoreme de Seifert-Van Kampen en utilisant
au lieu de [B] certaines propriétés du groupe 7,(K?). Les détails sont laissés au
lecteur.) Le chemin A; joignant ¢; & a; sur T; N D est donc homotope sur T; & un
chemin V; d’image contenue dans T;NT,. Par une homotopie de V; dans
TN T,, on peut supposer que V;:[0,1]— T, N T, est une immersion. Si T, est
un tore, V;(]0, 1[) ne coupe aucun cercle L frontiére de composante de Reeb de
%1, (car A; ne coupe pas L et T; N T, coupe toujours L “dans le méme sens,” cf.
Remarque 2 suivant la Définition 2). V; est donc tangent & 1, en au plus un
point. Si T, est une bouteille de Klein, on montre, en utilisant le revétement des
orientations de T;, que V, est de méme tangent 8 & en au plus un point.
Remarquons maintenant que, entre deux points consécutifs d’intersection avec
8D, T, N T, est tangent 3 ¥ au moins une fois (en fait un nombre impair de fois,
pour des raisons d’orientation transverse de . Le cas ou T, N T, serait tangent a
¥ en a;, ou en ¢; ne présente pas de difficulté supplémentaire). V; est donc un
chemin standard sur T; N T,, joignant deux points consécutifs d’intersection avec
8D. En particulier, c; est égal a b, ou a b;_,.

Si pour tout i, ¢; = b,, il suit de la Définition 2 et de ce qui précéde que T, N T,
est une courbe fermée simple presque bien placée par rapport a Fr,.
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Sinon, on a ¢; = b;_, pour tout i. Ceci n’est possible que si D est une couronne:
si D est un disque, soit A le lacet sur T, obtenu en allant de a; a b, sur T,N T,
dans le sens positif, de b, a a, par A,, de a, a b, sur T; N T, dans le sens positif, et
ainsi de suite jusqu’a A, de b, a a;. A, contenu dans B, est homotope a 0 dans V
et donc aussi dans T,. Mais, d’aprées ce qui précede, A est aussi homotope sur T, a
T, N T, parcouru une fois dans le sens positif, d’ou contradiction.

Le raisonnement précédent n’est pas applicable si D est une couronne.
Remarquons cependant que I'intersection de T, et de T, se compose (toujours en
supposant ¢; = b;_; pour tout i) de n courbes disjointes (formées des images des
chemins A; et V,) homotopes a 0 sur T, et aussi sur T% car T% est, comme T,,
incompressible dans V. Cela entraine d’ailleurs que T; N T, est homologue a 0 sur
T, et T, (c’est-a-dire que T, et T, sont des bouteilles de Klein, chacune séparée
par T;N T, en deux rubans de Mdbius): sinon, il existerait sur T; (resp T,) une
courbe fermée rencontrant T,(resp T;) en exactement un point, alors que cette
courbe, apres l'isotopie transformant T, en T%, serait isotope sur T, (resp T3%) a
une courbe ne rencontrant pas T, (resp T,), ce qui est impossible.

Effectuons maintenant une isotopie sur ¢’, agissant dans un voisinage arbit-
raire de 8D, de fagon a le rendre lisse. Soit y une des courbes d’intersection de T,
et T;, minimale sur T;, i.e. bordant sur T, un disque D; dont l'intérieur ne
rencontre pas T,. y borde sur T, un disque D, et, comme V est irréductible,
D,U D, borde dans V une boule B’ dont lintérieur est disjoint de T5. En
utilisant cette boule, on voit que T, est isotope a une bouteille plongée dont
I'intersection avec T; ne se compose plus que de n—1 courbes. En itérant
Popération, on arrive a “séparer” T, et T,. Il ne reste plus alors, pour rendre T,
transverse a ¥, qu’a appliquer le théoréme 1 bis a la variété obtenue en
découpant V selon T).

Ceci acheve la démonstration du Lemme 2.

Suite et fin de la démonstration du lemme 1. Considérons encore une fois les
deux situations décrites avant I’énoncé du Lemme 2. On écarte le cas évoqué plus
haut ou I'on peut “séparer” T; et T, et on suppose de plus T, transverse a ¥ le
long de 6D. On va montrer comment modifier (par isotopie) le plongement ¢ en
un plongement ¢” tel que:

(1) ¢" est en position générale par rapport a2 ¥ ou réduit selon que D est un
disque ou une couronne.

(2) L’'image de ¢" ne rencontre pas D et ne différe de T, que dans un
voisinage arbitraire U de D. :

(3) Les seuls points de contact de ¢” avec & dans U sont un centre ou un
cercle de contact, selon que D est un disque ou une couronne.

Il n’y a pas de difficulté si T, N 8D est vide. Supposons donc le contraire, c’est-
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a-dire que T, N D se compose d’un nombre fini de segments joignant deux points
distincts de 8D. On peut trouver une paramétrisation différentiable de D de la
forme:

—Si D est un disque, D = Uy,<; C, ou:

—C, est un point de int D et les C, (0=t=1) sont des cercles, avec C,=8D);

—Le point C, n’appartient pas a T, et chaque segment de T, N 8D est tangent
aux courbes C, (0<t=1) en exactement un point (situé dans int D);

—Si D est une couronne, D= U_;_,., C, ou:

—Les C, (—1=t=1) sont des cercles, avec 8D =C_, U Cy;

—Les segments de DN T, joignant C_, a C, ne sont jamais tangents aux
courbes C, (—1=t=<1);

—Les segments de D N T, joignant deux points de la méme composante de 6D
ne rencontrent pas C, et sont tangents aux courbes C, (—1=t=1) en exactement
un point (situé dans int D — C,).

On choisit maintenant, dans un voisinage ouvert U suffisamment petit de D
dans V, une métrique riemannienne telle que T, et T, soient, pour cette métrique,
normaux a ¥. Le fait que D ne porte pas d’holonomie (pour %) permet [M] de
trouver un plongement i : D X[0, 1]— U tel que:

—i(D x{t}) est contenu, pour tout ¢, dans une feuille de &, avec i(D x{0}) = D:

—Pour tout x € D, le chemin t — i(x, t) est normal a & et dirigé en sens contraire
de l'orientation transverse de & (donc BNi(D %[0, 1])= D).

Soit « une fonction de classe C~ de [0, 1] dans [4,3] dont le graphe, dessiné
ci-dessous, est plat (i.e. possede un contact d’ordre infini avec sa tangente) aux
points d’abscisses 0 et 1 et n’admet une tangente horizontale qu’au point d’abscisse
0.

¢ est isotope, a travers BUi(D x[0,3]), a2 un plongement ¢” d’image

(T,~E-ieDx[0,3))U( UG x{a(h)

O=lt|=1

qui satisfait, si U est assez petit, toutes les conditions requises.

oc(x)

i

Figure 4
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Dans la construction qui vient d’étre exposée, on a supposé T, transverse a %
le long de 8D. Cette condition n’est pas remplie dans le cas suivant: ¢ est toujours
un plongement en position générale par rapport a &, E est le voisinage adéquat
d’un centre p de type a (cf. Lemme 1, [R], page 106) et 8E, qui contient un point
de selle g, borde sur la feuille de & passant par q un disque D, avec D N T, = éD.
On se trouve dans un cas particulier de la premiere situation décrite avant
I’énoncé du Lemme 2: I’existence d’une boule B avec B=DUE et BNT,=E
résulte de I'irréductibilité de V et de I’'incompressibilité de ¢ (cf. [R,], page 50) et
8D est transverse a T,; (cf. Définition 3) et donc a T,NT,. Le Lemme 2
s’applique donc. De plus, il est possible de trouver un plongement ¢” isotope a ¢,
en position générale par rapport a %, dont I'image ne rencontre pas D et ne
differe de T5 que dans un voisinage U de D, mais qui soit transverse a % dans U:
cela résulte immédiatement du fait que q n’est pas situé sur T, par une
construction analogue a celle que ’on a exposée plus haut.

Le lecteur se convaincra que nous avons maintenant démontré tout ce qui était
nécessaire (et méme au deld) pour pouvoir énoncer l’assertion suivante: le
plongement ¢, est isotope a un plongement ¢ réduit (bien entendu au sens de la
Définition 3). Il nous reste a démontrer des analogues des Lemmes 13, 14 et 15
de [R].

Soit donc @ un plongement réduit de T, dans V et y'(1=i=<1) ses cercles de
contact. On définit comme dans [R] des immersions G' de N, dans V, et on
suppose que, pour un certain i, G' n’est pas un plongement. vy’ est alors contenu
dans un nombre fini de couronnes y' = C, < - - - = C:. (on garde les notations de
[R]). On choisit un nombre n>0 suffisamment petit pour que Gf, _, . jxc SOit
un plongement et que G*([7, — u, 7,]1x C), avec le méme abus de langage que dans
[R], ne contienne pas de cercle de contact de ¢ autre que y' (c’est possible car les
cercles ¥' sont situés sur des feuilles distinctes de F). Gy, ,,—.1xc €st un plonge-
ment dans V d’une variété (anguleuse) homéomorphe a D*x S'. Soit B _, son
image. Considérons l'intersection de B. _, avec @(T,). Tout d’abord, &(T>)N
C. _, est formé, en plus de 8C; _,, d’'un nombre fini de courbes, qui sont isotopes
aux composantes de 8C; _, (car une telle courbe est une feuille du feuilletage sans
singularité induit par ¥ sur T,, et n’est donc pas homotope a 0 sur T,). Ces
courbes sont a fibré normal trivial sur T, et séparent T, en des couronnes et des
rubans de Mobius. Le cas ol un ruban de Mobius serait inclus dans B; _, est
exclu pour la méme raison que plus haut dans la démonstration du lemme 2. Les
composantes de B. _,N@(T,) sont donc des couronnes E; (1=j=p). Nous
utilisons maintenant le fait suivant que nous ne démontrerons pas:

LEMME 3. Une couronne plongée dans D*%x S' avec comme bord {x, y} xS’
est isotope a une couronne standard vy X S*, ou v est un arc sur D? joignant x a y.
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De ce lemme, il résulte d’abord que, si j et k sont deux entiers distincts
compris entre 1 et p, 8E,; et §E, bordent sur C. _, des couronnes D; et D, qui
sont disjointes ou emboitées (i.e. D,N D, =0, D,< D, ou D, < D;). On peut
donc renuméroter les couronnes E; de telle fagon que 1=j<k=p=> D, —-D;#40
(D,=C,_). Le Lemme 3 assure que D; U E,; borde dans B’ _, un tore solide,
dont l'intérieur ne rencontre pas &(T,). Le lemme 2, ainsi que la construction
exposée apres la démonstration de celui-ci, s’appliquent ici et on peut, par une
isotopie de & agissant dans un voisinage de E,, éliminer une composante de
Iintersection B’ _,N&(T,). On effectue ensuite la méme opération pour E, et,
par des isotopies agissant successivement dans des voisinages de E,, E;, ..., E,,
on peut obtenir un plongement @' qui posséde strictement moins de cercles de
contact que ¢ si I'un des E; (1=j<p) portait plus d’'un cercle de contact, et qui
sinon en posséde autant (cf. Figures 5 et 6). Dans ce cas, le cercle de contact
v qui a remplacé y' n’est plus contenu que dans m—1 couronnes et, si une
application G’ (j# i) était un plongement, la nouvelle application qui a remplacé
G' sera encore un plongement.

On arrive finalement & un plongement &, isotope a &, réduit, avec au plus [
cercles de contact, et pour lequel les applications G* sont des plongements.

Une construction analogue a celle-ci permet de montrer que ¢, est isotope a
un plongement (noté encore ¢,) réduit, possédant au plus | cercles de contact,
pour lequel les applications G' sont des plongements, et qui admet au moins un
cercle primitif (cf. Lemme 15 de [R]).

Ce cercle primitif n’est pas de type 3B,, ni de type vy (a cause, si T, est un tore,
de I'hypothése 2 du Théoreme 2). Il reste deux cas a envisager.

Commengons par le plus simple, i.e. celui ou le cercle primitif y' est de type
%R,. dans ce cas, une des composantes de 8§C] est un cercle de contact y'. &, étant

Avant isotopies
(plongement &)

Figure 5
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v

apres isotopies
(plongement ¢,)

Figure 6

réduit au sens de la Définition 3, y’ est transverse a T, et le Lemme 2 peut
s’appliquer (avec D = C} et E = G;(D,)). Montrons (par I’absurde) que y' ne
rencontre pas T;. Si m est un point de y’ N Ty, on peut orienter T; N T, de fagon
que m soit un point g; (on reprend les notations de la démonstration du Lemme
2). De cette démonstration, il résulte que le chemin V; joignant a; a b; sur T, N T,
(dans E) est homotope sur T, a un chemin d’image contenue dans une feuille de
% t,» ce qui est en contradiction avec le fait que V; est tangent a &, a la fois en g,
et en un point situé strictement entre a; et b;. Il est maintenant facile de montrer,
par une construction analogue a celle exposée apres la démonstration du Lemme
2, que @, est isotope a un plongement réduit ne possédant plus les cercles de
contact y' et y'.

Supposons maintenant que y' est de type a. Quitte & modifier 1égérement ¢,,
on peut supposer 8C} transverse a T,. Toutes les considérations des préliminaires
(en particulier le lemme 2) s’appliquent alors et, pour remplacer @, par un plonge-
ment &, possédant au lieu d’un cercle de contact y' deux points de contact p et g
(cf. [R]) et tel que ¢,(T,) N ¢,(T,) soit bien placé par rapport a Fr,, il suffit d’'une
construction analogue a celle exposée aprés la démonstration du Lemme 2,
rendue possible par le fait suivant dont la démonstration est laissée au lecteur:
Soit D une couronne et, tracés sur D, un nombre fini de segments S; transverses a
8D et joignant deux points distincts de 8D. Soit d’autre part ¥ le feuilletage (avec
singularités) de D dessiné ci-dessous. Il existe alors un difféomorphisme ¢ de D
tel que chaque segment ¢(S;) évite p et q et soit tangent 2 ¥ en exactement un
point, situé “a I'intérieur du huit” (partie hachurée ci-dessous).

Ceci achéve la démonstration du Lemme 1 et donc du Théoréme 2.

PARTIE III
THEOREME 3. Soit & un feuilletage sur une 3-variété fermée V. Soient T, et
T, des surfaces difféomorphes a T? ou K?, plongées dans V transversalement a %.
On suppose que F induit sur T, et T, des feuilletages triviaux par cercles F 1, et Fr,
et que T, et T, se coupent transversalement selon une feuille de ces feuilletages. On
suppose enfin que T, N T, n’est pas homotope a 0 dans V. Alors, si T, et T, ont
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chacun un fibré normal non trivial dans V, ils sont isotopes dans V. Sinon, il existe
une fibration (localement triviale de fibre S*) p : V— T, ou T est difféomorphe a T?
ou K?, et un feuilletage G sur T tel que F = p*(%).

Remarque. Dire que T; a un fibré normal trivial dans V revient a dire que T; a
“deux cOtés” dans V.

Démonstration. Remarquons tout d’abord que 1, (i=1, 2) est transversale-
ment orientable et que T, N T, est a fibré normal trivial sur T, sur T,, donc sur V
et sur la feuille de & qui le contient. Il en résulte que toute feuille de &y, est a
fibré normal trivial sur T, sur V, et sur sa feuille (pour %).

Dans cette démonstration, on notera H=S'x[-1,1]x[-1,1], K=
S'x[-1,1]%[0, 1], Z=S"'x{-1, 1} x[0, 1]. = désignera la projection naturelle de
H sur [-1,1]x[-1,1] et &’ celle de K sur [—1, 1]X[O0, 1].

On peut trouver un plongement i: H—V tel que, dans I'image de i
paramétrée par (6, x,y)€ H, T, soit défini par y=0, T, par x=0, et & par
x +y =constante. On peut ensuite, pour € >0 assez petit, trouver deux plonge-
ments ¢, et ¢, de K dans V, tels que:

— o (T)=S"x{0}x[0,1] et ¢;(T;))=# pour i#j(i.e.i=3-j)

— @(K)NiH)=i({(6, x,y)e H; |y|=e€; 1 —e<|x|=1})
=¢1({(¢, a,b)e K; be[0, e]U[1—¢ 1]})

— @(K)Ni(H)=i({(6, x, y)e H; |x|=€; 1—-e=<|y|=<1})
= ¢,({(¢, a,b)e K; be[0, e]U[1-€ 1]}

— les applications 7 o i~! et 7' o 7', définies sur ¢;(K)Ni(H), ont les mémes
fibres. )

— pour i=1 et 2, ¥ induit sur K (au moyen de ¢;) un feuilletage ¥; qui est
I'image inverse par 7' d’un feuilletage ¥, sur [—1, 1]X[0, 1] transverse a {t} X
[0, 1] pour —1=t=1.

Soit C la partie de [—1,1]x[—1,1] formée des deux courbes dessinées
ci-dessous, qui sont supposées avoir un contact d’ordre infini avec leurs tangentes
a leurs extrémités.

On raccorde maintenant ¢1(Z) et @,(Z) au moyen de i(S'x C), de fagon a
obtenir une surface lisse S (non connexe), plongée dans V transversalement a &,
dont le bord est formé de quatre cercles contenus dans i(H). S se compose en fait
de deux couronnes, sauf dans le cas ou ni Ty, ni T, n’a un fibré normal trivial dans
V (S posseéde alors trois composantes, dont une sans bord).

On choisit dans V une métrique riemannienne telle que S soit normal 8 % pour
cette métrique (on suppose de plus que, dans i(H) identifié a H, cette métrique
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est obtenue par produit avec S' d’une métrique sur [—1,1jx[-1,1]), et on
considere dans i(H) la couronne A, définie par x+y=1¢et e=<x=1-¢, qui est
située dans une feuille de & et dont le bord est contenu dans celui de S. On essaie,
en utilisant les normales & &, de déplacer A, vers I’extérieur de i(H) (i.e. de fagon
que son bord se déplace sur S). On se sert pour cela de [M], de [R] (I 2, Lemme
11 et Proposition 2) et des remarques suivantes: Si y est une feuille de &, v,
bien que non contractible sur la feuille de # qui le contient, ne porte pas d’holo-
nomie pour ¥; de plus, la feuille de % qui contient y coupe une transversale
fermée a F (contenue dans T;), et donc y ne peut pas appartenir au bord d’une
composante connexe de . Le déplacement de A, ne s’arréte par conséquent que

si on arrive a 8S. Plus précisément, on peut construire une immersion F:[0, 1]X
S'x[0, 1]V telle que:

—Vte[0, 1], F, = Fyyxsixpo, 17 €St un plongement sur une couronne A, contenue
dans une feuille de &, F, ayant pour image A,.

—V(0,u)e S'x[0,1], la trajectoire t—F(t,0,u) est normale a % et
Fifo, 11xs'x{0, 13 €st un plongement dans S.

—~J8A, contient une composante de 88.

Comme ni A,, ni S ne rencontre T;U T,, I'image de F ne rencontre pas
T,UT,. 1l en résulte que F est un plongement, que F([0,1]xS'x]0,1[) ne
rencontre pas S, et que A; est la couronne définie dans i(H) par x+y=-1 et
-l+esx=-e

Si T, et T, ont chacun un fibré normal non trivial dans V, F permet de
construire une isotopie entre T; et T, dans la partie de V formée de 'union des
images de F, de ¢,, de ¢, et de i. Sinon, les @A, (0=t=1) recouvrent
entiérement S, et donc 'union des images de F, de ¢,, de ¢,, et de i est V tout
entier.

On peut alors définir sur V une relation d’équivalence dont les classes sont:

—les F{t}x S*x{u}) pour (t, u)e[0,1]%[0,1]
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—Iles ¢;(S'x{a}x{b}) pour (a,b)e[-1,1]x[0,1]
—les i(S'x{x}x{y}) pour (x,y)e[-1,1]x[-1,1].

R est compatible avec & (i.e. les classes de R sont contenues dans des feuilles
de ¥) et on peut munir V/® d’une structure de variété et d’un feuilletage 9, de
fagon que la projection p : V— V/QR satisfasse les conditions requises. T= V/R
est un tore si T, et T, ont chacun un fibré normal trivial dans V, une bouteille de
Klein sinon.

THEOREME 4. Soit & un feuilletage a feuilles orintables d’une variété fermée
V. Soient T, et T, deux surfaces difféfomorphes a T*> ou K* plongées dans V
transversalement a ¥ se coupant transversalement selon une courbe simple bien
placé par rapport a &1, et a Fr, (cf. II, Définition 1). Si T, U T, est incompressible
dans V et si F ne posséde pas de feuille compacte, T, N T, ne peut pas étre de type
C.

Démonstration. Supposons T; N T, de type c (i.e. tangent 3 & en un nombre
fini de points), et soit x un point de contact avec . x est contenu sur T; dans une
composante de Reeb R;, et appartient sur T; N T, & des intervalles ouverts I; qui
sont des composantes connexes de R; N(T; N T,). Les feuilles de &7, définissent
par intersection une involution ¢; sur I, admettant x comme point double. ¢, et
¢, coincident en fait sur I; N I,, car sinon on pourrait construire une transversale
fermée a & homotope a 0 dans V. Il en résulte que I, et I, sont contenus I'un
dans l’autre, par exemple I, < I,. Si linclusion est stricte, il y a un segment J
contenu dans une feuille | de ¥, joignant les deux extrémités de I;. Le fait que
la feuille L de & contenant SR, soit orientable entraine, par des considérations
homotopiques analogues a celles de la partie I (démonstration du Théoréme 1
bis), que R, est une couronne et non un ruban de Mdbius. 8R; borde sur L une
couronne A (contenant J). En coupant V selon T,, on voit que les intersections
de | avec I, sont toutes situées sur des feuilles compactes de ¥r,. Il y a ainsi dans
L une suite croissante de couronnes A< A;< A,< ..., dont les bords sont des
feuilles compactes de & 1,. L’union des feuilles compactes de & 1, est compacte
(cf. [H]), et donc les extrémités de I, sont contenues dans des feuilles compactes
de ¥, vers lesquelles convergent les bords des A;. Un analogue “discret” du
Lemme 11, page 116 de [R] montre I’existence d’une composante de type II pour
%, ce qui est impossible.

Considérons maintenant le cas I, = I,. Supposons pour simplifier que R, et R,
sont des couronnes (et non des rubans de Mdbius); appelons u et v les extrémités
de I, et L, et L, les feuilles de & correspondantes. Soit H, (resp. H,) le
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sous-groupe de m(L,, u) (resp. m;(L,, v)) engendré par les lacets d’image con-
tenue dans les composantes de R, et R, passant par u(resp. v). La présence de
R, et R, fournit un isomorphisme canonique ¢ : H,— H, (H, et H, sont des
groupes libres a deux générateurs; on notera a,, a, un systeme de générateurs de
H,, a; étant un lacet d’image contenue dans R®;). Si a est un élément de H,, ¥
permet de lui associer par holonomie un germe de difféomorphisme de I, au
voisinage de u, et aussi, par I'intermédiaire de ¢, un germe de difféomorphisme de
I, au voisinage de v. On remarque que ces germes sont conjugués par I'involution
¢1 (= ¢2).

D’aprés la Proposition I.1.1 de la thése de Moussu (voir référence [M]), il
existe un élément h € H, dont I’holonomie posseéde une suite u, de points fixes
convergeant vers u (u, €I;). En choisissant convenablement un tel h (en par-
ticulier en lui imposant d’étre de longueur minimale en tant que mot en a, et a,),
on peut relever un lacet en u (d’image contenue dans dR, U 8R,) représentant h
en une courbe simple (anguleuse) passant par u, et formée de morceaux de
feuilles de R, et R,. Le méme procédé (appliqué a ¢(h)) permet d’obtenir de
méme une courbe passant par ¢,(u,), et ces deux courbes bordent sur la feuille de
# qui les contient une couronne A, (car toute feuille de & est orientable et
incompressible dans V). L’existence de cette suite de couronnes dont chaque bord
converge vers une courbe (non nécessairement simple) contenue dans 6R; U 6R,,
permet (voir [GP]) de conclure a I’existence dans V d’une mesure transverse p
invariante par holonomie, dont le support rencontre L, et L,. Considérons autour
de u un petit intervalle sur T, NT,. Il est facile de voir que la mesure pu,
considérée sur ce segment, se réduit a une masse (non nulle) concentrée en u, ce
qui entraine que L, est une feuille compacte de &, d’ou contradiction. Ceci
achéve la démonstration du Théoréme 4.

PARTIE IV

Rappelons qu’une C'-isotopie d’un feuilletage est une conjugaison par un
C'-difféomorphisme isotope a I'identité.

THEOREME 5. Soit p: V—3 un fibré de fibre S' et de base une surface 3
compacte sans bord (non nécessairement orientable). Soit F un feuilletage transver-
salement orientable de V, de classe C' (2=<r=w), dont toutes les feuilles sont
orientables, mais sans feuille compacte. Alors ¥ est C'-isotope a un feuilletage
transverse aux fibres de p, @ moins que ¥ ne soit I’image inverse par une fibration de
V sur T? d’un feuilletage de T? (sans feuille compacte).

Démonstration. Supposons d’abord 3 = S2. V est alors difféomorphe a $*>x S
(car sinon 7,V est fini et & posseéde une feuille torique) et F, feuilletage trivial
par sphéres, est isotope a un feuilletage transverse aux fibres. Le cas 3 = P? se
traite de fagon analogue.
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Supposons donc I # S, P2 1l est alors possible de découper 3 selon un
systtme de courbes de fagon a obtenir une variété homéomorphe a3 D?. Plus
précisément, on découpe ¥ selon un 1-complexe fini S formé d’une part de
couples (a;, $B;) de courbes simples se coupant en un point unique §; et d’autre
part de segments vy, joignant deux points §; (les §; sont les seuls sommets de S).
Le cas ou 3 est orientable est schématisé ci-dessous. Dans le cas non-orientable,
le lecteur ‘“‘dessinera” lui-méme un complexe convenable dont le nombre de
sommets est la partie entiére de g/2, g étant le genre de 3.

Dans le but d’appliquer les théorémes démontrés précédemment, remarquons
que, comme tout feuilletage de K? posséde une feuille compacte, ¥ ne peut pas
étre I'image inverse (par une fibration de V sur K?) d’un feuilletage de K>. Si
donc ¥ n’est pas 'image inverse d’un feuilletage de T, les Théorémes 2, 3 et 4
permettent d’effectuer une isotopie sur ¥ de fagon que les surfaces p~'(a;),
p~(%B;) et les courbes p~'(8,) soient transverses au feuilletage. Le Théoréme 1.2
de [R] sur les plongements de couronnes permet de plus de supposer les p~'(y;)
transverses a F.

Le découpage de 3 selon S et de V selon p~'(S) donne naissance, apres
arrondissement, a une variété V' difféomorphe 4 D*>x S', munie d’une projection
p’ sur D? (obtenue a partir de p), et d’un feuilletage F' transverse a 8§V’ : (V, ¥)
s’obtient a partir de (V', ') par des identifications sur §V.

Considérons le feuilletage 4 induit par &' sur le tore V', Montrons qu’on
peut supposer (par une isotopie de F) que les feuilles de % sont des fibres de p’ ou
bien transverses aux fibres de p’: comme les fibres p~'(8;) sont transverses a %, il
existe un “difféomorphisme” de p~'(S) (qui n’est pas tout a fait une variété), dont
le support ne rencontre pas les p~'(§;), isotope a I'identité (relativement a "union
des p~'(§;)), transformant le feuilletage induit par ¥ sur p~*(S) en un feuilletage
dont les feuilles sont des fibres de p ou transverses aux fibres de p. Ce
‘“difféomorphisme” se prolonge a V en le difféomorphisme cherché.

% admet des transversales fermées istopes aux fibres de p’, mais pas de
transversale homotope & 0 dans V' (cf. [N]). Deux cas sont ainsi possibles:
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(a) %G est un feuilletage trivial par cercles homotopes a 0 dans V'. ' est alors
un feuilletage par disques et est C'-isotope (relativement & §V’) & un feuilletage
transverse aux fibres de p’ (car tout difféomorphisme de D?*XS' induisant
I’identité sur le bord est isotope a I’identité). Cela signifie que & est isotope a un
feuilletage transverse aux fibres de p.

(b) % possede au moins une composante de Reeb, les feuilles compactes de 4
étant des fibres de p’. On va alors montrer que toute feuille compacte de 4 est
contenue dans le bord d’une feuille compacte de ¥ difféomorphe & S*' X L

D’abord, toute feuille compacte de ¥’ est une couronne: d’aprés [N], son
groupe fondamental s’identifie 2 un sous-groupe de m(V')=Z. Les cas d’une
feuille compacte difféomorphe a S* ou D? étant exclus (le premier par stabilité de
Reeb, le second parce qu’une feuille compacte de % ne peut pas border de disque
dans V'), il ne reste que la possibilité d’'une couronne.

Soit maintenant y une feuille compacte de ¥4, isolée au moins d’un c6té dans
I’ensemble des feuilles compactes de % (i.e. I'holonomie de y est contractante au
moins d’un coté). Alors la feuille L de %’ contenant y n’est pas coupée par une
transversale fermée (et donc est compacte): s’il existe une transversale fermée
coupant L, il en existe une qui rencontre vy en un point x, et est contenue dans 8V’
au voisinage de x. L’hypothese faite sur y permet alors de construire une
transversale coupant L et homotope a 0 dans V' (en “rajoutant” a la transversale
de départ un certain nombre de ‘““‘tours” sur 8V’ au voisinage de ), ce qui est
impossible.

Une feuille compacte de ¥ a holonomie (d’un cdté) non triviale mais non
contractante est limite de feuilles compactes de 9 a holonomie contractante et est
donc située sur une feuille compacte de &’ (car I'union des feuilles compactes de
F' est compacte, cf. [H]). Enfin, une feuille compacte de ¢ a holonomie triviale
est aussi située sur une feuille compacte de &', par stabilité (cf. [M]).

Ceci achéve de montrer que toute feuille compacte de ¢ borde dans V' une
feuille de &' qui est une couronne. Ces couronnes sont plongées dans V' de fagon
“standard” et on peut supposer qu’elles sont réunion de fibres de p'.

Soit q un point de 3 tel que p~'(q) soit transverse 3 . En enlevant & 3 un
petit disque ouvert autour de g, on obtient une surface a bord qui a le type
d’homotopie d’un bouquet de cercles et au-dessus de laquelle p admet une section

X, que 'on peut supposer en position générale par rapport a . & va induire sur
X un feuilletage ¥ (avec singularités) transverse 2 8§X et de classe au moins CZ.

L’union des feuilles compaxtes de %' est un compact de V' qui, apres identifications
sur 8V’, fournit un compact de V. L’intersection de ce compact avec X est un
ensemble fermé invariant de &, contenu dans int X, et qui ne contient ni
singularité de ¥, ni feuille compacte de ¥ (car & n’a pas de feuille torique). Il y a
contradiction avec les résultats de [S], ce qui prouve le théoreme.
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Soit toujours p: V— 3 un fibré de fibre S' et supposons V orientable. Le
fibré est alors classifié par sa classe d’Euler que 'on notera X(p) et que I’'on
considérera, par dualité de Poincaré, comme un entier relatif. Wood a montré [W]
le théoréme suivant:

THEOREME. Soit p: V— 3 un fibré en cercles sur une surface compacte sans
bord 3, avec V orientable. V admet un feuilletage (différentiable) transverse aux
fibres de p si et seulement si | X(p)|=sup (0, —X(3)).

Remarque. Contrairement a notre convention, le feuilletage est ici transver-
salement orientable si et seulement si 3 est orientable (car une orientation
transverse du feuilletage équivaut a une orientation des fibres de p).

On peut donc énoncer le

COROLLAIRE. Soit p: V—3 un fibré en cercles sur une surface compacte
sans bord différente de T*, avec V orientable. Si 3 est non orientable, ou si
| X(p)| > sup (0, —X(3)), tout feuilletage transversalement orientable de class C? de
V posséde une feuille compacte.

Remarque. Dans le cas o X est S%, P? ou K?, ce corollaire peut se déduire de
[P]. Si 3=8% et si X(p)=0, V est difféomorphe 2 S*x S' et tout feuilletage
(transversalement orientable de classe C?) de V posséde une feuille compacte,
difféomorphe a2 T? ou S>.
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