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Gitterzahlen und innere Volumina

JÔRG M. WlLLS

Hugo Hadwiger zum 70. Geburtstag gewidmet

1. Einleitung

In der vorliegenden Arbeit werden diskrete Funktionale untersucht, die bei
Gitterpunktproblemen auftreten und die diskrete Analoga zu Minkowskis Quer-
maBintegralen darstellen. Wir beginnen mit einer ausfûhrlichen Einleitung, die

zugleich Hadwigers Beitrâge zu diesem Themenkreis wùrdigen soll.
Bezeichnungen und Definitionen sind, soweit nicht anders angegeben, dem

Standardwerk von Hadwiger [7] entnommen. Zu einem konvexen Kôrper K des

d-dimensionalen euklidischen Raumes Ed sei G(K) card (KHZd) seine Gitter-
punktanzahl. Abschâtzungen von G durch stetige Funktionale wie das Volumen
V sind fur spezielle Klassen konvexer Kôrper lange bekannt. So gilt fur zentral-
symmetrische konvexe Kôrper der Satz von Minkowski-van der Corput ([16] S.

44)

([jc] grôBte ganze Zahl <x), der den Minkowskischen Fundamentalsatz aus der
Géométrie der Zahlen als Spezialfall enthâlt und eine untere Schranke fur G gibt.
Eine obère Schranke liefert nach Blichfeldt ([16] S. 55)

att(KnZd) Ed3>G(K)<dl V(K) + d.

Bei beliebigen konvexen Kôrpern K^Ed werden neben V weitere stetige
Funktionale wie z.B. die Oberflâche F benôtigt. Fur die untere Schranke von G
wurde das Problem nach Zwischenergebnissen anderer Autoren [5], [9], [25],
[32], [33] (s. auch [35]) von Hadwiger [10], [3] vollstândig gelôst mit
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Durch die einfache und dimensionsfreie Formulierung sowie den engen Zusam-
menhang zwischen den wichtigsten stetigen und diskreten Funktionalen konvexer
Kôrper und der Anwendbarkeit auf Ùberdeckungsprobleme und den keineswegs
einfachen Beweis gehôrt Hadwigers Gitterpunktsatz zu den schônsten Ergebnis-
sen der Konvex-Geometrie.

Zur oberen Abschâtzung von G bei beliebigen konvexen Kôrpern genùgen
Volumen und Oberflâche alleine nicht. Bezeichnen wie ùblich Wt(K) die Min-
kowskischen QuermaBintegrale und (ot die Volumina der j-dimensionale
Einheitskugel, so seien

Wd_t(K) î 0, l,...,

die von McMullen [18] eingefùhrten inneren Volumina, die neben den bekannten
Eigenschaften der Wl noch die der Dimensionsinvarianz besitzen. Insbesondere
ist

Vd=V, Vd_1 |F und V0=l.

Ist W(K) If,0 Vt(K), so lâBt sich eine 1971 [31] aufgestellte Vermutung fur die
obère Schranke von G kurz so formulieren:

Ist Qd die Menge der (auch niederdimensionalen) achsenorientierten Quader
<^Ed, deren Ecken Gitterpunkte sind,

so gilt: QeQdd> G(Q) W(Q)

d.h. die Vermutung ist im Fall ihrer Gùltigkeit bestmôglich. Fur d 2 ist das

Ergebnis schon lange bekannt und wiederholt bewiesen worden, zuerst wohl von
Pick [23].

Fur d 3 wurde die Vermutung von Overhagen [22] bewiesen, Spezialfâlle
davon schon vorher von Hadwiger und Wills [12]. Fur Rotationskôrper mit d<6
wurde sie von Hadwiger und Wills [13] bewiesen, numerisch sogar bis d^20, bis
Betke [1] zeigte, da8 dièse Méthode bei groBen Dimensionen versagt. Betke
bewies (unpubliz.) die Vermutung fur Gitterzonotope. Bokowski [2] zeigte fur

G(K)< V(K^<od1/dS) (S: Einheitskugel).
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Dies ist wegen

[2] eine etwas schwàchere Abschâtzung als G < W, aus der mit

([7] S. 278)

(B: mittlere Breite)

und B<D

/ D \d
G(K) < û>i/d—4-1 (D : Durchmesser)

\ 2 /

folgen. Auch dièse Ungleichungen sind fur d>5 unbewiesen. Nach Hadwiger
[11] gestattet W die Integraldarstellung

wobei r(x, K) der Abstand des Punktes x von K ist. Darùber hinaus entdeckte
Hadwiger [11] weitere Eigenschaften des Funktionals W, die es unabhângig von
seiner Einfiihrung ùber die Gitterpunktanzahl fur die Konvex-Geometrie intéressant

macht. Z.B. kann die Integraldarstellung von W als Ausgangspunkt fur
verschiedene Système von Funktionalen dienen, die eine Basis im Raum der
additiven, bewegungsinvarianten und stetigen Funktionale bilden (vgl. [4]).

Fur die Anzahl der Gitterpunkte auf dem Rand K von K:G(K)
card(!CnZd) vermutete Hadwiger 1972:

X Vt(K).
1=1

d—i ungerade

Fur d 2 erhàlt man G(K)< U(K) (U: Um fang), fur d 3:
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ein zuerst von Ehrhart [6] bewiesenes Ergebnis, das unabhângig davon von
McMullen und Wills [20] in etwas schàrferer Form

bewiesen wurde (links steht die Anzahl der Gitterpunkte in einer 1/V2 dicken
Randschicht von K). Fur d>A ist Hadwigers Vermutung nur in Spezialfâllen
bewiesen [22]. Auch hier gilt Gleichheit fur Q e Qd.

Bei Untersuchungen zu den Funktionalen G und W entwickelte McMullen
[18], [19] eine auf Ergebnissen von Hadwiger [7], Ehrhart [6], MacDonald [17],
Reeve [24] und Shephard [27], [28], [29] aufbauende Théorie, die Ergebnisse der

kombinatorischen, der diskreten und der Konvex-Geometrie umfaBt und teilweise
einen gemeinsamen Aufbau dieser drei Bereiche ermôglicht. Ein bedeutendes

Ergebnis dieser Théorie, das schon Ehrhart (teilweise) und MacDonald erhalten
hatten und das unabhângig davon auch von D. N. Bernstein [34] gefunden wurde,
ist der Satz, daB die Gitterpunktanzahl (und andere diskrete Funktionale) eine
Théorie der gemischten Volumina besitzen. Insbesondere gilt:

Ist 9$d die Menge der eigentlichen und uneigentlichen Gitterpolytope des Ed,

d.h. der konvexen Hùllen endlich vieler Gitterpunkte, so gilt fur jedes Pe$d und

n >: 0 ganz:

G(nP)= £ G,(P)nl.
i=0

Ist G(P) ZgePnzd «(g, PX«(g, P): Winkel von g bezûglich P) die von Hadwiger [8]
eingefùhrte und von Reeve [24] und MacDonald [17] weiter untersuchte

gewogene Gitterpunktanzahl, so giit nach MacDonald fur Pe^d und n >0 ganz

d

G(nP)= X G,(P)nl.

d—i gerade

Die Untersuchung der diskreten Funktionale Gt und Gt und der Vergleich mit
den analogen stetigen Funktionalen Vj ist das Thema der Arbeit. AbschlieBend
môchte ich Herrn U. Betke und Herrn P. McMullen fur etliche
Verbesserungsvorschlâge, und Herrn P. M. Gruber fur einen Literaturhinweis
danken.

2. Ergebnisse

Die meist einfachen, teils bekannten, teils neuen Eigenschaften der G, und G,

sind im folgenden Satz zusammengestellt:
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Satz. Fur die auf der Menge ?$d der konvexen Gitterpolytope des Ed erklàrîen
Funktionale G, und G, gilt mit P,Qe($d:

(a) Additivitât: Mit PU(?€$d ist

(b) Einfache Additivitât: Mit PUQe^d und dim (PDQ)<d ist

GI(PUO) 0,(^ + 0,(0)

(c) Translationsinvarianz: Mit te7Ld ist

Gt(P+t) G^P), Gt(P+t) Gt(P)

(d) Homogenitàt: Mit n > 0 ganz ist

Gx{nP) n*Gt(P), Ô

(e) Dimensionsinvarianz: Die Gt sind dimensionsinvarianU d.h. unabhàngig
von dem Raum, in dem Pe9$d eingebettet ist

(f) Die G, sind nicht dimensionsinvariant.
(g) Beschrànktheit und Rationalitàt:

Gt{P) I cirG(rP), GXP) t êirG(rP) i 1,..., d
r=0 r=0

wobei die cir, cir rationale Zahlen sind, die nur von d und nicht von P abhàngen.
(h) Gd Vd VundG0=V0=l

(i) Fur Pe^d eigentlich ist Gd Vd, Go 0 und Gt 0, falls d-i ungerade.

(j) 0<Gd.1(P) ^r-^i^^Vd_1(P)

wobei X' ùber aile Facetten f von P làuft und 4d_i(/) die Déterminante des durai
aff / induzierten Gitters ist.

(k) 0 < Gd.2(P) - Gd.2{P) X"y(f9 P)y^^ Vd_2(P)

wobei S" ùber aile {d-2)-Seiten f von P làuft, 4d_2(/) die Déterminante des durai
aff / induzierten Gitters ist und y(f, P) der normierte AuRenwinkel von f beziïglich
P.
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(1) Spezielle Abbildungsinvarianz: Ist u:P-* P1 unimodulare Gitter~

Transformation, so ist G^P') G,(P) i 0,\,...,d.
(m) Fur QeQd gilt G,(Q) V,(Q) i 0,..., d.

(n) Fur QeQd eigentlich gilt Gd(Q) V(Q) und G,(Q) 0 i 0,1,..., d -1.
(o) t ô,(P)< t G,(P) fùrdimP d

1=1 1=0
d—i gerade d—i gerade

(P) I Gt(P)* I Gt(P) fur dim P=d
1=0 1=0

d—i ungerade d—i gerade

(q) Starke Nicht-Monotonie: Es gibt hein a>l mit: Pc Q=>

(r) Simultané Nicht-Monotonie: Es gibt P,QeS#d mit PaQ und Gl(P)>
G,(O) fur mehr als ein i e [1, d -1].

(s) Indefinitheit: Es gibt eine Folge Pqe?$d(d>3) mit G^Pq)-*-00 und

GUPq)-»-00 fur ein ie[l,d-2].
(t) Es gibt ein eigentliches Pg$3 mit G^P^O.
(u) Es gibt ein Pe$d(d>3) mit

(v) Es gibf zu /edcm /e [1, d -1] ciné Fo/ge uneigentlicher Pq e ^d mit
G,(Pq)^oo 1 1,...,;

(w) Es gibf e/ne Fo/gc Pq e ^d mit

und Gd(Pq)-+<*>.
(x) Es giftr eine Folge Pqe^d mit Sf=o(-l)d-'G,(P<]) 0 und

(y) Fiir Pe^d eigentlich ist

(z) Fur Pe^d gi/f G(P)<| d V(P) und die Schranke ist optimal.
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Beweis. (a)-(j) sind schon in [18], [19] und vorangehenden Arbeiten bewiesen

worden. Insbesondere folgt (g) durch Auflôsen des Gleichungssystems

i=0

(k) Nach [18] S. 256 ist

wobei die X ùber aile Seiten / von P lâuft y(/, P) der AuBenwinkel von /
bezûglich P ist, und Gif) jeweils bezùglich aflf / gemessen wird. Koeffizienten-
vergleich liefert wegen der Homogenitât der G, und Gt :

Da auch die Gt{f) in aff / gemessen werden, ist Gt(/) 0 fur dim/<* und fur
dim/^f mod2. Also folgt fur i — d-\ das schon von Ehrhart und McMullen
bewiesene (j).

Fur i d-2 folgt die Gleichung in (k).
Beachtet man 4d_2(/)>l undX"y(f9 P)Vd_2(/)= Vd_2(P) so ist (k) bewiesen.
Man kann analog fur d-3 usw.fortfahren, erhâlt jedoch keine ùbersichtlichen

Relationen mehr.
(1) Ist m unimodulare Gittertransformation, so werden Gitterpolytope in

volumengleiche Gitterpolytope ùberfiïhrt.
Fur ein geZd und ein Pe^d gilt

Also

G(nP)=G(nP') fur n =0,1,2,...

Daraus folgt (1).
(m) Sei QeQd und o.E. dimO d. Ist qteN Kantenlânge von Q in xr

Richtung, so gilt: G(Q) nf=i (^ + 1)- Ist Kt eine Kante in Xj-Richtung, so ist

qt + l. Nach Hadwiger [11] gilt fur totalorthogonale

W(A+B)=W(A)W(B)

also ist:
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Wird O durch nQ, n > 0 ganz, ersetzt, so folgt der erste Teil von (m) wegen
der Homogenitât der G, und Vt durch Koeffizientenvergleich.

(n) Fur den d-dimensionalen Einheitswùrfel Cd gilt: G(Cd) V(Cd) 1. Mit
G, V einfach additiv folgt fur QeQd mit dim Q d: G(Q) V(Q). Mit n>0
ganz, Gd V und der Homogenitât der G, folgt G,(O) 0 fur i<d. (Folgt auch

aus [19], Lemma 5).
Vor dem Beweis von (o) bis (z) werden ein paar einfache Definitionen

benôtigt: Zu Pe^d sei G°(P) card (relintP H Zd). Nach Ehrhart [6] und Mac-
Donald [17] ist

(Ehrhartsches Reziprozitâtsgesetz).

Ist weiter

und

G(P) k(G(P)-G°(P))

so folgt

G(P)= t G«(p)
1=0

d—i gerade

und

G(P)= t G*(p)
i=0

d—i ungerade

Man beachte, daB G die halbe Gitterpunktanzahl des Randes angibt, also:

G(P) %G(P). Mit den G-Funktionalen werden jetzt 0) bis x) bewiesen:
(o) G zâhlt jeden Randpunkt von P mit 5; G jeden Randpunkt g mit 8(g, P)

wobei B der Innenwinkel von g bezùglich P ist, also B^|.
(p) folgt aus G°(P)^0.
(q) Sei P {(x1?..., xd) ||x,|< <j, i 1,..., d}, also nach (m):

Vd_1(P)=Gd_1(P)
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Sei Q conv{P,±(q + l,...,0),...,±(0,...,q + l)}, also PaQ. Da aile Facet-

ten von Q einander gleich sind, folgt mit (j):

(q2+ l)-1/2(q2+1)1/2 - Vd^(P) - Gd^{P)

(r) Sei d 3 (fur d > 3 lassen sich analoge P, Q konstruieren) Mit A
{(0, 0,0), (1,0,0), (0,1,0), (1,1, 0)} ist P conv {A, A + (0,0, q)} ein Prisma und

Q conv. {3A - (1,1,0), A + (0, 0, q)} ein Pyramidenstumpf, also PczQ. Dann ist

G(P)

G3(P) q, G2(P)

und

%q, G2(O) 9,

Also ist fur q>4 G1(P)>G1(O) und G2(P)>G2{Q)
(s) Dazu ein Beispiel: Sei

Pq conv {(0,..., 0), (1,0,..., 0)..., (0,..., 1, 0), (1..., 1, q}

Dann ist

und

also Gt(Pq) -» -oo mit q -» oo fur mindestens ein i mit d - i gerade und G^Pq) ->
-oo mit q -* oo fur mindestens ein j mit d - i gerade.

(t) Sei P conv {0,0,0), (1,0,0), (0,1,0), (1,1,12)} Dann ist G(P) 4,
G(P)=G3(P)+G1(P) 2 Wegen V(P) G3(P) 2 folgt Gx(P) 0. G(P)
G3(P) + GX(P) 2 Wegen V(P) G3(P) 2 folgt Gt(P) 0.

(u) Beispiel: Sei Qq={(xl... ,xd.1,0)\\xl\^q, i l,...,d-l} qeN und
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Pq =conv{Qq, (0,., 0,1), (0,.., 0, -1)} eine Doppelpyramide Dann ist

G(Pq) (2q + l)*-1 + 2, G°(Pq) (2q - Vf'1

und

G(Pq) \ [(2q +1)--1 + (2q - If'1]+1 {2qf~1

Weiter ist

also Gt(Pq) O(qd~x) fur mindestens ein i<d mit d-i gerade Andererseits ist

Also Vt(Pq) < G^Pq) fur mindestens ein i < d mit d - i gerade und q genùgend
groB. Analog fur Gv

Wegen

und

folgt noch G°(Pq)> W(Pq) fur genùgend groBe q.

(v) Sei Pq ={(*!,..., Jcd)|O< *,<<!, i l,...,/ und xJ+1 xd 0}. Dann
folgt (v) direkt aus (m) und der Dimensionsinvarianz der Gr

(w) Sei A g [0,1] und

Dann ist

G(O(A)) 2d"x fur A 0 oder A 1

und

G(Q(A)) 1 fur A €(0,1).
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Ist n e N, so gilt weiter

1 fur A=-,
n

und

G(nQ(A)) nd-1 fur A e (0,1) sonst

Sei jetzt qeN und Pq folgendes schiefe Prisma:

Pq=conv{Q(0),

Dann ist

und

Weiter ist mit einem À ^ Un, i 0,... ,n

G(nPq) (n + l)G(nO(0)) + n(q - l)G(nQ(À))

(n +1)" + (q- l)nd

Also ist

Gd(Pq) (î und G,(Pq)

(x) Sei Pq={(x1,...,xd)|0^xl<q, i 1,..., d-l, 0<xd< 1}. Dann ist

und



Gitterzahlen und innere Volumina 519

Koeffizientenvergleich in n zeigt:

also G,(Pq)^°o, i l,...,d.
Andererseits ist

G°(Pq)=I(-l)d-G,(Pq) 0
1=0

Die Besonderheit dieser Aussage wird erst bei den Bemerkungen am Ende der
Arbeit deutlich.

(y) Sei Se9$d eigentliches Gittersimplex mit den Ecken 0, jc1? xd und /
die Facette mit den Ecken 0, xl9..., xd_x. Weiter seien P bzw. P' die durch
0, xl9..., xd bzw. 0, xu xd_! aufgespannten Parallélépipède und Vd(P),
Vd_x(Pf) die zugehôrigen Volumina. Dann gilt Vd(P) hVd_l{P') mit einem
h>0.

Andererseits ist h(det aff f) hAd_t(f) > 1, da das durch 0, xu xd erklàrte
Gitter Teilmenge von Zd ist. Also ist

Mit

Vd(P) d Vd(S), Va.xCF) (d

folgt

Summation liber die d + l Facetten liefert mit h) und /) des Satzes:

Damit ist die Behauptung fur Gittersimplices bewiesen. Ist Pe^d eigentlich, aber
kein Gittersimplex, so lâBt sich P zerlegen in eigentliche Gittersimplizes Pt
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i 1,..., k Nach (a) und (b) ist

Gd(P)=iGd(P.)
t l

k

C?d-i(i>)=lG(J_1(P1)-

Wegen P.n^e^41"1 ist

Also

(z) Ist dim P<d, gilt die Aussage trivialerweise. Sei also dim P d G und V
sind einfach additiv. Da sich jedes eigentliche Pe9$d in eigentliche Gitter-
Simplizes S zerlegen lâBt, deren einzige Gitterpunkte die Ecken sind, genùgt es,
die Behauptung dafur zu zeigen.

Es ist V{S)>\ld und G{S) yZel «(^, S), wobei die X ùber aile Ecken et von
S lâuft und a der Innenwinkel von S in der Ecke et ist.

Nach einem Satz von Hôhn [15] ist J^aie» S)<| also G(S)<^ und damit

G(S)<y V(S)

Andererseits sei

Sq conv {0,..., 0), (1, 0,..., 0),..., (0,..., 0,1,0) (-q,..., -q, 1)}

also

Ist a(0, Sq) der Innenwinkel von Sq im Ursprung, so gilt offenbar

lim a(0, Sq) |, also lim G(Sq) \
q—»oo q—>oo

d.h. das Ergebnis ist bestmôglich.
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4. Bemerkungen und offene Problème

Definiert man analog zu G0, G und G:

so erhâlt man zwischen den diskreten G-Funktionalen und den stetigen W-
Funktionalen eine Fùlle von Euler-Typ-Relationen analog (*) worauf wir nicht
nâher eingehen.

Aus (1) folgt fur QeQd:

G(Q) W(Q), G°(Q) W°(Q), G(Q) W(Q), G(Q) W(Q) und G(Q)
V(Q)

Die naheliegende Frage, ob wenigstens im E3 Ungleichungen analog zu G<W
bestehen, làBt sich weitgehend verneinen.

Einfache Beispiele (s.z.B. Beweis zu m)) zeigen schon fur den E3 : G^ V und
G0* W°

Dagegen folgen direkt aus (h) bis (k) drei Ergebnisse, die schon vorher von
anderen Autoren mit anderen Methoden gefunden wurden:

KOROLLAR. FurPe^d gilt

(a) G(P)<W(p), d<3 (Ehrhart)

(b) G(P)-G(P)<W(P)-V(P), d<3 (Hadwiger)

(c) G(P)-G(P)<W(P)-V(P), d<4 (Bokowski)

Teil (q) besagt mehr als die Nicht-Monotonie. Z.B. ist VIF nicht monoton, jedoch
im folgenden Sinne "quasi-monoton" [28]

Teil (q) zeigt, daB Gd_x nicht einmal "quasi-monoton" ist. Teil(s) des Satzes klârt
ein von McMullen 1976 in Oberwolfach gestelltes Problem (Definitheit der G,),
Teil (u) widerlegt eine in [18] geâuBerte Vermutung.
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(v) zeigt, daB sich die G, âhnlich wie die Vt verhalten.
(w) zeigt, daB die G, keiner'isoperimetrischen Ungleichung genùgen. AuBer-

dem gibt (w) eine nichtbeschrânkte Folge an, bei der aile G, auBer Gd konstant
sind.

(y) zeigt, daB das Verhalten in (v) nur fur uneigentliche Pe9$d gilt. Die
Ungleichung in (y) zeigt ein Verhalten der G,, das die V! nicht besitzen. Das

Beispiel in (z) zeigt eine Folge von Gitterpolytopen mit Vd \\d und Vd_x —? ».
Abschliessend eine Bemerkung zu (x). Nach (x) gibt es eine Folge Pq mit

G°(Pq) 0 und G^Pq)-*™, d.h. G0 und G sind vôllig unabhàngig voneinander.
Anscheinend gibt es jedoch kein neN mit einer zugehôrigen Folge Pq mit
G°(P'q) n und G(P'q)->™. Einiges spricht dafiir, daB im Fall G°(P) > 0 folgende
Ungleichung zwischen G0 und G besteht:

r)
Die Faktoren erhâlt man wie folgt:

Ist Sq conv {(0,..., 0), (q, 0,..., 0),..., (0,..., 0, q)} das achsenorientierte
Simplex, so liefert Induktion nach q und d:

Insbesondere ist

+1) und G°(SS+i)

und vermutlich gilt: Fur ein Pe^d mit

G°(P) 1 ist

das Analogon zu Minkowskis Satz ([21]S. 79):
Fur einen zentralsymmetrischen konvexen Kôrper K mit G°(K) 1 ist

Fur d 2 ist (**) von Scott [26] bewiesen worden.
Dasselbe Phânomen hat Ehrhart wohl dazu gefûhrt, folgende Erweiterung des

am Anfang zitierten Minkowskischen Fundamentalsatzes zu vermuten und fur
d 2 zu beweisen ([6]S. 144 oder [16]S. 45).
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Fur einen konvexen Kôrper KcEd mit Schwerpunkt in Zd gilt: Aus

- folgt G(X)>2.

(z) ist das Analogon zu dem am Anfang dieser Arbeit erwahnten Satz von
Blichfeldt. Eine analoge Vermutung zuG<W ist fur G nicht bekannt.

Speziell fur Pe$d spricht einiges fur die Vermutung

die fur d 2 gilt und fur Gitterpolytope eine Verscharfung des Hadwigerschen
Gitterpunktsatzes darstellen wùrde.
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