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Some new results in probabilistic group theory

P. ErDOs aAnND R. R. HaLL

Introduction

Let (G,+) be an Abelian group of order n. Let us choose k elements
g1, &, - .., & from g and denote by R(g) the number of representations of the
element g€ G in the form g=¢,8,+¢e,8,+ -+ €& here and throughout the
paper each g; takes one of the values 0, 1. Set d(r)=card{ge G: R(g)=r}.

Let us suppose that the elements g,, g,,..., & are chosen randomly and
independently from G: each element has a probability 1/n of being chosen. We
are interested in the distribution of the values of R(g) when 2* is approximately
n. We write A =2%/n, the mean value of R(g).

Problems concerning R(g) have been studied in [1]-[8]. We do not assume
familiarity with these papers but we shall need to quote results from them.

In our main result we impose the following condition on G:

Condition A
For each fixed positive integer |, the number of elements of G of order [ is o(n).
Our main theorem is as follows:

THEOREM 1. Let G satisfy A, and k = (log n/log 2)+ O(1). Then for each
fixed integer r=0, we have

A
d(r)~ne™—
r!

with probability — 1 as n — o,

COROLLARY. Let G satisfy A, and letn — », k — o together in such a way
that with probability — 1, every ge G is represented in the required form, i.e.
d(0)=0. Then A — .

We can say rather more if G is cyclic, or more generally if we are given any
specific bound for the number of elements of each order. Thus we have

THEOREM 2. There is an absolute positive constant b such that if G is cyclic
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and n — », k — ® together in such a way that A <b log log n, then with probability
—1,d0)>0.

In the opposite direction, Erdés and Rényi [2] proved, independently of any
condition on G, that if A/log n — o arbitrarily slowly as n — o, then d(0) = 0 with
probability — 1. It would be very interesting to know to what extent this is sharp.

Regarding the relevance of Condition A, we think that it is necessary for
Theorem 1. We will show by an example that with no condition on the orders of
the elements, both our theorems become false. The reason for this is as follows.
The distribution of the values of R(g) is closely connected with the moments
Y {R™(g): g€ G} and with the expectations w,, of these moments. Now it is not
difficult to show that for m <3, u,, does not depend on the structure of G, in fact
K. Bognar [1] gave the formulae

k 1
pa= et 2(1-3)

n n
K4k 1N/ 2
by e 3 (1 ——)+2'<(1 ——)(1 ——).
n n n n n

However, for m=4, u,, depends on the orders of the group elements. In
particular, let G be the direct sum of t cyclic groups of order 2, so that n=2"
Bognar evaluated u, precisely, all we need here is that in this case

e~ D{N*+ TN+ TNZ 4],

whereas according to Theorem 1, the coefficient of A* on the right should be 6.
This shows that some condition on the structure of G is needed. The same
example shows that Theorem 2 also depends in some way on the group structure.
For as R. J. Miech [7] noticed, G can be regarded as a vector space over Z, in
this case, moreover R(g) takes just two values. In fact £,g, +e,8,+- - -+ &8
generates a subgroup of order 2° say, and on this subgroup, R(g)=2'"". But then

2 (R(g)—A)* =222 = 1).

If d(0)>0, we must have v <t so that the right hand side is at least 2*~* = nA?,
whereas from the formula above for w,, the expected value of the left hand side is
2¥(1—1/n)<nA. It follows from Markoff’s inequality that the probability that
d(0) > 0 is less than 1/A. Hence we have immediately

THEOREM 3. If G is a direct sum of cyclic groups of order 2 and n —
A — o together, then d(0)=0 with probability — 1.
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It is interesting and rather surprizing that in Theorem 1, the distribution of
d(r) is (asymptotically) binomial, just as if all 2* elements &,8, +£,8,+* * -+ £.&
had been chosen independently.

We would like to mention the following purely combinatorial problem: let G
be a direct sum of t cyclic groups of order 3. What is the least value of k such that
there exist g, g, ..., & giving d(0)=0?

Most of our notation is introduced as it is needed. We define here:

w(G,l)=card{ge G: lg=05}
o*(G, )=max{w(G,I'): I'<1}.

G denotes the group of characters x acting on G and x, denotes the principal
character.

LEMMA 1. Let K be an h-dimensional subspace of R™ and C™ an m-
dimensional hypercube. Suppose.that K contains 2" vertices of C™. Then we can
choose an origin at a suitable corner of the hypercube such that these vertices are the
vectors €,V + eV, +- - - +¢,v,, where the v, are orthogonal and are themselves
vertices. Moreover, for a fixed origin, each set of v,,v,, ..., Vv, gives a different set of
2" vertices.

Remark. It was shown in [5] Lemma 1 that K cannot contain more than 2"
vertices of C™. The present lemma characterizes the extremal configurations.

Proof. This is by induction on m. The result holds for m =1 and we assume it
holds for m —1. We may further assume that h >0, otherwise we choose O =
KNC™ and the result is trivial.

Let us begin by choosing O in KN C™ and labelling the other vertices of C™
with coordinates (g, €,, . . ., €,,). This choice of O is somewhat arbitrary and may
need revision.

Let H; and H} be the hyperplanes with x; =0 and 1 respectively. Thus C™ is
the space between two (m — 1)-dimensional hypercubes C in H; and C' in H].
Next HiNH,N---NH, =0 so we may assume j fixed so that K& H,. Plainly
K& Hj. Let us write L =KNH; so that dim L =h—1. From the lemma men-
tioned in our remark above, L cannot contain more than 2"~! vertices of C.
Hence K N Hj is non-empty and is of the form L +u. Again L +u cannot contain
more than 2"~ vertices of C’ and to account for all 2" vertices in KN C™, there
must be equality in both cases.

We apply the induction hypothesis to the intersection of L and C in the
(m —1)-dimensional space H;. We choose a (possibly) new origin so that LN C is
just the set of vectors g,v, +&,v,+ - -+ g,_,V,_;. The vectors v; are orthogonal so
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they are a basis of L. Let e be the vertex in KN C’ nearest to the new origin.
Then v4,V¥,,...,V,_; and e are a basis for K, and we have to consider when
y=&v, &V, o+ & v, + &e can be a vertex of C™.

With respect to the new origin, relabel the vertices, of C™ with coordinates

(64,85, ...,8,), each § =0 or 1. The vertex v; has coordinates (§;;, 85, . . . , 8;,)
where §; =1 for at most one i, by the orthogonality of the v,’s. As e£L, if e has
coordinates (8, 8,2, . . . , 8,,,,) there must be at least one j for which §,;,=1, §; =

0 for i<h. Thus if y is a vertex, we must have £€=o0 or 1, and if £=0 y lies in
L N C so that ¢ = ¢, for i < h. Next, let £=1 and suppose one of the &, &, say, is
negative, and that y is a vertex. Since v, is orthogonal to the other v;’s and y has
every coordinate 0 or 1, we must have & = —1 and §; < §,; for every j. But then
e—v, is a vertex of C’' and it is nearer than e to the origin. This is a contradiction,
and we conclude that & =0 for every i < h. Now suppose y is a vertex, and &, (say)
is positive. Then v, is orthogonal to e, (otherwise y would have some
coordinates = 2), and in fact & = 1. Hence for each i < h, either v, is orthogonal to
e and £ =¢, or §=0. We have to find 2" ! vertices y with £=1 and so e is
orthogonal to all the v,. The result follows if we write e =v,, £ = g,.

To prove the last part of the lemma, we suppose there is an alternative set of
vertices v;v4, ..., v} giving rise to the same set of 2" vertices. Then we have
V=g,V &Vt - +€,V, and so v/ is just the vector sum of some of the v]s.
But the v/ are orthogonal, hence these sums must be disjoint, and as there are the
same number of v} and v,, each sum has just one term. Hence the v; are just a
permutation of the v;.

LEMMA 2. Suppose thatd, =0 forr=0,1,2,...,A=0, and that for 0sm =<
M we have

oo
Y drm—e™ Y —rm
r=0 ¢

Then we have

AM(14+2)
r'(M—r)!

,\r M
d-eT|<2M+) Y Bt
* m=0
for each r<M.
Proof. Choose T in the range r<T<M and set
T 1 T
Q(x)=Q(x;r, T)= Z CnX™ =——<1)(— DT (x—)),
m=0 T'\r i=0

the factor (x —r) being omitted from the product. Thus Q(r)=1,Q(j)=0 for
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0<j<T,j#r and sgn Q(j) =(—1)""" for j> T. Since T< M, we have

% d4Q0-¢ § 500)|< 3 fenl

and by Cauchy’s formula,

1 (2% .
|cm|<§—; J; |Q(e®)| do < (g(T+ 1)=<2"(T+1).

Next

[ ] r

A N A
ZO Q(’) T I ,-Z:’Tr!(T—-r)!(j-—r)(j—T—l)!

and putting these inequalities together, we get

T+1

T
<2UTHY L Bt T

oo ) _ Ar
Z de(])—'e A_r—!

i=0

Now Y d;Q(j) is either =d,, or <d,, according as T=r(mod 2) or not, and we are
free to choose T= M or M —1. Using both these values of T, we obtain the result
stated.

LEMMA 3. Let p(m, h) denote the number of partitions of m distinct objects
into h disjoint non-empty sets, the ordering of those sets and of the objects. within the
sets being immaterial. Then we have the identity

i p(m, W)A" =™ ZLT
h=1 i=0

Proof. Put A =e” and denote the function on the left by ¢,,(y): In view of the
relation p(m, h)=hp(m—1,h)+p(m—-1,h—1) we have ¢,(y)=d},._(y)+
e’d,._1(y). It follows by induction that

m

d
@ (y) exp (e”) =———exp (e”)
and we expand exp (ey) in powers of e’ and differentiate term by term.

Proof of Theorem 1. We use the notation E(X) or simply EX for the
expectation of the random variable X. The main step in the proof is to find
asymptotic formulae for

=E) R™(g) and aﬁ,=E(Z R™(g)— )’

subject to condition A.
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We recall from [3] Lemma 2 the formula

1
_IZZ"'ZNk(XlaXZ""’Xm)

m
n X1 X2 Xm

Mm =

where the sums are over all ye G except in the innermost sum: here the dash
indicates that x;Xx>°** Xm = Xo SO that really this sum has just one term.
N(x1, X25 - - - » Xm) 1S the number of solutions of x5:x52- -« x&n= x,s0 that 2< N <
2™. We rewrite this in the form

1 .
B == 2. M,.(G, N)N*
h N

Where Mm(G, N) = card{XIs X255 Xm-X1X2" " " Xm = Xo and N(XI’ X254 Xm)=
N}. We proved in [3] Lemmas 1,2

A 2" log N
Mm(G,N)$<N)n" where pz{m~1(())gg2}'

Let us define

log N 1
og +[_ og N

T:»r(m):max{ ]:2SN$2m,N#2h}
log 2

log 2
All we need is that <0 for every m; in fact we have 7(m)=
(log 2)"'log (1—2"™). Then we have

m

1 .
e Y. M(G, 2")2"*
n=1

m
< n1+-r Z (2 )Nk—-(logn)/(logZ),
~ \N

and the right hand side does not exceed n'* 22"A™.
It remains to consider M, (G, 2"). As G and G are isomorphic, this is equal to

M, (G, 2"), the number of sets g, g, . . ., & such that g, +g,+ - - - +g, =05 and
such that exactly 2" equations

€181t €281 "t & m&n =0s, (Ists2h)

are satisfied. Let S denote such a system of N=2" equations, W,.(G, S) the
number of sets g;, g,, . .., & satisfying precisely these equations, and no others,
and W¥(G, S) the number of sets g, &, ..., g, satisfying these equations and
possibly others as well. We have M, (G, N)=) W, (G, S) where the sum is over
all systems S of N distinct equations, also

W,.(G, S)= WX(G, S)- ) WE(G, S)+) WX(G,S")—---

where Sc §', S< S° etc.,, and S', S”, . .. run through systems of N+1, N+2, ...
equations. We always have W,_ (G, S)= W*(G, S)— 6 W*(G, S') for some 6=
0(S)e[0,1].
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With each equation in a given system S we associate the vector u, € R™ with
coordinates {¢, , &, . . - ,&,m}. Thus u, is a vertex of the hypercube C™. Let K be
the subspace of R™ spanned by the vectors u, Since K intersects C™ in 2"
vertices, we have dim K = h, and we distinguish the two cases dim K> h, dim K =
h.

Suppose then that dim K=1I1>h. We can find [ of our vectors, say
u,u,...,u; which are a basis for K, and we have to solve the equations
£,181F €28+ + € m8m =0s(1=<t=<I). The matrix {g; 1<i<l 1<j<m} has
rank [ and so we can find | independent columns, say the first L It follows from
Cramer’s rule that given g1, 8.2, . - - , & Of which there are n™! choices, Ag; is
determined for each i=</[ where A is the determinant |¢;|(1<i<[ 1<j<I). It
follows that W, (G, S)< WX(G, S)<n™ 'w(G, A) and so

M,.(G,2")~ Y 'W.(G, S) \s @:) nmh 0¥ (G, m)),

where the dash denotes that the K associated with S has dimension h. Let S’ be a
system of N+ 1 equations, S’ > S. Plainly the K’ associated with S’ has dimension
exceeding h, moreover when we sum over S each S’ has to be considered N times,
and so <N times in the restricted sum above. Thus

m

M,.(G,2")-Y 'W¥(G, S) ls 2" +1) (;) "R lG* (G, m)).

If K is a subspace of R™ intersecting C™ in the maximum number 2" of vertices,
by Lemma 1 there exists vertices v,,V,,...,v, which are orthogonal and such
that the u, associated with S are just £,v, +&,v,+: - -+ ¢,v, in some order. We
relabel so that v; =w; for i< h thus v; has coordinates {¢;, €5, . . . , &_,.}. Since S
contains the equation g, +g,+---+g, =045, one of the u,’s is the vertex of C™
opposite the origin: this vertex must be v, +v,+---+v,. Therefore for every
j < m, there is exactly one i<h such that ¢; =1. Hence the number of ways of
choosing v,, v,,...,v, is p(m, h), and each choice gives a different S. Moreover,
each of these special systems S has exactly n™ ™" solutions, for the equation

corresponding to v; determines one group element for each i < h, and the others
may be chosen freely. Hence

9

Y ’W:(G, S)=p(m, h)n™™"

and putting all our inequalities together, we get

B —n Y. p(m, A®|<227"A™ (0" + (2™ + 1)0*(G, m!))
h=1
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It follows that if G satisfies Condition A, we have for each fixed m that

B ~n Y p(m A" as n—>o
h=1

We need an upper bound for o,, and we begin from the formula

p+ o2 = (Z R'"(g)) I 2ZN (X15 X2 - - + Xoms X'15 X5+ + - X'n)

where the sum is over all sets of characters xi, X2, - - - » Xus X015 X5s - - - » X' Satisfy-
ing both xix2°°* Xm = Xo and xix5%: - x.=xo- This is proved by the method
used in [3] Lemma 2. the calculation that remains is very similar to the one for w,,
and we do not give the details: the conclusion is that provided G satisfies
Condition A, we have o, = o(n) for each fixed m.

We apply Tchebycheff’s inequality and deduce that for each fixed m there is a
function B,,(n) such that B,,(n) - 0 as n — o« and such that with probability — 1
as n — o, we have

Y R™(g)—n ) p(m, h)A"|<nB,.(n) (1)
g h=1

Let us denote by v, (n) the probability that this inequality is false, so that
Yn(n)— 0 as n — o, By a familiar diagonal argument, we can find an M=M,
such that simultaneously:

M, — =, Z Ym(n) = 0,2M(M +1) Z B (n)— 0,
m=0
as n — . Therefore with probability — 1 as n — %, (1) holds for every m<M
and so by Lemma 2, we have

r

<n2M(M+1) Z 8 (n)+n i 0HN)

)\)\
1"(’)_"6 r! o r(M—r)!

for each r<M. For any fixed r, ultimately M >r, moreover since A = O(1), the
right hand side is o(n). This completes the proof.

Proof of Theorem 2. When g is cyclic we have 0™*(G, m!)< m! and therefore

<22 A™(n**"+ (2™ +1)m!).

tw—n Y p(m, A"
h=1

Recall that 7(m)=(log2) 'log(1-2"")< —2""/log2. Hence there exists an
absolute constant C such that the left hand side does not exceed CnA™ exp (—
avlog n) provided 2™ <+log n :here a = (log 2)"' —log 2. In a similar way, it can
be shown that provided 4™ <+log n we have o2 < C'n?A?™ exp (—avlog n). Let
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us set B,,(n) =2CnA™ exp (—1a+log n). Then we have

?Bm(n)>

Y R™(g)—n i p(m, h)A"

g

()= prob (

1
<prob ( = CnA"™ exp <—§ avlog n))

>, R™(8)~ ptmm
g

=2 1
sC'C”exp —gax/logn).

by Tchebycheff’s inequality. Let M =M, be the greatest integer such that
4M < log n, and suppose that AM <exp (3 avlog n). Then we have

Z B(n)— 0

m=0

M
M-, ) y,(n)—0,2MM+1)
m=0

as n — . Therefore with probability — 1 as n — © we have by Lemma 2 as
before that

M AM
|d(0)— ne™*|<n2M(M+1) Z B,.(n)+ nes (1+A).
m=0 K
Let us suppose that d(0)=0. Then we have
e < (C"(log n) exp (—l ax/log n) +§—A—4 1+2A)
3 M!

for a suitable absolute constant C”, and if A < MJ/4, this is a contradiction if n is
large enough. Thus d(0)>0, indeed d(0)~ ne™. This proves the theorem, and
gives 1/16log 2 as a permissible value of b.
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