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A characterisation of the ellipsoid in terms
of concurrent sections

G. R. BURTON AND P. MANI

Dedicated to Hugo Hadwiger on his seventieth birthday

1. Introduction

The ellipsoid has the property that parallel pairs of its sections are directly
homothetic. It has been known for some time that this property characterises the
ellipsoid among finite-dimensional convex bodies; some early proofs of this are
referred to in Bonneson and Fenchel [4], page 142. Recently, Aitchison, [1] and
[2], has proved some stronger converse results involving only sections close to the
boundary. Our main result characterises the ellipsoid in terms of the property that
its parallel sections through a pair of fixed points are directly homothetic; this
answers affirmatively a conjecture proposed by P. Gruber at Oberwolfach in
1974.

THEOREM 1. Let 2<k <d, let K be a convex body in E%, and let a, and a,
be distinct points of E®. Suppose that for every k-flat A through the origin in E¢,
(a;+ A)N K is directly homothetic to (a,+ A)N K. Then K is an ellipsoid.

We must, of course, regard the empty set as being directly homothetic to itself.
Rogers [8] and Burton [5] have shown that a convex body is determined up to
direct homothety when its sections through a fixed point p are known up to direct
homothety. However, the body may not be determined up to a homothety which
preserves p; Burton conjectured that this indeterminacy could only occur for the

ellipsoid. Our second result proves this conjecture, and is deduced from Theorem
1.

THEOREM 2. Let 2<k<d, let K and K' be convex bodies in E®, and let p
and p' be points of E°. Suppose that for every k-flat A through the origin in E°,
(p+ A)N K is directly homothetic to (p'+ A) N K'. Then there is a directly homothe-
tic map I' of E* such that I'(K)=K'. If I'(p)# p’, then K and K' are ellipsoids.
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486 G. R. BURTON AND P. MANI

A special case of Theorem 2, which assumed K was centrally symmetric and
that p# K, was given by Burton [5]. Using Theorem 1, we are also able to
re-prove the False Centre Theorem of Aitchison, Petty, Rogers [3] and Larman

(71

FALSE CENTRE THEOREM. Let 2<k<d, let K be a convex body in E*
and let p be a point of E®. Suppose that A N K is centrally symmetric whenever A is
a k-flat of E* containing p. Then K is centrally symmetric. If p is not the centre of
K, then K is an ellipsoid.

2. Proof of Theorem 2 and the False Centre Theorem

In this section, we show how Theorem 2 and the False Centre Theorem follow
from Theorem 1.

LEMMA 2.1. Let 2=k <d and let K and K’ be convex bodies in E®. Suppose
that w(K) is directly homothetic to w(K') whenever m is an orthogonal projection on
a k-flat. Then K is directly homothetic to K'.

Proof. If m is an orthogonal projection on a linear 2-flat, then there is an
orthogonal projection ¢ on a linear k-flat such that #=x o ¢. Thus w(K) is
directly homothetic to @(K'). It therefore suffices to consider the case k =2,
which Rogers [8] has done.

LEMMA 2.2. Let 2<k <d, let K and K’ be convex bodies in E* and let p and
p’ be points of E®. Suppose that (p+ A)N K is directly homothetic to (p'+ A)NK'
whenever A is a k-flat through the origin in E®. Then K is directly homothetic to K'.

Proof. The case k=2 has been considered by Rogers [8] and Burton [5].
Suppose k>2, and let = be an orthogonal projection on a linear (d — k + 2)-flat
. If A is a linear 2-flat in @, then A =w(p)+ A+ P+ and A'= 7w (p')+ A+ D" are
parallel k-flats which contain p and p’ respectively. So A N K is directly homothe-
tic to A'NK’, and (w(p)+A)Na(K)=nw(ANK) is directly homothetic to
(w(p")+A)Nw(K'). Thus 7(K) is directly homothetic to #(K’). It follows from
Lemma 2.1 that K is directly homothetic to K'.

Proof of Theorem 2. By Lemma 2.2 there is a direct homothety I" such that
I'(K)=K'. Suppose that I'(p)#p’. Let A be any linear k-flat in E° Then
(p+A)NK is directly homothetic to (p’+A)NK’, so (I'(p)+A)NK' is directly
homothetic to (p'+ A) N K'. It now follows from Theorem 1 that K’ is an ellipsoid.
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LEMMA 2.3. Let 2<k <d, let K be a convex body in E* and let pe E*. If
A N K is centrally symmetric for every k-flat A which contains p, then K is centrally
symmetric.

Proof. 1f A is a k-flat which contains p, then A N K is centrally symmetric, so
(—A)N(—K) is a translate of A NK, and —pe —A. By Lemma 2.2, —K is directly
homothetic to K. Comparing diameters, —K is a translate of K, so K is centrally
symmetric.

Proof of the False Centre Theorem. By Lemma 2.3, K has a centre of
symmetry a, say. Suppose a# p. Consider a linear k-flat A. Then 2a—p+A)NK
is a central reflection of (p+A)NK which is centrally symmetric, so
(2a—p+A)NK is a translate of (p+ A)N K. It now follows from Theorem 1 that
K is an ellipsoid.

3. Reduction of Theorem 1 to 3 dimensions

In this section we shall suppose that Theorem 1 holds for k =2, d =3, and we
shall deduce the result for general k and d.

First assume that K, a, and a, satisfy the hypothesis of Theorem 1 with k =2,
d=3. Let ¢ be any 2-flat which contains a, and intersects int K. Then ¢ is
contained in a 3-flat @ which contains a,. Let A, and A, be parallel 2-flats in ¢
which contain a, and a, respectively. Then A;NK is directly homothetic to
A,NK;since A;N(PNK)=A;NK and A,N(PNK)=A,N K, we can apply the
3-dimensional case of Theorem 1 to show that ® N K is an ellipsoid. Thus ¢ N K
is an ellipse, for every 2-flat ¢ which contains a, and intersects the interior of K.
It now follows that K is an ellipsoid; an elementary proof of this is given by
Burton [5], generalising a result in Busemann [6], page 91, which referred only to
sections through an interior point.

Now consider the case 2<k<d. Let w be the orthogonal projection on a
linear (d — k +2)-flat @ of E¢, and suppose initially that 7(a,) # 7(a,). Consider a
linear 2-flat A in @. By considering (a;,+ A+ ®*)NK and (a,+A+P*)NK we
find that (7 (a,)+ A)N «(K) is directly homothetic to (w(a,)+ A) N w(K). It now
follows from the cases already considered that #(K) is an ellipsoid. By continuity,
this holds for all (d — k +2)-dimensional orthogonal projections 7. Hence K is an
ellipsoid; this may be deduced by dualizing the above-mentioned result about
sections in Busemann’s book.
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4. Theorem 1 in 3 dimensions

Throughout the rest of the paper, K will be a fixed convex body in E>, and a,
and a, will be distinct points of E* such that for every plane A containing 0,
(a;+ A)N K is directly homothetic to (a,+ A)N K.

The purpose of Lemmas 4.1 to 4.8 will be to show that aff {a,, a,} intersects
the boundary of K in two smooth exposed points, and that when K has been
projectively transformed so that its support planes at these points are parallel, its
sections parallel to these planes are directly homothetic and have collinear centres
of symmetry. The approach during some of these Lemmas resembles that of
Aitchison, Petty, Rogers [3] and Larman [7].

LEMMA 4.1. The line-segment [a,, a,] contains inner points of K.

Proof. First consider the possibility that [a,, a,]N K = ¢. We could then choose a
support plane A of K which contained a, say, but which separated a, from K.
Thus a;e ANK while (a,—a;+A)NK=¢ which is impossible. So
[a;, a,JNK# ¢. If [a,, a,]N K ={a,}, then a, would lie in a plane a,+ A which
was disjoint from K, and yet a, € (a;+ A)N K, which is impossible. So K contains
relatively interior points of [a,, a,].

Let us suppose that [a,, a,]Nint K = ¢, so that a, and a, lie in a support plane H
of K. If a, € K, then there would be a plane A containing a,, and having direction
close to that of H, such that ANK = ¢ but (a,—a,+A)NK# ¢. Thus [a,, a,]<
HNK.

Consider the possibility that HN K is a facet of K. Choose a line | through 0
which is parallel to H, and so that (a,+I)N K and (a,+1)NK are disjoint, the
former being a line-segment. We can suppose that = o =1, where o is the ratio
of the length of (a,+ )N K to that of (a,+1)N K. Let ¢, and c, be corresponding
end-points of (a;+1)NK and (a,+1)NK respectively. For each plane A which
contains [ but is not parallel to H, we have

AN(-c¢;+K)=a(AN(-c,+K)).

In particular this shows that o#®. Let b be a point of HNK for which
b - (¢, — ¢;) is maximal, and let (b,) be a sequence in K\ H which converges to b.
Let A, be a plane which contains | and satisfies b, € a,+ A,. Then

o(b,—cy)+c,e(a;+A,)NK,
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so taking the limit
This is impossible since

[o(b—cy)+ci]-[ci—c]=b- (C1_02)+”C1“ 02"2
+(o—1)(b—cy) - (c1—¢c))>b - (ci—¢)).

Hence HNK is a line-segment. Let [ be a line through 0 such that a,+1
contains inner points of K. Consideration of parallel sections of K which contain
(a;+1)NK and (a,+1)NK respectively shows that (a,+I)NK is a proper
line-segment. We shall suppose =1, where o is the ratio of the length of
(a;+ )N K to that of (a,+ )N K. Then for every plane A containing [ but not
parallel to HN K, we have

AN(=a;+K)=o[A N(—a,+K)].

Let b be the point of HN K for which b - (a; — a,) is maximal and let (b,) be a
sequence in K\[l+aff (H N K)] which converges to b. Let A, be the plane which
contains [ and satisfies b, € a, + A,. Arguing as for the case above, we find

o(b—a,)+a,e HNK
and
[o(b—ay)+a,]-(a;—ay)>b - (a,—a,).
We conclude that [a,, a,] contains inner points of K, completing the proof.

We shall work with Cartesian coordinates, and write ¢, =(1, 0, 0), e;=(0, 1, 0)
and e;=(0,0,1). Whenever S<{1, 2,3}, we write Lg=1lin{e;:i€ S} and denote
by ms the orthogonal projection on Lg. In view of Lemma 4.1, we may assume
after an affine transformation that K N aff {a,, a,} =[O0, e,] and that L,, supports K
at 0. Let Z be a support plane of K at e;. We can also assume that a, - e; <
a, - e;.

From Lemma 4.1 and the observation that is impossible for exactly one of a,
and a, to lie in K, we have:

Remark. Either a,-¢;,<0<1<a,-e;or 0=<a,-¢,<a,-e;=<1.
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LEMMA 4.2. The point 3(a,+ a,) is interior to K.

Proof. Suppose this is false, so a, and a, are not in K. We may suppose
1(a,+ ay)€[0, a,]. Since (a;+ L,3;) NK = ¢, we have (a,+L,;)NK=¢. Let I be a
line through 0 in L,;, and let g be a non-zero vector in L,; whose direction is
perpendicular to L Consider a plane A# L,; which contains I, and points x;e
a;+A with 0<x; - ¢,<a,- e, for i=1,2. Then |x, - g|=<|x, - g|, and equality can
only occur if x; and x, lie in 3(a, + a,)+ L,, in which case 3(a, + a,) = 0. Consider
now the case when A and x, are chosen so that x, is a point of K for which x, - g
is maximal. Let x, be any point of (a,+ A) N K, which must be non-empty, so that
|x, - g|=|x, - g|. The above argument shows that |x; - g|=|x," g|, 3(a;+a,)=0
and x,; and x, are both in L,;. Then (a;,+ A)NK < L,;,s0 (a,+A)<K < L,; also.
This shows that the two support lines of F= L,;N K parallel to [ are distinct and
at equal distances from 0. Varying [, we find that F is a facet of K and F=—F.
Notice that every support plane of K through a, intersects K in a subset of L,,.
Return to a fixed [ and g. Let 0<a <1, and let x¥ be a point of (ae; + L,;)NK
for which |x¥ - g| is maximal. Then the plane H, which contains a, and x3+1
intersects the relative interior of F. Comparing intersections with F, the section
G =(a;—a,+ H,)NK is a translate of H,N K by a vector in L,;, so G contains a
point x¥ of (ae;+L,;)N K. The considerations of the first paragraph show that
|x¥ - g|>|x¥ - g| which is a contradiction.

Consider a unit vector u€ L,;, write P(u)=1lin{u, e;} and write v(e, u)=
cos ge; +sin gu for real ¢. The section P(u) N K has two one-sided tangent rays at
e,; let the one which lies in the half-plane {x € P(u):x - u =0} be parallel to the
vector wy(u), having w,(u) - u=1. The other ray will then be parallel to the
vector w,;(—u). In the same way define the vector wy(u) corresponding to a
tangent ray at 0. ,

For small positive ¢ let a; +lin{v(¢e, u)} intersect K in the line-segment
[b:(@, u), ¢;(¢, u)] where (b,(¢, u)—ci(p, u)) - ¢,>0, for i=1,2.

We find that

5 e;+(a; - e;—Doew,(—u)+0(p) if a -e,>1

) (o, ) {e1+(1—\ai ce)ew(w)+0(p) if a;-e,=1
(a; - e))owo(-u)+0(p) if a;-e,=0

Gl u)= {(—a.- - e)owo(u)+0(¢) if a; - e;<O0.

As ¢ = 0%, ¢ '(by(¢, u)~ b,(¢, u)) approaches a limit

(ay-es—D)wy(—u)—(1—a, - e)wy(u) if a,-e,<0<1<a," e

z.(u) = {

((a;—ay) - e;)wy(u) if 0=a;-e,<a,-e,=1,
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and ¢ '(c,(e, u)— c,(¢@, u)) approaches a limit

(ay - ed)wo(—u)+(a, - e)wo(u) if a,-6<0<1<a,- e
Zo(“)"’{

((az"al) ° el)WO(_u) if 0_<_a1 * e1<a2 ¢ 81$ 1.

LEMMA 4.3. The vectors z,(u) and z,(u) are nowhere zero continuous func-
tions of u. For i=0,1, if z;(u) is a multiple of z;,(—u) then w,(u)=—w;(—u).

Proof. Continuity follows from the continuity of w; and w,. Since a, - ;>
a,- e, z; and z, are non-vanishing. Suppose that z;(u)=Az,(—u). In the case
0=<a,-e;<a,-e;=1 it is immediate that w,(u) is a multiple of w,{—u) and
comparing the scalar products with u we obtain w,(u)=—-w;(-u). If a, - ¢, <0<
1<a,- e, and w;(u) is not a multiple of w,(—u), we find

_az'el_l_al'el_l

A =
al'el—l az'el""l

Then A =—1and a, - e;,—1=1-a, - e;. This contradicts Lemma 4.2, so w,(u) is a
multiple of w,(—u), and it follows that w,(u) = —w;(—u). The case i =0 is similar.

When | and m are distinct coplanar lines, let [L, m] be the pencil of lines
determined by ! and m; that is, if IN m# ¢, B[, m] is the family of all lines which
contain | N'm, while if [ is parallel to m, then PB[I, m] is the family of all lines
parallel to [ and m. Write

mo(u) =1lin {z4(u)}, and m,(u)=e,+lin{z,(u)}.

LEMMA 4.4. For each unit vector u € L, there is a plane II(u) which contains
L,, and such that every point of II(u)Nbd K belongs to a line of BImy(u), m,(u)]
which supports K.

Proof. Fix u and define

IO(‘P) = aff {CI(QD’ U), C2(‘P’ u)}
li(¢) = aff {b1(¢p, u), ba(e, u)}

for small positive ¢. As ¢ — 07, the lines ly(¢) and I,(¢) tend to my(u) and m,(u)
respectively. Let @, be the orthogonal projection on lin {v(¢, u)}*.

For small positive ¢, @_(a,) and ©_(a,) are distinct relatively interior points of
0,(K). We can therefore choose distinct parallel chords I,(¢) and I,(¢) of 6_(K)
which contain @ (a,) and O,(a,) respectively, and which are divided in the same
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ratio by these points. Write
Hi(¢)= 0, (aff L(¢)),

which contains a;, and let A, be the direct homothety such that
4,[Hx(¢)NK]=Hi(¢)NK.

Then 6_,4,(a,) must divide I,(¢) in the same ratio in which @,(a,) divides I,(¢),
so 0,4,(a,)=0,(a,). Thus A, preserves P(u). In particular,

A, (by(e, u)) = by(e, u) (1)
4, (cx(e, u)) = cy(o, u). (2)

Choose a sequence (¢(n)) of positive numbers tending to zero so that H,(¢(n))
converges to a plane II(u) which contains L,.

Consider x € II(u)Nbd K, and choose x(n)€ H,(¢(n))Nbd K so that x(n) = x
as n— o, Let

y(n)= A4, (x(n))e Hi(e(n))Nbd K

and write k(n) = aff {x(n), y(n)}. Then A, preserves k(n), and in view of (1) and
(2), k(n)ePBlly(e(n)), l,(¢(n))]. As n— o, x(n) and y(n) tend to x, and since
k(n)Nint K lies between H,(¢(n)) and H,(¢(n)), k(n) tends to a support line k
of K at x, with k € B[mo(u), m,(u)].

Let I' be the set of unit vectors u in L,; for which P(u) is parallel to two edges
of m,3(K), or P(u) contains a point collinear with each of two edges of m,;(K).
Clearly I is countable and —I' = I'. When ug I, there is exactly one plane II(u) as
described in Lemma 4.4.

LEMMA 4.5. If u is a unit vector in L,5\I’, then I1(u)= II(—u).

Proof. Let h and k be support lines of ,3(K) at points p and q respectively in
II(u), such that h and k are images under m,; of lines in P[my(u), m,(u)] which
support K. Suppose II(—u)# II(u), and that II(—u) intersects relbd m,;(K) at
points p’ and q' which lie on the same sides of P(u) as p and q respectively.
Define support lines h’ and k' of m,5(K) at p’ and q' in the same manner as above,
with u replaced by —u.

Since u €I, we can suppose that h N m,;3(K) ={p}. Choose a projective trans-
formation T of L,;, which preserves all lines through the origin, such that T(h)
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and T(k) are parallel to lin{u}. Then T(h') is not parallel to T(h), so T(h')
intersects lin {u}. But T(k') is either equal to T(k) or intersects lin{u} on the
opposite side of 0 from T(h'), since T(p') and T(q") are on opposite sides of II(u).
This shows that h’ and k'’ are neither both parallel to lin {u} nor concurrent at a

point of lin {u}, which is inconsistent with Lemma 4.4. We conclude that II(u) =
II(—u).

LEMMA 4.6. The points O and e, are smooth on K.

Proof. Suppose this fails, and let b€ {0, e;} be non-smooth. Then for all unit
vectors u in L,,, apart possibly from those in a certain two element set 4, b, is a
non-smooth point of P(u)NK. For such u, wy(u)#-w,(-u) if b=e, or
wolu) # —wo(—u) if b =0, so that by Lemma 4.3 z,(u) is not a multiple of z,(—u)
or zo(u) is not a multiple of zi(—u); in either case, B[my(u),
my(u)]# Blmo(—u), m;(—u)]. Write T(u) for the family of lines in P[my(u),
m,(u)] which support K. We show that it is possible to define a continuously
varying plane ®(u) for unit vectors u € L,3\A4, such that @(u)=II(u) when ug I
Suppose this is impossible, so there are sequences (u,), (u®) of unit vectors in
L,;\TI" which converge to a vector u€ A, and so that IT(u,) and IT(u¥) converge to
distinct planes IT and IT* respectively. By continuity, and since II(u,)= II(—u,),
we find that each relative boundary point of IT N K belongs to a line in T(u) and
to a line in ¥(—u). Similarly each relative boundary point of II* N K belongs to a
line in (u) and to a line in T(—u). Since T(u) # T(—u) this is impossible, for the
conical or cylindrical surfaces whose families of edges are ¥(u) and ¥(—u) are
completely determined by their intersections with the planes II and IT*. We
deduce the existence of @(u) as claimed; note that each relative boundary point
of @(u)N K belongs to a line in T(u) and to a line in T(—u). It is clear that if u*
is a unit vector in L,;\A and u is sufficiently close to @(u*), then ®(u)# P(u*).
Hence we can choose an arc 3 of unit vectors in L,;\A so that @(u) attains more
than one value for u € 3. Choose by continuity an interior point u' of 3 such that
&(u) is non-constant on every neighbourhood of u' in 3.

By continuity we can choose a neighbourhood U of b in bd K and a
neighbourhood S of u' in 3 such that for every xe U and u € S, x lies on distinct
lines from P[my(u), m;(u)] and from PAmy(—u), m(—u)] that define a plane
which intersects the interior of K. If u€ S and x e U N ®(u) then x lies on distinct
lines from ¥(u) and from T(—u) that define a plane which intersects the interior
of K, so x is non-smooth. By choice of u/, it follows that the non-smooth points of
K contain a non-empty open subset of the boundary of K. This is impossible since
almost all boundary points of K are smooth. We conclude that 0 and e, are
smooth points of K.
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Recall the support plane Z which was defined before Lemma 4.2. Observe
now that m;(u) =Z N P(u) and my(u) = L3N P(u) for all unit vectors u € L,;. We
may assume that ZNL,; is either empty or is parallel to L,. Then there is a
projective transformation T having the form

T(x)=(1+8(x-e5) 'x
such that T(Z) is parallel to L,s.

LEMMA 4.7. T(K) is bounded, and the sections of T(K) parallel to L,; are
directly homothetic and have centres of symmetry of L,.

Proof. To prove that T(K) is bounded, it will be sufficient to suppose that
ZNL,3# ¢ and to prove that ZN L,;N K= ¢. Let us assume this is false. First
consider the possibility that ZNL,;NK is a line-segment I, and choose a
relatively interior point x of I. By Lemma 4.4 there is a plane A which contains
L,, such that every point of A Nbd K lies on a support line of K containing x. If
@ is a plane containing I which also contains an inner point of K, then at most
one end point of ®N A NK lies on a support line of & N K through x, which is a
contradiction. We may therefore assume that ZNL,;N K is a single point y. Let
® be the plane lin {e;, y}. Then by Lemma 4.4 every point of @ Nbd K lies on
support lines of K through each point x of Z N L,;\{y}; if we let x approach y, we
find that @ is a support plane of K, contradicting the fact that L; contains inner
points of K. Hence T(K) is bounded.

Consider any unit vector u € L,5, and let T(u) be the family of all support lines
of T(K) which are parallel to lin {u}. The family

To(u)={T (k) : ke T(u)}

consists of those support lines of K which belong to P[my(u), m,(u)], and by

Lemma 4.4 there is a plane II(u) which contains L,, such that every point of

II(u)Nbd K belongs to a member of Ey(u). Then every point of II(u) Nbd T(K)

belongs to a line in (u), since TII(u) = I1(u), modulo missing points at infinity.
Choose 0<¢é<¢'<1 and let

P’ =relbd (—f'el+ T(K))n L23

t(0) = cos e, +sin e,
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and suppose the curves P and P’ are described by the points p(68)t(8) and
p'(0)t(0) respectively, where p and p’ are positive, for real 6.

If u is a unit vector in L,; and p(0)t(8) is the unique point of contact of a
support line of P parallel to lin {u}, then p(8)t(8), p(6+ 7)t(8 + 7) and p'(0)t(6)
all belong to II(u). So p(0+ w)t(6 + ) and p’(0)t(8) lie in support lines of P and
P’ respectively parallel to lin {u}. So if p(8)t(8) is an exposed point of P, then the
set of tangent lines to P at p(8)t(0), the set of tangent lines to P at p(0 + 7)t(6 +
) and the set of tangent lines to P’ at p’(0)t(0) are just translates of one another.
By approximation, it follows also that if p(8)t(6) and p(¢)t(¢) are the end points
of an edge I of P, then p(8 +)t(6 + w) and p(¢ + 7)t(e + ) lie in a support line
of P parallel to I, and that p'(0)t(8) and p'(¢)t(¢) lie in a support line of P’
parallel to 1. Hence for every 6, the sets of tangent lines to P at p(8)t(8), to P at
p(8+m)t(0+7) and to P' at p'(0)t(6) are just translates of one another. We
deduce that

1 1 ,
70_) D.p(0)= 0T D.p(0+m)= }?(_o)' D.p'(6)

——D_p(8)= D_p(6+m)=——D_p'(0)

1
(0) p(0+ ) '(0)

where D, and D_ denote differentiation on the right and left respectively with
respect to 6. Hence

d d
.r (p(0)/p(0+m)=0= 20 (p(0)/p'(0)),

whence p(0)/p'(0) and p(0)/p(8 + 7) are constants. So P is directly homothetic to
P' and —P = cP for some positive ¢; comparing diameters we find ¢ =1. This
proves the Lemma.

LEMMA 4.8. 0 and e, are exposed points of K.

Proof. We suppose the Lemma is false, and assume without loss of generality
that 0 is not an exposed point of K. In view of Lemma 4.7, 0 must be a relatively
interior point of a facet F of K, with F< L,3, and 0 is the centre of symmetry of
T(F). Let {b, c}={a,, a,} rearranged so that ||b]|=||c|. Consider a line /< L,,
which intersects F in a single point. Let H be aff {b}U[), H'=c—b+ H and let
I'=H'NL,;. Then H'NK is directly homothetic to HN K, and !’ is parallel to [,
so if I’ intersects K, I'N K must be a single point; in any case, it follows that !’
does not intersect the relative interior of F. Since [’ is distinct from [/, and has no
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greater distance from 0 than [ has, it follows that I’ is on the opposite side of 0
from [. This shows that a, - ¢,>1>0> a, - e,, and that the other support line of F
parallel to [ has no greater distance from O than [ has. Varying ! and taking limits,
we find that the support function h of F satisfies h(u)= h(—u) for all u€ L,;, so
that h(u)= h(—u). Hence F has 0 as centre of symmetry. Returning to the
consideration of the line [, we now find that I’ supports F, so [ = —I" and therefore
a, = —a,. This is impossible by Lemma 4.2.

LEMMA 409. If a,-e;,<0<1<a," e, then Z is parallel to L,,.

Proof. Let M; and N, be the two support planes of K which contain a;+ L,,
and write

M2=a2—'a1+M1, N2=a2—a1+Nl

so that M, and N, are also support planes of K;; for if say M, did not support K, a
suitable slight alteration in the directions of M, and M, would yield parallel
planes containing a, and a; respectively, with exactly one of these planes
intersecting K, which is impossible. Suppose that Z is not parallel to L,;, so that T
maps the plane at infinity onto a translate A of L,,. Then

(TM))N(T(M2)) = f+ L,, (T(N)) N(T(N;)) = g + L,

where f and g are points of A NL,;, and the bars indicate closure. The planes
T(M,;) and T(N,) support T(K) and are symmetrically placed about L, by
Lemma 4.7.Hence the triangle conv {f, g, a,} is isosceles with base [f, g]. Similarly
conv {f, g, a,} is isosceles with base [f, g]. This is impossible since [a,, a,] is
parallel to [f, g]. Thus Z is parallel to L,;.

We now abandon all the notation which has accumulated so far, with the
exception of a;, K introduced at the beginning of section 4, Lg, =g, ¢, Z
introduced after Lemma 4.1 and T introduced before Lemma 4.6. Write P=
w3 T(K), so that

(ée1+ Ly3) N T(K) = ée, + k(£)P

for 0=£=1, where k is a continuous concave non-negative function, k(0)=
k(1)=0, ¢ 'k(§) > as £—> 0" and (1—- &) 'k(£) > o as £ — 1-. Whenever x is a
compact convex set, let h[X,.] denote the support function of X. Our aim in
Lemmas 4.10 to 4.14 will be to show that P is an ellipse.

Choose a non-zero vector ye€ L,; such that lin{y} intersects the relative
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boundary of P at smooth points. Let v be a vector in L,; such that v - y=0 and
h[P, v]=|v|?. Choose B with 0<|B|<1 which will be fixed for some time. Let
R(§), for 0<£¢<1, be the line such that

T(R(§)) = &e, + Bk(é)v +lin {y},
equality being modulo missing points at infinity. Write

H,(¢) = aft ({a,} U R(§))
H,(§) = a,— a,+ Hy(§).

Let @, be the unique direct homothety of E*> which satisfies

(pé[Hz(f) NK]=H,(§)NK.
Every support plane of T(K) at a point of lin{e;, y}Nbd T(K) is parallel to a
certain line lin {d} in L,5, by reason of the smoothness ensured by the choice of y.
So there is a solid cylinder or pointed cone C which contains K, such that every
plane which supports K at a point of lin {e;, y} is also a support plane of C. Then
since 0 is an exposed point of K,

CN L,;<lin {d}.
Let ¥, be the unique direct homothety which satisfies

1I’g[Hz(f) N C] = Hl(f) Nnc
which exists for all small positive £& We find that

V,(x) = Myx + A d

for some real numbers M, >0 and A,; we shall suppose that (d—v)-v=0.
Write

B, W (x) = (1+r(£)x +5(8).
LEMMA 4.10. As £¢— 0%, r(&)=0(k(£)) and s(¢) = 0(k(§)).
Proof. Let p be the Hausdorff metric on compact subsets of E?, and write

K;(¢§)=H;(§)NK, Ci(&)=H;(§)NC, A =1lin {es, y}
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for j=1,2. We first show that

pLK;(£), Gi(£)]=0(k(¢)) 3)

as £ — 07. Suppose this fails, so there exists £ >0 and a sequence (£,) of positive
numbers tending to zero with

pLK;(£,), Ci(§.)1> k(&) 4)

for each n. Let [ be a line which contains a relatively interior point of A N K, and
which belongs to the pencil determined by the edges of C. For each n, we can by
(4) choose a plane II, containing [ so that

pLIT, NK;(&,), I, N Gi(£)] < ek(&,).

Then we can choose corresponding end-points x,, z, of II, N K;(¢,), IT, N C,(¢,)
respectively such that

%, = 2 || > €k (&,) (5)

for each n. Let w, be the corresponding end-point of II, NANK, and let
p. = aff{x,, w,.}, q, = aff {z,, w,}. Then g, contains an edge of C, and

inf {angle between q, and A:n=1,2,...}>0 (6)
"zn - wn" = O(k(gn)) (7)

The angle between x, — z, and v tends to #/2 as n — =, so using (5), (6) and (7),
the angle between p, and q, is bounded away from 0 for large n.

Replace (§,) by a subsequence so that x, tends to a point x and II, tends to a
plane IT containing {x}U [ as n — . Then p, and g, tend to support lines p and g
respectively of IIN K at x, using (6), and p# q. This is impossible since I N C has
a unique support line at x. Hence (3) is established.

We have

Ki(§) = P:(K5(£))
Ci(8) = ¥(C5(8))

SO

P (C2(€)) = D (Ci(€)) = (1 +1(£))C1(€) + 5(¢). (8)
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Now

P[(Dg(cz(g)), Cl(*‘;:)]g p[¢£(C2(§)), ¢§K2(§))]+P[K1(§), Cl(é)]
= t(€)p[C2(£), K2(€)]+ p[K1(£), C1(8)]

where t(£) is the ratio of @,, and t(¢§)—> 1 as £€— 07, so

pLD(C5(£)), Ci(§)]=0(k(£))

by (3). Combining this with (8) and writing it in terms of support functions, we
obtain

r(§)h[C.(£), g1+ s(£) - g = 0(k(£))

as ¢—0". By considering g==+e, we obtain r(¢)=0(k(£)), and taking g=
e, €5, e; we then find that s(&) = 0(k(§)).
Let o =(a, ' e;) '(a, * €;), so by Lemma 4.2 |¢|<1, and define

R,(§) = @(R($))
Ry(§) = W(R(§))
R(®=R(NK

R-l(f) = ‘pg(R(g)) =R,(§)NK
R(&) = ¥,(R(£)) < Ry(9).

LEMMA 4.11. As £¢— 0%, k(¢)"'R(¢) = R* where R*=PN(Bd +lin {y}),
k(&) 'R,(¢&) > R¥ where R¥=R*+ (0 —1)Bd, and k(£)"'R,(¢£) — R%.

Proof. Since
T(R(£)) = ée, + k(£)(P N (B +lin {y})) = £e; + k(£)(P N (Bd +1in {y}))
and £=0(k(£)), we have
k(&) 'T(R(£)— R*=PN(Bd +lin{y})
as £— 0*. The map T~! is differentiable, DT~'(0) is the identity map and the

maximum distance of points of T(R(¢)) from 0 is 0(k(£)), so k(£)"'R(¢) and
k(£)"'T(R(&)) approach the same limit as £ — 0%, hence k(£)"'R(¢)— R*.
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Since T(H,(£)) contains the point (a, - e,)(a, - e;— &)~ 'Bk(£)d we find that
H,(¢) contains the point (1+t(£))Bk(£)d where t(¢§) — 0 as £ — 0". For small
positive &,

(Hz(£) N C) N Loz ={(1+1(£))Bk(£)d}
(Hi(§) N C)N L3 ={o(1+1(£))Bk(£)d},

so a(1+t(&)Bk(&)d = M (1+t(£))Bk(§)d+A.d and since M, — 1 we have A~
(c—1)Bk(&) as € — 0*. Then, since

R,(£€) = M_R(£)+ A d
we have

k(&) 'Ry(§) > R*+(o—-1)Bd =R}
as ¢£— 0. Finally,

R,(£) = &% (Ry(£)) = (1 + r(€))Ry(£) + 5(§)

so that k(£)"'R,(¢)— R¥ by Lemma 4.10.

LEMMA 4.12. Let k(&) be the distance of 0 from R,(£) N L,;, or + if this
intersection is empty. Then

lim inf, o+ k(£)>0.

Proof. If lin {y} is parallel to-both L,; and Z then k(&) =+ for 0<¢<1. We
therefore need only consider the case when ZNL,;Nlin{y}# &, and we can
assume that ye ZNL,,.

Suppose the result fails, so there exists a sequence (£(n)) converging to 0" and
m,, € R,(£(n)) N L,; such that m, — 0 as n — ». Write ¢, = &,,, and let T(p,) be
the midpoint of T(R (&(n))), so that all the points p, lie in a certain plane II which
contains L,, since

k(£(n)) " (T(p,) — &(n)es) = k(£(q)) " (T(p,) — £(q)ey)

for all n and q. For some a, we have

m, = an‘Pn(pn) + (1 - an)‘Pu(Y)'
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Since p, - e,>y - e, =0, we have a, <1, and since ¢, tends to the identity map as
n—o, we have a, —1, so we may assume «, >0 for all n. Let the ray from a,
through p, intersect the boundary of K at a point b, and intersect L,; at a point

fn-
Write

U, = an‘Pn(pn) + (1 - an)‘Pn(fn)'

Then [u,, m,] is parallel to [y, f,]< L3, so u, € L,3. Since u,€int K, ¢,(p.)€ K,
¢.(b,)€eK and b, €[f,, p,] we have

U, €[@n(b,), @n(fa)].

Then

“mn —Pn (Y)" - "un — (Pn(fn)" < “(Pn(bn)— (Pn(fn)”
”‘Pn(pn)— ‘pn(}))” "(Pn(pn)_‘pn(fn)” "qon(pn)_ ‘Pn(fn)”

=1.

As n— o m, and ¢,(p,) both tend to 0 and ¢,(y) tends to y, so

”‘pn(bn) B ‘Pn(fn)” -1
”‘Pn(pn) — ¢n (fn)“ .

Hence as n — oo,

"bn_fn”_) 1 (9)

”pn - fn” .
Write 13,, = T(b,), fn = T(f,), p. = T(p,), and observe that for each n, 5n, f,,, P

and a, are collinear points of II. Let w be the end of II N P with p, - w>0 for all
n, so that xy =||v]?w - v satisfies 1>x"'8>0. Let K*=ITN T(k). Then

pn = &(n)es+ x 7" Bk(£(n))w
and the relative boundary of K* contains the point

g. = §(n)e+ k(£(n))w.

Let [0, g,] intersect [b,, a,] at r, = 6,q,, where

6, = (xa, - e, + BE(n)— x&(n))~'Ba, - e,.
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We have

-"Bn—fnn<"rn_—f}l“ — Tn * el_f:; * € — Onf(n)=
"ﬁn —_fn" "pn_fn” ﬁn : el_fn "€ E(n)

0.~ x'B (10)

as n— o,
Using the projective invariance of the cross-ratio [b,, p,; f., a,] we find that as
n— oo,

A A
T - TR e d 1
1B = fall P —Fill

by (9). This contradicts (10), which proves the Lemma.

LEMMA 4.13. T_"here are sequences (&), (£.) of positive numbers tending to
zero such that k(¢)R,(&,) converges to a chord R¥ of P, such that R¥ = uR¥ for
some p>0.

Proof. For 0< ¢<1 let the end-points of T(R,(£)) lie in the planes ¢'e;+ L,s
and £"e,+ L,; with £"=¢'. By Lemma 4.12 there is an >0 such that T(R,(§))
contains no point of L,; within distance n of 0 when ¢ is small. Then for small
positive £ the angle between T(R,(£)) and its orthogonal projection on L,; is less
than tan™'(2¢'/9), so

0=§"-£'<2&/mk(£IW

Where W is the diameter of P. Since k is concave and k(0)=0 we have

_KE)__ | 2WKE)
ke Te T
so that
ke |
k@ ! (1)
as £ 07,

Since the ends of T(R,(¢)) belong to the relative boundaries of ¢'e; + k(£')P
and of £"e, + k(_g")P, we can choose a sequence (£,) tending to 0 from above, such
that k(£,)"'T(R,(&,)) tends to a line-segment R¥ whose ends will, by (11), be in
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relbd P. The differentiability of T-' now ensures that k(£,)"'R,(£,) tends to RY.
By Lemma 4.11, k(£&,)"'R,(¢,) = R%, so we conclude that R¥ = uR¥ for some
u>0.

LEMMA 4.14. P is an ellipse.

Proof. We now allow B to vary, and introduce B as an argument for R*, R¥
and R¥. Then

R*(B)=PN(pd +lin{y}
R3(B) = R*(B)+ B(s—1)d = oBd +lin {y}
RT(B) = n(B)R3(B) =P N (r(B)oBd +lin {y}).

If w(B)<1, then R¥(B) is closer to 0 than R*(B) and has shorter length;
since R¥(B) is a chord of P, we must therefore have w(8)=1.If u(B)>1, then the

length of R¥(B) is greater than that of R*(B), so |w(B)oB|<|B|, while if w(B)=1
then |u(B)oB|=oB|<|Bl.

Fix By, and let B, be the number with least absolute value which satisfies
R*(B1) = aR*(Bo) + Ad

for real numbers a, A; interpret R*(0) as PNlin{y}. Suppose that B, # 0. Write
B, = n(B1)oB,, so that |B,|<|B;|. Then

R*(Bz) = RT(B]) = “’(BI)R;‘(BI) = I-L(Bl)(R*(Bl) +(Bi(oc—1)d)
= M’(Bl)aR*(BO) +u(B)(Bi(oc—1)+A)d.

This is impossible by choice of B;, so we conclude that B, = 0. Thus the midpoint
of R*(B,) lies on lin {d}. Since B, was chosen arbitrarily, it follows that the chords
of P parallel to lin {y} have collinear midpoints. Varying y over the smooth points
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