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Homotopy splittings involving G and G/O

STEWART PrRIDDY!

Introduction

In this note we show that in a strong sense SG and G/O are factors in the
spaces QBDg and QBO, respectively, where Dy is the dihedral group of order 8.
All spaces (throughout the note) are localized at 2. These results can be thought
of as analogous to the theorem of D. S. Khan and the author [KP] which states
that Q,S° is a factor in QRP~. In particular, here, as in [KP], the transfer is used
to construct the required splittings. Additional difficulties arise in the present
work, however, because the infinite loop space structure of SG is markedly more
complicated than that of Q,S°. Also, in the case of G/O we must use the
Becker-Gottlieb transfer [BG].

To state our results precisely, we recall that QS°=1im 2"S" has components
Q,S°, keZ, and that SG = Q,S°. We shall denote by * and # the loop and
composition products of QS°. If &, is the n-th symmetric group then there is a
well-known map ¢, : B, — Q,S° [BKP,P1]. Since D=, %, ¥, one has
two natural maps BDg — SG, namely the composites

*[-3]

61:BD8 d By“_—ﬁ'-) 0480—_—_) SG

and

4 *[—1] (#[3D~1
8,:BDg— BY¥,—> Q,S°— Q;8°—— SG

where [n] denotes the basepoint of Q,S° (#[3] is an equivalence at 2).
Let =46, or §, and let Q(8): OBDz— SG denote the induced infinite loop
map.

THEOREM  A. There is a map  t:SG — QBDy such  that

! Q®)
SG — OQBDg—— SG is an equivalence at 2.

!Supported in part by NSF Grant MPS76-07051
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Homotopy splittings involving G and G/O 471

The affirmative solution of the Adams’ conjecture [Q], [S] provides a map
v:BO — G/O such that

G/O
wi-1 BJ
BO — BSO — BSG

commutes up to homotopy, where 7 is the homotopy fibre of BJ. By abuse of
notation, we shall let Q(y): QBO, — G/O denote the restriction of the induced
infinite loop map.

THEOREM B. There is a map T:G/O — QBO, such that the composite

G/O — QBOZES?’-)) G/O is an equivalence at 2.

The paper is organized as follows: In Sections 1 and 2 we recall the necessary
preliminaries on symmetric groups, the transfer and HySG (throughout all (co-)
homology groups are taken with simple coefficients in Z/2). The proof of
Theorems A and B are given in Sections 3 and 4 respectively.

By way of background we mention other splittings derived from the transfer.
Segal [Sg] has shown that BU is a factor in QBU,. Becker and Gottlieb [BG2]
have shown that BO and BSp are factors in QBO, and QBSp, respectively.

§1. Preliminaries on symmetric groups and the transfer

Consider the symmetric group %, and 2-Sylow subgroup (2% 2)=
F, 1 -1, the k-fold wreath product. The transfer homomorphism

trye: Ho(BL,) —» Hy(BF(2%, 2))

in mod-2 homology was studied in [KP2]. We shall recall those results needed for
our work.

Two basic operations useful in describing the homology of symmetric groups
are the wreath product ¥, | (% 1 G =%, ° G*, the semi-direct product with ¥,
acting by permuting factors) and the ordinary product &, X &,. One has inclusions
of subgroups

FNL - L (1.1)

I XS = P (1.2)
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Now let ¢, HBY,=1Z/2 denote the non-zero element. If Hy(BG) has as
Z/2-vector space basis xo=1, x4, X,, . . . then Hye(B¥, 1 G) has as basis

xi|xj=eo®xi®xj i<j
elx=¢QxQx; i>0

If I=(i,i,...,5) is a sequence of non-negative integers let é, =
e, 1" le € HeB¥ (2%, 2). Let s:%(2%,2) — %, denote inclusion and let ¢, =
sxé.. The length I(I) of I is defined to be k. I is said to be allowable if
0<iy=i,=---<i.

Nakaoka [N] has shown that Hy(B%,,,) is spanned by
fer, - % e * e§|2m=) 2'D+2p}

where * is the commutative pairing induced by (1.2). Furthermore these mono-
mials form a basis if the sequences I, are required to be allowable.

THEOREM 1.3 [KP2] Let x=e¢, *--- * ¢ * e, * - * e € HBY, with
I(I;)=2 then

i) t’*(x)zéil‘éd’ : "éi,,lén" "‘él,"'éx where éx=2é.-ll e 'léi,, IéI'll" 'lél',,
the summation being taken over certain elements of the form indicated (or per-
mutations thereof) with I(I) = I(I,). Furthermore

i) s4(,)=0.

Remark 1.4. The é;,’s occurring in é, can be rearranged into successive even
groupings, e.g. & |é, |ép|é,|---|é.|éy|---|éy This fact is obvious for k =2,
for a general k it follows from an easy induction argument using the commutative
law x |y =y | x in He(B¥ 1 G).

§2. Preliminaries on H, SG

The structure of H,SG as an algebra over the Dyer-Lashof algebra is quite
complicated. In this section we shall recall several results of Madsen [Md], May
[M1], and Milgram [Mg] needed for our work.

Let Q,: H,QS° — H,,.;QS° denote the Dyer-Lashof operations derived from
the loop product *. Then

H,QS°=2/2[[-1],[1], Q,[1]| I allowable]
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The weight function w: H,QS® — Z~ is defined by
w(Q[1])=2'"  w(iD=0
w(x * y)=wx +wy w(Z xi> = min{w x;}.
It is known that # does not decrease weight [M1;5.6], i.e.
w(xy)=wx + wy
(on the level of homology we denote the # product by juxaposition). Let

u, = Q1]*[-1], x, = Q;[1] *[1—-2'"] where I(I)=2 then the fundamental result
of Milgram [Mg] states

HySG = E[u,, uy, .. .J®Z/2[x.4), X | a>0, I allowable] (2.1)

There are several connections between *-decomposable elements of H,QS°
and #-decomposable elements of HySG. Let I, be the set of positive dimensional
elements of HyQ,S° I=Y I. If x, y, ze I then by [M1; 6.6ii and p. 137]

i) x*y*zx[1-wleL#I, where w=w(x *y * z) (2.2)

i) Qu[1]* Q1] * [-3]+ Q,[1]1Q,[1] * [-3]le I, #1,

also

Q.[11Q,[11= ) Q1] (2.3)

=2

where the sum is taken over certain I with I(I) =2 [Mg, 6.2].

Let A be the subalgebra of HyQ,S° generated by Q,[1] » [-2'"], I(I)=2 and
let B be the subalgebra of H,SG generated by x;, [(I)=2 then B=A * [1].
Further if A, B denote the augmentation ideals then

H,Q,S° * A x[1]1=H,SG # B (2.4)
(see [Mg; 6.1]) and

Q. [-1]=Q,[1] * [-4]+«a (2.5)

where a is a *-decomposable element of H,Q,S° * A * [-2] (see [Mg; §4],
[P2;2.1)).
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Let Q,: H.SG — H,,.,SG denote the Dyer-Lashof operations associated with
the composition product #. The following result is due to Madsen [Md; 4.13] (see
also [M1, 6.12]): let I=(J, K), I(K)=2 then

Qx)=x+ Y- xy mod L#I, (2.6)

2=sI(M)<I)

Finally we recall
(x * [Ny * [[D =} x'y" * x"[j] = y"[i] * [if] (2.7)

(see [Mg; 2.2], [M1; 1.5]).

LEMMA 2.8. Q,[1]* Q,[1] * [-3]=uu,+ ) x;modulo I, # B

(=2

Proof. By (2.7),

U Up = Z Q[1]1Q,[1] * Q,-[“l] * Q1] * [1]

i+j=a
k+1=b

Thus by (2.5), u.u, =) Q1]Q.[1] * (Q[1] * [-4]+ ) * (Q[1] * [-4]+B) *
[1] where a; B, are *-decomposable elements of H,Q,S°* A * [-2]. Thus
ugth, = Q,[1] * Q,[1] * [-3]1+ Q.[11Q,[1] * [-3]+y where yel,* A = [1]. By
(2.2) (ii) ye I, # I,, and by (2.4) ye H,SG # B and so y € I, # B. This completes
the proof by (2.3).

LEMMA 209. If xel,, w(x)=1 then x[3]=x * [2k]+a where w(a)=2],
ae(l, * IZk)n(A * [3k])

Proof. By the distributive law, we have x[3]=x([1]* [2])=Y x[1] * x"[2]=
x * [2k]+ a where

a= ) xixxi2le( * Li)N(A*[3k]), wa)=21

deg x>0

LEMMA 2.10. If x,y,zel and x *y * ze H,Q,S° * A then x *xy * z ¢
I, # B #13]

Proof. The proof proceeds by downward induction on weight. Let l——~_
w(x*y=*2) xel, yel,, zel,. By (2.2) (i) and (2.4) x * y x z x[-2]e ], # B
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hence multiplying by [3]
x[3] * y[3] * z[3] * [-6]e I, # B #[3].

Using Lemma 2.9 to evaluate this term we have (x * [2k]+a) * (y * [2m]+B) *
(z * [2n]+y) * [-6]=x * y * z+3-fold *-decomposable terms in H,Q;S° * A
of weight greater than [. Thus by induction x * y * ze I, # B #[3]. Q.E.D.

LEMMA 2.11.

i) (Q[1]*[1DGE]=u,+ X(0,a/2y modulo I, # B
ii) (Q,Q,[1] * [-1D[2]= x(.», modulo I, # B
iii) (Qu[1]* Qy[1]* [-1D1=uu, + ) x modulo I, # B

(=2

Proof. Since [3] has inverse [3] we can establish these equations by applying
[3] to both sides (£é(x)=x * x)

D) Ua[3]+ x0,02[3]= (Qu[1] * [-1D[3]+(£Qy2[1] * [~3][3]
= Qu[3] * [-3]+£Q,2[3] * [-9]

=Qu[1]1*[1]+ )  Q._n[1]1* £€Q[1]* [-3]

o<i<a/2

+&Q,0[1] * [-1]+ £{Q,5[1] * [4]
+ Z Q(a/z)—zj[l] * fQ,[l]} * ["'9]

>0

=Q,[11*[1]+ ) Q. u[1]=&Q[1]+[-3]

o<i<al2

+ Z EQ a2y 2i[1] * £Q;[1] * [-9]

>0

By Lemma 2.10 all of these terms except the leading one belong to I, # B # [3]
ii) Using the Cartan formula we have

Q.0,[31= Q,Q, (1] * [2]) = oa( Y ¢Qy[1] * ob_Zim)

i=0

=2 §QQI1] * Q.0 x[1]
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Thus

X@p[3]=(Q.Q[1] * [-3]D[3]= Q,Q,[3] * [-9]
= Z E(QQ,[1] * QujQp_2[1] * [-9]

=0

= Q,Q,[1] * [-1]+ Z EQQ[1]) * Q,_5;Q,_»[1] * [-9].

i>0
or j>0

Each of the trailing terms belongs to I, # B #[3] by Lemma 2.10 and (2.4).
iii) From Lemma 2.8 we have

(Qu[1] * Q,[1] * [-3D[3]=u,u,[3]1+ ) x,[3]mod I, # B #[3]
However  Q,[3]* Qu[3] * [-9]=(Q.[1] * [4]+ a) * (Qy[1] * [4]+B) * [-9]=
Q,[1] * Q,[1] * [-1]+3-fold *-decomposable elements in HyQ,S° * A which

belong to I, #B#[3] by Lemma 2.10. Thus Q,[1]* Q,[1]*[-1]=
uu,[31+Y x;[3]mod I, # B #[3]. Q.E.D.

§3. Proof of Theorem A

Consider the composite

Y B¥»—>Y OBD——Y SG  (D=Dy)
where 7=Y"B oY uotr, d=Y"Q(8) and tr': Y B¥,« — Y* B¥(2%,2) is the
stable  transfer [KP]. u:B¥(2%.2) > B%5-1% 1%, is inclusion.

B:BFy21%21%,=EFp2Xg2 (BDy***—>QBD is the restriction of the
Dyer-Lashof map

ESy-2X g (QBD)*" — QBD.
Recall that in homology tr' is equivalent to tr [KP; 1.7]

LEMMA 3.1. d ° 7 is a homotopy equivalence at 2 in a range of dimensions
which increases with k.

We can now obtain Theorem A in the following manner: Lemma 3.1 implies
that dy: )" OBD — ,m,) " SG is a surjection. Now arguing as in Adams
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[A, p. 50] one shows that
{Z X,y BD"} e, {Z X, BwSG}

is surjective for any CW-complex X of dimension <2n, where 8 is defined in the
Introduction and superscript n denotes the n-skeleton. Now applying this to
X =SG" we see that the composite

Y SG" — ) SG—> B*SG

(where « is the stable adjoint of SG —— SG) factors as
> > adj &
Y SG" — ) BD"—> B~ SG

Thus upon applying 2~ and including SG™ < 2 }* SG" we obtain the homotopy
commutative diagram

OBD"

/N

SG"=——>SG

Although there is no (obvious) compatibility in these diagrams with increasing n,
the use of inverse limits [A] shows (since all homotopy groups in sight are finite)
that there is a homotopy commutative diagram

OBD

/ Q®
id

SG — SG (3.2)
which completes the proof. It remains to consider the

Proof of Lemma 3.1. There is a well-known homology equivalence HyBY,.~
H,Q,S° [BKP] also HyB%,. =~ H, BY,, in a range [N]. These facts, together with
the obvious equivalence Q,S°=SG as spaces, show that it is enough to prove that
dy © T4 is surjective in a range. We do this first for 6 = §,. Because Theorem 1.3 is
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our main tool we shall re-express d ° 7 as
Y BY» — Y BL(2%,2)—> Y SG

where d' is the composite d Y™ 8 oY~ u.
If x=wuw, ..., u x; Xy, ..., x; we shall write

a(x)=m+n, b(x)=k (k is the number of terms x; with [(I;)=2)

c(x)=n (n is the number of terms x; with I(I})=2).
As usual we extend these definitions to sums by setting

a(x+y)=min{a(x), a(y)} c(x+y)=min{c(x), c(y)}
b(x+y)=min{b(x), b(y)}

Let I =1, # - - - # I, (v-factors).

Step 1. ditrl is surjective modulo I3
i) Consider x = u, and let 2N =2 —2 then by Th. 1.3

ditri(e, * e5) = d4(é, | &) =u,
ii) Consider x = x,,, and let 2N =2* —4 then by Th. 1.3
ditri(ewp) * €)= dx(Eapy | €5+ ) € | €3)

= Xaby T 2. Xa'py = Xap)

Il
0
iii) Consider x =x, I=(J, K), I[(K)=2. Let 2p =2%—-2'® then by Th. 1.3
ktri(e; * ef) = dﬁc(é( |ég+) é.|ép) (I'=(J,K")
= é](xK) + Z éJ'(XK')

=x;+) xp+ ) xy mod I3 (by2.6)

H 2=I(M)Y<II)
0

The terms x,, € Im (ditry) mod I by induction on length starting with length 2
which is covered by ii).
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Taken together i), ii), and iii) prove Step 1.

Step 2. dtry is surjective: Assume by induction that x € Im (d4trk) mod I for
all x such that a(x)<v. Now consider x such that a(x)=vsay x=uw;, ...,
ey XpXp s - e, X, Where i) <---<iy,v=2p+k+n, I(I)=2for 1=j=<k and
(I)>2 for k<j<k+n. Let s=wx and set e=¢;, * - * ¢, *e * " *¢_,
by Theorem 1.3 we have (with I, =(J, K;), I(K;)=2)

ditri(e) = d:xc(éi1 |+ l éizp ‘ ér, [+ ér, | ér, ., |- ér,.. (3.3)
+Zéi1 ""éizp|é1;l"'|é1.:|él.z+1|""éhzﬂ
= (Qil[l] % Qiz[l] * [—3]) T (Qizp_,[l] % Oizp[l] % [_3])'

xIl o xlk . QJkH(kaH) e QJk+“(ka+n)

+ Z (Qil[l] * Qiz[l] * [—3]) o (Qi2p_,[1] * Qizp[l] * ["3])'

Xp*C Xp e QJLﬂ(xK.LH) o "QJLM(xKH.\)

= U U Uy Xp XXy, Xy
+ Z Wy o U Xp ot XXyt Xy,
+a,+B,+7y. +0,
where
ala,)=v
a(B.)=uv, b(B.)>k

a(v.)=0v,b(y.)=k,c(y.)>k+n
a(8,)=0,b(v.)=k, c(v.)=k+n, wiy,)<s.

The third equality of (3.3) results from (2.6) and Lemma 2.8: The term «, occurs
because of the #-decomposable elements introduced by (2.6) and Lemma 2.8; the
term B, occurs because the factors Q,[1] * Q,[1] * [—3] can give rise (by Lemma
2.8) to monomials of lesser a-value but higher b-value; the term <y, occurs
because the #-decomposable terms introduced from Lemma 2.8 can increase the
c-value without changing (by 2.6) the a or b-values; the term §, occurs because
the factors Q,(x,) can give rise (from 2.6) to monomials of lesser weight.
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From our analysis of (3.3) we have

LEMMA 3.4. b(ditri(e))=k, i.e. ditry does not decrease the number of
factors of length 2.

Finally we claim } ;- - - u, x;;* * * x5, =0. By Theorem 1.3(ii)
9*(Z é, """ | éizp |é1,' ‘ T I é1,1+,,)
=Zea1*"' ke, *ey*- - *xey =0

There are no relations in the *-product except commutativity and e, * ey, =
e Since commutativity also holds in HySG and Qy(xa) = Xp - Xy the claim
follows. We need not consider the relation wu; =0 since we are assuming
iy <.+ <ip,

Now among those x with a(x)=v consider those with maximum b-value and
among those ones with maximum c-value and among those ones with minimum
w-value. Such x € Im (d4try) mod IY*' by 3.3 (we observe that no terms 3, can
occur by induction and Lemma 3.4). Now proceed by upward induction on the
w-value and then downward induction on the c-value. We now must consider
lowering the value of b which will introduce terms of the form S,. However by
Lemma 3.4 and induction we may assume such elements are in
Im (d4trf) mod I3 *'. Thus we may proceed by downward induction on b until we
have x € Im (d4tr) mod I}*! for all x with a(x) = v. This completes the induction.
To complete Step 2 we must also consider elements x =u; , ..., u
but the proof is entirely analogous.

It remains to consider 8 = §,, however by Lemma 2.11 we can use the same
argument. Q.E.D.

i2p—1 xIx’ o x1k+n

§4. Proof of Theorem B

From the affirmative solution of the Adams’ conjecture we have a homotopy
commutative diagram

SG —» G/O —> BSO 25 BSG (4.0)

RV

BSO
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where the horizontal maps from the usual fibre sequence. Let e: G/O — BSO
denote the map obtained from the KO-orientation of Spin bundles [ABS].
Madsen-Tornehave-Snaith [MST] have shown that e is an infinite loop map (the
range of e is actually BSOg but by the theorem of Adams and the author [AP] we
may ignore this point). Further ey =p® an equivalence at 2. Let C—— G/O be
the homotopy fibre of e, C is usually called the cokernel of J. We recall the
splitting of Sullivan [S], [MST; 5.5], [M2; V.4.7]

g: CxBSO — G/O, g=¢ - Y.

Since KO*(C) =0 [H, S1] there is a lifting ¢ (unique up to homotopy)

SG
1/ ‘s

C—=> G/O

Now let T; be the composite
T, : SG —— QBD —— QBO,

where t is the transfer of (3.2) and i is induced by the standard orthogonal
representation of D on R?.

Set t-=Tg ° ¢: C —> QBO,. Let
Tg : BO — QBO,

be the map induced by Becker and Gottlieb transfer [S2;1(3.5)] and set 5 =
Tgj: BSO —- QBO, where j:BSO — BO is inclusion. Finally let T=
uo(tcXtg) e g~': GO - QBO, where u: QBO,x QBO, — QBO, is the loop
product.

Theorem B is equivalent to

THEOREM 4.1. G/O — QBO,223 G/O is an equivalence at 2.

Before giving the proof of Theorem 4.1 we prepare some necessary lemmas.
Brumfiel and Madsen [BM, Lemma A.1] have shown that the following diagram
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is homotopy commutative

Q)
QBD — SG

QBO, 2% G/O
Let

X=p1°8':G/O—> CxBSO — C
where p, is projection.

LEMMA 4.3. xQ(y)tc=idc.
Proof.

xQ(¥)tc =xQ(v) Ty

=xQ)iny
= xywQ(8,)ty (by 4.2)
=xmy (by 3.2)

=yp=id. Q.E.D.

LEMMA 4.4. eQ(y)tg is an equivalence.

(4.2)

Proof. We will show that in mod-2 cohomology (eQ(y)tg)*(w,) #0. From
this and the action of the Steenrod algebra it follows that (eQ(y)tg)*(w;)=
w; +decomposables and thus that eQ(y)tz is an equivalence. Snaith [S2,] has

observed that if k: BO, — BO denotes inclusion then

BO,—“> BO —=> QBO,

is the standard inclusion BO, —» QBO,. Hence Th(w,)=w,. It is well-known
(and easy to prove from 4.0 or 4.2) that ¥* is non-zero on the bottom (2-
dimensional) class in H*G/O. Since ey is an equivalence e*(w,)#0. Thus

(eQ(y)Tg)*(w,) # 0 and the result follows. Q.E.D.
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LEMMA 4.5 i) xXe: G/O — CXBSO is an equivalence.
ii) Rg=e Q(y)tgp,.

Proof. 1) (x X e)g = xg X eg where we recall g=¢ - v is an equivalence. eg=
e(p - y)=eq - ey=eyp, since KO*(C)=0 implies ep =0. xg=p,g 'g=p,. This
completes the proof of i) since ey is an equivalence ii). eQ(y)(tc* tg)=
eQ(7)te - eQ(y)ty = eQ(y)tgp, since KO*(C)=0 implies eQ(y)t-=0. Q.E.D.

Proof of Theorem 4.1. Let R=(xxXe)Q(y)(t- " tg), Rc=xQ(y)(tc - tg) then
R=R-%XRg. Let x®yem CPHmBSO then R(xBy)=Rc(xPy)DRy(xDy).
By Lemma 4.5i)) Rg(x®y)=eQ(y)tg(y). By Lemma 4.3 R.(x)=x. Hence
R(x®Dy)=x+xQ(y)t-(y)DeQ(y)tz(y) and so R 1is an isomorphism since
eQ(y)tz is an equivalence by Lemma 4.4. Thus R and hence Rg'=
(x X e)Q(y)T is an equivalence. This completes the proof by Lemma 4.51).
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