Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 53 (1978)

Artikel: A note on the realizaiton of distances within sets in euclidean space.
Autor: Larman, D.G.

DOl: https://doi.org/10.5169/seals-40784

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-40784
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 53 (1978) 529-535 Birkhduser Verlag, Basel

A note on the realization of distances
within sets in euclidean space

D. G. LARMAN

Dedicated to Professor H. Hadwiger on his seventieth birthday

In 1944 and 1945 H. Hadwiger [1, 2] proved the well known theorem.

THEOREM 1. Let E" be covered by n+1 closed sets. Then there is one of the
sets within which all distances are realized.

In 1972, D. G. Larman and C. A. Rogers [3] introduced the concept of critical
distance and a critical number for a finite configuration and used it to give a
considerable improvement of Theorem 1. The principal result of [3] was

THEOREM 2. If E" is covered by less than ¢n(n— 1) sets then there is a set of
the covering within which all distances are realized.

The purpose of this note is to give a configuration which leads to

THEOREM 3. If E" is covered by less than ts5665(n —1)(n —2)(n —3) sets then
there is a set of the covering within which all distances are realized.

A considerable generalization of this configuration leads me to make the
conjecture:

CONJECTURE. If E" is covered by less than (3)*¥* sets then there is a set of
the covering within which all distances are realized.

Using the theory of configurations developed in [3], Theorem 3 follows from
the following theorem.

THEOREM 4. Let A be the (g) distinct 5-tuples chosen from n objects

1,...,n. Let B be a subset of A such that no two 5-tuples in B overlap in exactly
two objects. Then the cardinality |B| of B is at most 1485n(n—1).
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530 D. G. LARMAN

We require the following three lemmas.

LEMMA 1 (Hilton and Milner). Let A,, ..., A, be sets, each with k distinct
elements chosen from the set 1,2, ..., n. Suppose that

ANA#J, l=si<j=r

Then, provided 2k =n,

r<1+(n—l)_(n—k—1)
h k-1 k—1 /)
Proof. See A.J. W. Hilton and E. C. Milner [4].

LEMMA 2. Let A,,...,A,; B,,..., B, be sets, each with 2 elements, chosen
from the set 1, ..., n such that

ANB#J, l=i=r, l1=sj=s.
Then either
min (r, s)<3

or

N ANN B#J.

i=1 i=1

Proof. We assume that min (r, s)=4. Suppose first that there are two non-
overlapping members of A,,..., A, say A,, A,. Since each of B,,..., B, must
meet each of A;, A,, A;; s<3. Consequently, every two members of A,,..., A,
overlap and similarly every two members of B, ..., B, overlap. So, using lemma
1 with k =2, and noting that r+s>3,

N ANN B#*QD

i=1 j=1

as required.
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LEMMA 3. Let 12345 be a 5 tuple and let abcd be four distinct numbers
amongst 12345. Let C(a, b, ¢), C(a, b, d) be two families of 5-tuples, each with at
least four members, chosen from the n numbers 1,...,n. If each member of
C(a, b, c) meets each member of C(a, b,d) in at least three numbers and each
member of C(a, b, c), C(a, b, d) meets 12345 in precisely (a, b, ¢), (a, b, d) respec-
tively then there exists e#1,2,3,4,5 such that e belongs to each member of
C(a, b, c)UC(a, b, d).

Proof. This is an immediate consequence of Lemma 2.

Proof of Theorem 4. Letb=b,b,b;b,bs be a member of B. We shall say that b
is good (with respect to B) if there exists a two tuple within b which is contained
in at most 54 members of B. Otherwise b is bad (with respect to B).

The strategy in proving the theorem is to associate every member b of B with
a good member ¢(b) of B in such a way that no good member of B has more than
55 members of B associated with it.

In defining the mapping ¢ it will be enough to suppose that the 5-tuple
a=12345 is a member of B and define ¢(a).

If a is good then ¢(a) =a. (1)

Otherwise a is bad.

Suppose first that there are at least 46 5-tuples which overlap a in 4 numbers.
Then there are at least ten S5-tuples which (say) have the numbers 1234 in
common with a. We list ten such 5-tuples 1234k with k as close to S in the
ordering of 1, ..., n as possible. Assume, without loss of generality, that these ten
5-tuples are 12346, 12347, ..., 1234(15).

If one of these 5-tuples is good then we choose one such 5-tuple say 1234k to

be ¢(a).

5
The 5-tuple 1234k receives at most 10( 4) =50

associations in this way. (2)

Otherwise each of
12345, 12346, ..., 1234(15)

are bad. For 5 <k =15, consider the 5-tuple 1234k. There are at least 54 5-tuples
of B which contain the two tuple 4k. Since each of these 5-tuples must overlap
1234k, and hence each of

12345,12346, ..., 1234(15)



532 D. G. LARMAN

in at least three numbers, they each must contain at least two of the numbers 123.
So there exists at least 18 of these 5-tuples, forming a set C% and numbers
a(k), B(k), chosen from 123, such that each member of C% contains a(k)B(k)4k.
We may suppose a(k)B(k)=12 for four values of k. Similarly, working with the
two tuple 3k, there exists a set C5 and numbers y(k)8(k), chosen from 124, such
that each member of C% contains y(k)8(k)3k. Consequently there exists two
values of k, say 5,6 with a(5)B(b)=a(6)B(6)=12 and y(5)8(5) = y(6)8(6).

Suppose, without loss of generality that every member of C% contains 124k
and every member of C% contains 123k, k=35, 6.

The 4 tuples 1245, 1236 only have two numbers 12 in common. Apart from
12345, 12456, 12356 the members of C; and C$ contain one number chosen

from 7, ..., n. Further for these members the numbers in 7, ..., n must be the
same throughout. Consequently C; and C§ have cardinality at most 4 which is
impossible.

So now we may suppose that there are at most 45 S-tuples of B which overlap
a in 4 numbers. Since a is bad there will exist, for each two tuple ij, 1 =i<j=<35, at
least ten 5 tuples in B which contain ij and which overlap a in exactly three
numbers.

Therefore, there are at least four such 5-tuples containing the two tuple 12 and
a fixed third number of a, 3 say. Let C, be the set of all 5-tuples in B which meet
a in exactly 123. Similarly there are at least four such 5-tuples containing the two
tuple 45 and a fixed third number, 3 say. Let C, be the set of all 5-tuples in B
which meet a in exactly 345.

Notice that no members of the families C,, C, contain any of the two tuples
14, 15, 24, 25. The two tuple 15 can be accounted for in three different ways i.e.
there exists a collection of at least four 5-tuples in B which meet a in precisely one
of

(1) 125 (i) 135 (iii) 145.

We analyse these three cases in some detail.

(1) 125. Let C; denote all the 5-tuples of B which contain 125 and which
overlap a in precisely 125. Then C; has at least four members. In this case the
triples 123 and 125 share two numbers 12 and so, using Lemma 3, there must be
another number, 6 say, such that each of the 5-tuples in C; and C; also contain 6.

No member of C,, C,, C; contains either of the two tuples 14,24. The two
tuple 14 can be accounted for in three different ways, i.e. there exists a collection
C,(Cs or Cg) of at least four 5-tuples in B which meet a in precisely one of the
triples (a) 124, (b) 134, (c) 145.

(a) 124. Applying Lemma 3 to C, and C,, it follows that each member of C,
contains 6.
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(b) 134. Applying Lemma 3 to C, and Cs it follows that each member of Cs
also contains 6. Applying Lemma 3 to C, and C; it follows that every member of
the families C, and Cs must share a common number outside a. As Cs contains at
least four members, this number must be 6. Hence every member of C, contains
1236 and every member of C, contains 3456. So there must exist a member of C,
and a member of C, which meet precisely in two tuple 36, which is impossible. So
case (b) cannot arise.

(c) 145. Applying Lemma 3 to C; and Cg it follows that each member of Cg
contains 6. Applying Lemma 3 to C, and C it follows that every member of the
families C, and Cg must share a common number outside a. As C, contains at
least four members, this number must be 6. So again there must exist a member
of C, and a member of C, which meet precisely in the two tuple 36, which is
impossible. So case (c) cannot arise.

(ii) 135. Let C, denote all the 5-tuples in B which contain 135 and which
overlap a in precisely 135. Applying Lemma 3 to C, and C,, it follows that every
member of C; and C, share a common number, 6 say, outside a. Applying
Lemma 3 to C, and G, it follows that every member of C, and C, share a
common number outside a. As C, has at least four members, this number must be
6. So again there must exist a member of C; and a member of C, which overlap in
precisely 36, which is impossible. So case (ii) cannot arise.

(iii) This case is exactly the same as (i) with 1 and 5, 2 and 4 interchanged.
Consequently the only possible configuration is as in (i) a. i.e. there exists a
number 6 say so that every 5-tuple in C, and Cg contains 6, where C; is the family
of S-tuples in B, with at least four members, which meet a in precisely 145. Also
there exists a family C, of S5-tuples in B, with at least four members, each of which
contains 6 and meets a in precisely 245.

From these considerations it follows that, up to a permutation of the numbers
12345, there is only one possible configuration which can arise, namely that of
case (i) a.

Hence we may assume that there exists four families C,, C,, C;, C, in B, each
with at least four members, and each meeting a in precisely three numbers. There
is also a number, 6 say, such that

1236 belongs to x for each x in C,

345 belongs to x for each x in C,
1256 belongs to x for each x in C;
1246 belongs to x for each x in C,.

We also suppose that C,, C,, C;, C, are maximal.
We shall show that every member of C,, C; and C, is good. Because of the
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symmetry, it suffices to show that a member of C,, say 12367 is good. Since C;
has at least four members, we suppose that the four membered set D

12367, 12368, 12369, 1236(10)

is in C;.

If another 5-tuple x = x;X,X3X,X5 in B contains the two tuple 17 then, because
of D, x must contain at least two of the numbers 236. This yields three cases
according to whether x contains

(a) 23 (b) 26 (c) 36.

(a) Here x contains 1237 and so, considering the families C;, C,, x must be
12367. So the two tuple 17 is in only one member of B and hence 12367 is good.

(b) Here x contains 1267 and so, considering a, x must contain one of 345. So
the two tuple 17 is in at most four members of B and hence 12367 is good.

(c) Here x contains 1367 and so, considering the families C,, C,, x must be
12367. So the two tuple 17 is in only one member of B and hence 12367 is good.

Hence 12367 is good as are all the members of C,, C;, C,. Define ¢(a) to be
one of the members of C,, Cs;, C,, ¢(a) = 12367 say. This completes the definition
of ¢.

We next look at the number of members of B which could be assigned to
12367 in this way.

Suppose that b= b,b,b;b,bs is such a 5-tuple. Then it may be supposed that
b.b,b; are amongst 12367 and that there exists another number b, amongst
12367 but different from b,b,b;b,bs so that there exists four families
D,, D,, D;, D,, in B, each with at least four members, and each meeting b in
precisely three numbers. Further

b,b,b;bs belongs to x for each x in D,
bsb,bs belongs to x for each x in D,

b,b,b,be belongs to x for each x in D,
b,b,b,bs belongs to x for each x in D,.

If b contains only one of 123 then b contains 67. However, b would then meet
some member of C; in exactly two numbers, which is impossible.

If b contains 123 but not 6 then, using C; and C,, b=a. If b contains 1236
then b is in C,; and hence b is good. So ¢(b)=b# 12367.

If b contains 12 but not 3 then, using C,, b contains 126. Also, using a, b
contains at least one of 4 and 5. If b contains 4 and 5 then b=12456. If b
contains 4 but not 5 then b is in C, and if b contains 5 but not 4 then b is in C;. In
either case b is good and so ¢(b)=b# 12367.
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If b contains 13 but not 2 then, using C,, b contains 136. Using Cj;, C,, it
follows that b =13456.

If b contains 23 but not 1 then, using C,, b contains 236. Using C;, C,,
b =23456.

Consequently at most four 5-tuples of B are associated
with 12367 in this manner. (3)

Combining (1), (2) and (3), it follows that for each good 5-tuple b of B, ¢ '(b)
has at most 55 members. Each good 5-tuple b of B contains a two tuple which

occurs in at most 54 members of B. Since it is only possible to choose (n) two

tuples from the numbers 12 - - - n it follows that
|B|=1485n(n—1) as required.

Remarks. We may construct a suitable B in Theorem 4 by insisting that each
member of B contains 123 and the other two numbers making up the 5-tuple are
chosen in 4, ..., n. This yields a set B with |B|=3(n—4)(n—5) members which,
using Theorem 4, is essentially best possible.

Generalizing this situation, take 4k numbers 1,2, ...,4k and consider all 2k
tuples A chosen from these 4k numbers. Consider a subset B of A such that no
two members of B overlap in exactly k numbers. It seems reasonable to suppose
that B will have as many members as possible when B is constructed by insisting
that every member of B contains 12 - k+1 and the other k—1 numbers are
chosen amongst the numbers k+2, ..., 4k. If this were so then an application of
Stirling’s formula would prove the conjecture mentioned in the introduction.
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