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Comment. Math. Helvetici 53 (1978) 458-469 Birkhâuser Verlag, Basel

Ueber die Eigenwerte des Laplace-Operators auf kompakten
Riemannschen Flàchen II

Heinz Huber (Basel)

Albert Pfluger zum 70. Geburtstag

1.

Es sei 9 eine kompakte Riemaniïsche Flâche vom Geschlecht g^>l, ver-
sehen mit ihrer Poincaré-Metrik konstanter Krùmmung -1. Nach Gauss-Bonnet
besitzt sie den Inhalt

(1)

Es sei

die Folge aller Eigenwerte von -A&, wobei jeder Eigenwert seiner Multiplizitât
entsprechend oft auftrete. Das Weylsche asymptotische Verteilungsgesetz besagt
dann, dass der Quotient

(3)

fur x —» +00 den Grenzwert 1 besitzt. Das schliesst natùrlich nicht aus, dass

inf^ Q&(x) selbst fur beliebig grosse x verschwinden kônnte. In [3] wurde aber

gezeigt: Es gibt eine fur e>0, 8>0 positive und in beiden Variabeln monoton
wachsende Funktion q(s, 8) derart, dass Q&(l+e)^q(e9 8) fur aile Flàchen 9 mit
cosh \\l& 2* 1 + 8. Dabei ist ^ die Lange der kûrzesten geschlossenen
Geodâtischen auf 9.

Dieser Satz soll nun wesentlich erweitert werden: Es gibt sogar eine fur e >0
positive und wachsende Funktion q(e), sodass Q^(k+e)^q(e) fur aile Flàchen 9.
Das ergibt sich aus dem folgenden Satz, der in Abschnitt 2 beweisen wird:

(A) Ist {<prt}n=o ein zur Eigenwertfolge (2) gehôriges Orthonormalsystem von
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Eigenfunktionen, so gilt fur n^O, fi>i, peïF die Ungleichung

l) £ (l-Ak/An+1)|<pk(p)|2.

Dabei ist a(/u,)>l die kleinste Nullstelle der Legendreschen Funktion

im Intervall [1,+<*>). (Fur /x^| besitzt F^ keine Nullstellen in diesem Intervall;
vergl. [4] pag. 388 und'402).

Aus (A) ergibt sich durch Intégration ùber & wegen (1):
(B) Fur n^O, /x>| gilt die Ungleichung

*¦) k=O
(1-Ak/An+1)

Zu gegebenem e > 0 werde jetzt n so bestimmt, dass

Dann ist nach (2), (3)

Wâhlen wir

so folgt aus (B):

In 3.3 wird gezeigt, dass

a(ti)-l~j2/2n fur /x -> +oo,

(/ 2,4048 ist die kleinste positive Nullstelle der Besselschen Funktion /0)-
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Daraus folgt, dass die rechte Seite von (4) fur s —» +°° den Grenzwert 48(1 - S)//2
besitzt. Daher wàhlen wir optimal S =| und erhalten:

16e

(4e +1)2
(C) Q»Q+ «)*„_ " (aa + g/2)-!)-1, e>0.

In [4] pag. 402 wird nachgewiesen, dass

Daher ist wegen F^(l) 1

aOu,)<cosh Z-. (5)

Somit ergibt sich aus (C) das sehr explizite Résultat

(D) O,a+e)^(e) ^sinh-(^), e>0.

Andererseits wurde schon in [3] bewiesen, dass

inf CM!) 0. Wir definieren jetzt

(6)

Aus (5) folgt, dass <t(?\)<&\ & ist oflfensichtlich monoton fallend im Intervall
(4, +00). Wir zeigen nun

(E) Fur m5*1, r\>\ gilt

g-

In der Tat: Aus (B) und (6) folgt
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Wir dûrfen gleich annehmen, dass Àm > 17, da andernfalls nichts zu beweisen wâre.
Dann kônnen wir aber

wàhlen und erhalten

Daraus folgt sofort die Behauptung (E).
In Abschnitt 3 wird gezeigt, dass

lim (t(t})= +00, a(T]) j2l2 fur rj^/2/4.
rjil/4

Somit ergibt sich aus (E) insbesondere

(F) Am<Ç+^-, m*l.

Es ist bemerkenswert, dass dièse Abschàtzung die "richtige" Grôssenordnung des

asymptotischen Gesetzes

1J, m^oo?

besitzt, im Gegensatz zur Abschàtzung von Cheng [1]:

Àm ^1+ I67r2d~2m2, d Durchmesser von &,

(d erfùllt ûbrigens die Ungleichung cosh d>2g-l).

2. Beweis von (A)

2.1 Der Beweis der Ungleichung (A) stùtzt sich auf folgendes

LEMMA. Fur n ^ 0 und reellwertige 0 e C2(&) gilt:

-W,0,0)+ f (Àn+1-Àk)|(6>,cpk)|2.
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Beweis: Da die Funktion

qr=0- £ «9,<pk)-(pk (1)
fc-0

orthogonal zu den Eigenfunktionen <p0,... <pn ist, liefert das Rayleighsche Ex-
tremalprinzip die Ungleichung

|grad !P|2 d(o& -(A&W, W). (2)

Wegen ©gC2(^) gilt

-Àfc(6>, <pk).

Somit folgt aus (1):

k=0 k=0

(3)
fc=O

Weiter folgt aus (1):

Nun ergibt sich die Behauptung aus (2), (3) und (4).
2.2 Es sollen jetzt Funktionen auf 2F konstruiert werden, auf welche sich

dièses Lemma mit Erfolg anwenden lâsst. Zu diesem Zweck versehen wir den
Einheitskreis

E {z € C| \z\ < 1} mit der hyperbolischen Metrik

welche die Krûmmung —1 besitzt. Fur die hyperbolische Distanz p(z, 0) ergibt
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sich dann

(6)

Fûhren wir geodâtische Polarkoordinaten

p p(z,0), tf argz (7)

ein, so wird

Somit besitzt die Metrik das Flâchenelement

d(o sinh p dp d#. (8)

Ist nun p € 9 ein beliebiger Punkt, so gibt es eine konforme Ueberlagerungs-
abbildung

y:E-*9, y(0) p. (9)

Mit Hilfe von y wird die Differentialgeometrie (5) von E auf 9 verpflanzt und
ergibt, unabhângig von der Wahl von p, die Poincaré-Metrik von 9. Wir bezeich-

nen mit F die zu y gehôrige Gruppe der Deckisometrien von E und betrachten
fur e 55 0 die Funktionenschar

K(z)= X /e(coshp(Tz,0)) (10)
Ter

mit

in [,(M)],Mi/.() rt r
(11)

0 in [a(ti),+co),

(fe fâllt monoton von 1 nach 0). Da he automorph bezûglich der Deckgruppe F
ist, gibt es genau eine auf 9 definierte Funktion ^ mit

V.°y h.- (12)
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In [2] wurde gezeigt(1)), dass dièse Funktion fur positives e folgende Eigenschaften
besitzt:

(13)

(14)

auf y-« (15)

(16)

Dabei ist # das y-Bild der Kreislinie

l-(£)" und

also eine analytische Kurve auf £F, welche-wenn a(fx) gross ist—viele mehrfache
Punkte besitzen kann. In [2] wurde ferner gezeigt, dass es zu e > 0 eine Folge
{©m}7, 0m e C°°(^), derart gibt, dass ©m —> ^ gleichmâssig auf ^ und zugleich
(à&&m, ©m)—» (A^e> ^e)- Daher folgt nun nach Lemma 2.1:

n

k=0

Daraus ergibt sich wegen (15) und We^0:

k=0

In dieser schwàcheren Ungleichung kann nun auch der Grenzùbergang e —> 0

vollzogen werden: Aus (10)-(12) ersieht man, dass ^ —> ^o gleichmâssig auf ^.
Somit ergibt sich aus (17) die Ungleichung

l^/Lt/A^+ x + H^oir2 £ (1-^fcMn+ l) K*0» <Pk)|2- (18)
k=0

2.3 Wir berechnen jetzt die Fourierkoeffizienten und die Norm von ty0. Ist
ein Fundamentalbereich der Deckgruppe T, so folgt aus (10)-(12):

1 der hiesige und der dortige Laplace-Operator haben entgegengesetztes Vorzeichen!
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(<pk, ¥0)=J <pkV0d0)<?=^ (<pkoy)(z)h0(z)d(D

I I (<Pk°y)(z)f0(cosh p(Tz,0)) dco
Ter Jd

1 f (<Pk°y)(z)fo(coshp(z,0))dco
Ter JT(D)

f (<pk°7)(z)/o(coshp(z,0))dco.
Je

Fùhren wir die Polarkoordinaten (7) ein und setzen

(<pk°y)(z) <Pk(p, &), so ergibt sich wegen (8):

(<pk, *0) j /o(œsh p)Q W4>k(p, *) dd] sinh p dp. (19)

Nach [3] 3.3 gilt aber

,2,
Jo k P'

Somit folgt aus (19) und (11):

(<pk, «g 2TT<pk{p) J
"

F(t(x)FXt(x) dx. (20)

Wegen /05=0 folgt aus (10)

h?(z)^ Z /o(cosh p(Tz, 0)). Daherwird

)do»^X f flicosh p(Tz,0))d(o
Ter JD

J /g(cosh p(z, 0)) dw 2ir [ /^(cosh p) sinh p dp (21)

2ttJ
M

i* (jc) dx.

Ter



v-1 "

k
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2.4 Aus (18), (20) und (21) ergibt sich jetzt die Ungleichung

X d-Ak/An+1)|(pk(p)|2(fafA F^i
n /*a(M-)

^/An+1 + 27r X d-VAn+i)|<pk(p)|2 F*k(x)dx.
k=o h

Daraus folgt aber die Ungleichung (A), wenn wir noch nachweisen, dass

|FA(x)|^l fùrjc^l, A^O. (22)

Nach [4] pag. 273 (145) besitzt

die Integraldarstellung

rw x
^2 i ii x f°°cosh((i-A)1/2w) JFx(jc) —cos(Wi-À) -7— u \m du, x^l, 0<A^i

7T Jo (x + coshu)1/2

Somit ist FA positiv und monoton fallend in [1, +o°)9 und wegen FA(1) 1 folgt

¦h (23)

Das gilt auch noch fur A =0, da Fo= 1.

Nach [4] pag. 270 (141) gilt:

A^i (24)
u)

Daraus geht hervor, dass

|FA(cosh 01 ^ F1/4(cosh 0, t > 0, A

Hieraus und aus (23) folgt aber die Behauptung (22). Damit ist die Ungleichung
(A) bewiesen.
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3. Hilfssatze ùber o-(tj)

3 1 Aus der Définition

o-(T7) sup(iLL-Tî)(a(/x)-l), n>l, (1)

folgt unmittelbar, dass <x îm Intervall (5, +00) monoton fallend ist

3 2 Nach [3] Lemma 2 gilt

a(n)-l^]2l2v fur /ll^3 (2)

Daraus folgt fur 17 ^ 3

(7(17) ^ sup /2(/x - T7)/2/Lt y2/2

Somit ist wegen 3 1

(T(r))^]2l2 fur 77 >± (3)

3 3 F^ erfullt die Legendresche Difïerentialgleichung

^^ ^=0 (4)

Fur jede Funktion

/UG / 0, (5)

ist fF'JF^ stetig in [1, a(jx)] und es gilt

2

(6)
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Durch partielle Intégration unter Berucksichtigung von (4), (5) ergibt sich:

j ^
Somit folgt aus (6):

MJ fdx^J (*2-l)(/')2dx. (7)

Die Funktion

erfùllt offenbar die Bedingungen (5). Eine kleine Rechnung ergibt:

(8)p |((p))

P0(t))2tdt. (9)

Aus der Besselschen Differentialgleichung (*/£,)'+ fJo 0 folgt

und daraus durch partielle Intégration

Somit ergibt sich aus (7)-(9):

(^ _ /2/4)(a(/Lt) -1) ^ /2/2. (10)

Folglich ist o-(/2/4)^;2/2, und daher wegen 3.1 und (3)

a(-n) j2/2 fur tî^/2/4. (11)
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Aus (2) und (10) ergibt sich noch

a(fJL)-l~]2/2tx, iit^+œ. (12)

3.4 Der Intergraldarstellung 2.4 (24) entnimmt man, dass

F^cosh t) > 0 fur

Daher ist

7T/ 11

a(/Li)>cosh I——
\2Jii

und

>2sinh2(

Somit wird

Daraus folgt aber

lim
-nli/4
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