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Ueber die Eigenwerte des Laplace-Operators auf kompakten
Riemannschen Fliachen 11

Hemnz Huser (Basel)
Albert Pfluger zum 70. Geburtstag

1.

Es sei # eine kompakte Riemannsche Fliche vom Geschlecht g5 >1, ver-
sehen mit ihrer Poincaré-Metrik konstanter Krimmung —1. Nach Gauss-Bonnet
besitzt sie den Inhalt

J dwg = 4m(gs —1). (1)
F
Es sei

Ag=0<A sAys- - (2)

die Folge aller Eigenwerte von —A4g, wobei jeder Eigenwert seiner Multiplizitat
entsprechend oft auftrete. Das Weylsche asymptotische Verteilungsgesetz besagt
dann, dass der Quotient

0s(x)= ¥ 1 /<gg,-1)x, x>0, 3)

fir x > +o den Grenzwert 1 besitzt. Das schliesst natirlich nicht aus, dass
infg Qg(x) selbst fiir beliebig grosse x verschwinden konnte. In [3] wurde aber
gezeigt: Es gibt eine fiir e >0, § >0 positive und in beiden Variabeln monoton
wachsende Funktion q(e, 8) derart, dass Qg (3+ €)= q(¢, ) fiir alle Flichen ¥ mit
coshiug=1+8. Dabei ist ug die Lange der kiurzesten geschlossenen
Geoditischen auf %.

Dieser Satz soll nun wesentlich erweitert werden: Es gibt sogar eine fiir e >0
positive und wachsende Funktion q(¢), sodass Qg3+ €)= q(¢) fiir alle Flichen %.
Das ergibt sich aus dem folgenden Satz, der in Abschnitt 2 beweisen wird:

(A) Ist {¢,.}n-0 ein zur Eigenwertfolge (2) gehoriges Orthonormalsystem von
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Ueber die Eigenwerte des Laplace-Operators 459

Eigenfunktionen, so gilt fiir n =0, u >}, pe ¥ die Ungleichung

I<w/A, . +27(a(pn)—1) Z (1= A/A i) “Pk(P)'z-
k=0

Dabei ist a(u)>1 die kleinste Nullstelle der Legendreschen Funktion
F,(x):=P/(x), -vr+1l)=uy,

im Intervall [1, +). (Fir u <3 besitzt F, keine Nullstellen in diesem Intervall;
vergl. [4] pag. 388 und 402).

Aus (A) ergibt sich durch Integration iiber % wegen (1):

(B) Fur n=0, u>7 gilt die Ungleichung

a(uw)—1
1< WA, = Y 1=AJA,.
Wl A 2(gg—1) kgo( J 2
n+1
\M/)\n+1+(a(u)“1)m-

Zu gegebenem & >0 werde jetzt n so bestimmt, dass
A, St+e<A L,
Dann ist nach (2), (3)
QzG+e)=(n+1)/(gg—1G+e).
Wihlen wir
w=3+8¢, 0<é<l,
so folgt aus (B):

32¢ 1-6
(4e+1)2aG+68e)—1"

Qg3 +e)=

4)

In 3.3 wird gezeigt, dass
a(w)—1~j*2u fir p— +ow,

(j=2,4048 ... ist die kleinste positive Nullstelle der Besselschen Funktion J,).
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Daraus folgt, dass die rechte Seite von (4) fir € — +o den Grenzwert 48(1—8)/j>
besitzt. Daher wihlen wir optimal § =4 und erhalten:

(C) Qzl+e)= +€/2)—-1)71, e>0.

16¢ L
m(a(z

In [4] pag. 402 wird nachgewiesen, dass

Fu(cosh

= 1><0, m>3
vHTg
Daher ist wegen F,(1)=1

T (5)

Somit ergibt sich aus (C) das sehr explizite Resultat

a(w) <cosh

X - 8¢ .
(D) Qg(z+s)/q(s)———-——-———(4€+1)2smh (JZe)’ e>0.

Andererseits wurde schon in [3] bewiesen, dass

ig;f Qs(3)=0. Wir definieren jetzt
o(n)=sup (u—m)a(n)-1), n>i (6)
p=n

Aus (5) folgt, dass o(n)<w; o ist offensichtlich monoton fallend im Intervall
(4, +). Wir zeigen nun

(E) Fir m=1, n>} gilt

2a(n)m
gg—1 "~

Am <1

2 1/2
+o(n)m+[(a(n)m) +2"<r(n)m] <2n+
g—1 g—1 g—1
In der Tat: Aus (B) und (6) folgt

onm 1
2g-1) -7’

1= pu/A,, +
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Wir diirfen gleich annehmen, dass A,, > 1, da andernfalls nichts zu beweisen wire.
Dann konnen wir aber

u=mn+3A,— 1)
wahlen und erhalten

2
e P
Daraus folgt sofort die Behauptung (E).
In Abschnitt 3 wird gezeigt, dass

lim o(n)= +ox, a(n)=j*12 fir n=j*/4.

nl1/4

Somit ergibt sich aus (E) insbesondere

-2 -2
) ]m
F A, <— ,

Es ist bemerkenswert, dass diese Abschiatzung die “richtige” Grossenordnung des
asymptotischen Gesetzes

A ~ m/(gg — 1), m — x,
besitzt, im Gegensatz zur Abschiatzung von Cheng [1]:
A, <zi+167*d*m?, d = Durchmesser von %,
(d erfiillt iibrigens die Ungleichung coshd >2g—1).

2. Beweis von (A)

2.1 Der Beweis der Ungleichung (A) stiitzt sich auf folgendes

LEMMA. Fiir n=0 und reellwertige @ € C*(%) gilt:

Mt |0F < ~(456,0)+ 3. (A1 =20) (O, )P
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Beweis: Da die Funktion

v=0-Y (6,6) 0 (M
k=0

orthogonal zu den Eigenfunktionen ¢, ... ¢, ist, liefert das Rayleighsche Ex-
tremalprinzip die Ungleichung

A 1P < J lgrad V2 dog = —(45 P, ). 2)
F

Wegen @ e C*(F) gilt

(Asr@, ‘Pk) =(0, Ag‘Pk) =—=A (0, @).

Somit folgt aus (1):

(AsV, V)= (49:@'*' Z A (O, o), O— Z (O, <Pk)<Pk)
k=0 k=0

= (456,0)+ ). A (6, ) 3

Weiter folgt aus (1):
I¥1F =167 - 2, (6, el (4)

Nun ergibt sich die Behauptung aus (2), (3) und (4).

2.2 Es sollen jetzt Funktionen auf % konstruiert werden, auf welche sich
dieses Lemma mit Erfolg anwenden lidsst. Zu diesem Zweck versehen wir den
Einheitskreis

E={ze(C||z|<1} mit der hyperbolischen Metrik

|dz|

ds=2 R (5)

welche die Krimmung —1 besitzt. Fir die hyperbolische Distanz p(z, 0) ergibt
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sich dann

1+|z]?
1-|z*°

cosh p(z, 0) = (6)

Fithren wir geoditische Polarkoordinaten

p=p(z,0), d=argz (7)
ein, so wird

ds* = dp?+sinh? p d9>.
Somit besitzt die Metrik das Flachenelement

dw = sinh p dp d9¥. (8)

Ist nun p e & ein beliebiger Punkt, so gibt es eine konforme Ueberlagerungs-
abbildung

v:E—> %, ¥(0) = p. 9)

Mit Hilfe von y wird die Differentialgeometrie (5) von E auf % verpflanzt und
ergibt, unabhéngig von der Wahl von p, die Poincaré-Metrik von %. Wir bezeich-
nen mit I" die zu y gehodrige Gruppe der Deckisometrien von E und betrachten
fir € =0 die Funktionenschar

h.(z)= ) f.(cosh p(Tz,0)) (10)

Tell
mit

Fl**(x) in [1,a(p)], u>1%,
_ 1
FOZ 0 i latw), +) (11}

(f. fallt monoton von 1 nach 0). Da h, automorph beziiglich der Deckgruppe I’
ist, gibt es genau eine auf # definierte Funktion ¥, mit

Y _oy=h,. (12)
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In [2] wurde gezeigt?), dass diese Funktion fiir positives £ folgende Eigenschaften
besitzt:

v, e C\(%), (13)
v, e CAF—-%) (14)
AV, <(1+e)u¥, auf F-% (15)
AgV, € LUF). (16)

Dabei ist € das y-Bild der Kreislinie

2| = (Z - 1)1/2, (vergl. (6) und (10)~(12)),

also eine analytische Kurve auf %, welche-wenn a(w) gross ist—viele mehrfache
Punkte besitzen kann. In [2] wurde ferner gezeigt, dass es zu £ >0 eine Folge
{0,.})7, 0,,€ C*(%¥), derart gibt, dass @,, - V. gleichmissig auf ¥ und zugleich
(AgB),,, 0,.)— (AgV., ¥.). Daher folgt nun nach Lemma 2.1:

An+1 ”lpt»:llzs _(Aylpw ‘pe)+ Z ()‘n+1_Ak) I(qfe’ (Pk)|27 € >0

k=0

Daraus ergibt sich wegen (15) und ¥, =0:
An-0~1 l'Ws||2$(1+8)u |l‘pe“2+/ Z (An+1~Ak) I(‘Ptv ‘Pk)‘z’ e>0. (17)
k=0

In dieser schwiacheren Ungleichung kann nun auch der Grenziibergang £ — 0
vollzogen werden: Aus (10)-(12) ersieht man, dass ¥, — ¥, gleichmassig auf %.
Somit ergibt sich aus (17) die Ungleichung

1< /A HIPI 2 Y (1= A Ain) [(Po, @) (18)
k=0

2.3 Wir berechnen jetzt die Fourierkoeffizienten und die Norm von ¥, Ist
D < E ein Fundamentalbereich der Deckgruppe I, so folgt aus (10)—(12):

! der hiesige und der dortige Laplace-Operator haben entgegengesetztes Vorzeichen!
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(0 )= |

F

e Wo divg = j (@ oY) (2)ho(2) doo

D

=Y ” (@ °¥)(2)fo(cosh p(Tz, 0)) dw

Tel /D

= Z F (@r °¥)(2)fo(cosh p(z, 0)) dw

Tel’ YT(D)

= | (@on@fifeosh p(z, 0) do

Fithren wir die Polarkoordinaten (7) ein und setzen

(@0 Y)(z) = D (p, D), so ergibt sich wegen (8):

(00 Wo) = rfo(cosh p>(f"<1>k<p, 9) da) sinh p dp.

0

Nach [3] 3.3 gilt aber
2m
|| 0u(e 9) a9 =20, (p)F (cosh o)

Somit folgt aus (19) und (11):

a(p)

(o0, W) = 210, (p)J F(x)F,,(x) dx.

Wegen f,=0 folgt aus (10)

2(z)= ). f¥(cosh p(Tz, 0)). Daher wird

Tell

1w = [ K dw= 3 | fiteosh p(Tz0)) do

Tell

= J’ fé(cosh p(z, 0)) dw = ZWJ; fa(cosh p) sinh p dp
E

a(p)
= 21rj F(x) dx.
1

465
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2.4 Aus (18), (20) und (21) ergibt sich jetzt die Ungleichung

a(u) 2
(}’ F,F,, dx)
1

a(p) n

1=<u/A, ., +27r<j

1 k=0

a(p)

<uha+2m Y A=W la@Pf | R dx
k=0 1

Daraus folgt aber die Ungleichung (A), wenn wir noch nachweisen, dass

|Fi(x)|<1 furx=1, A=0.

Nach [4] pag. 273 (145) besitzt
F,=P,—-v(v+1)=,
die Integraldarstellung

cosh (G—A)Y2u)
(x +cosh u)'?

F.(x)= ‘—/1-3- cos (wvi—2) J:o du,

Fi dx)— Z (1= M/ A10) loe ()P

x=1,

0<asi

(22)

Somit ist F, positiv und monoton fallend in [1, +=), und wegen F,(1)=1 folgt

0<F(x)<1,x=1,0<A=<l

Das gilt auch noch fiir A =0, da F,=1.
Nach [4] pag. 270 (141) gilt:

V2 [ cos (A —H12u)
F;(cosh t)—_'nT (cosh t—cosh u)"? i t>0,

Daraus geht hervor, dass

| F\(cosh t)| < F, ,(cosh 1), t>0,

>
\Y
Bpe

V
2l

(23)

(24)

Hieraus und aus (23) folgt aber die Behauptung (22). Damit ist die Ungleichung

(A) bewiesen.
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3. Hilfssitze iiber o(n)

3.1 Aus der Definition

am)=sup (pn—n)a(pn)-1), 7>

uw=n

folgt unmittelbar, dass o im Intervall (3, +») monoton fallend ist.

3.2 Nach [3] Lemma 2 gilt
a(w)—1=%2u fir wu=3.

Daraus folgt fiur n=3:

o(n)=sup j*(u—n)2u=j*/2.

w=n
Somit ist wegen 3.1
o(n)=j*2 fur n>1.

3.3 F, erfilllt die Legendresche Differentialgleichung

d
P (x>~ 1F,)+uF, =0.

Fir jede Funktion

feC'll,a(w)], fla(pn)=0,

ist fF!/F, stetig in [1, a(p)] und es gilt

0< J’la(u) (x2— 1)(f'—% f)2 dx = La(u) (x2=1)(f')* dx

a(w) ’ a(p) F’
—-[ (xz—-l)Eﬂ(fz)’ dx-i—j &
\ F

" 1

F,

7

(x2— 1)(——)2 £ dx.

467
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(2)

(3)

(4)

(5)

(6)
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Durch partielle Integration unter Berﬁcksichtigung von (4), (5) ergibt sich:

a(uw) a(p)

L““u?—ng%dex=uL F x|

1

Fr 2
2 __ 113 2
(x 1)(_Fu) f* dx.
Somit folgt aus (6):

a(w) alp)
,LI £ dx< J (2= 1)(F)? dx. 7

Die Funktion

&) =J°(j\/azcu_)1 1)

erfillt offenbar die Bedingungen (5). Eine kleine Rechnung ergibt:

r(") £ dx =j32 (a(w)—1) Lj POt dt, (8)

J»Ia(u) (P )P d = Lf ()2t di+Ha(w) — 1)L1 (}t)2 (Jo(1)*t dt

<u+aaurﬂn£uum%m. ©)

Aus der Besselschen Differentialgleichung (tJ3)' +tJ, =0 folgt
i i
L Jo(tJh) dt+ L Jitdt=0,

und daraus durch partielle Integration
i i
L Jo)tdt= L Jatdt.

Somit ergibt sich aus (7)—(9):
(k=% (a(p)-1) <j*/2. (10)
Folglich ist o(j?/4)<j?/2, und daher wegen 3.1 und (3)

o(n)=j*2 fir n=j*4. (11)
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Aus (2) und (10) ergibt sich noch
a(p)=—1~j2pn,  p—> +o. (12)

3.4 Der Intergraldarstellung 2.4 (24) entnimmt man, dass

. o
FM(COSht)>0 fur 0<t$m, u,>;1;.

Daher ist

a(u)> cosh (E?/h)

und

a(pn)—1>2sinh? (-—L—>
4/ —3

Somit wird

a(n)=m-dlan+(n-3)—1]>2(n—} sinh? (M(%I> :

Daraus folgt aber

lim o(n)= +ow. (13)

nll1/4
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