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Cylinders on surfaces

Isaac Chavel and Edgar A. Feldman*

In [2] B. Randol has shown that if M is a compact Rieman surface with metric
of constant curvature — 1, and 7 is a simple closed géodésie on M of length L7,
then the area, A7, of the largest topological cylinder swept out by geodesics of
identical length perpendicular to and centered on y, satisfies

A7>2L7csch(L7/2) (1)

In Remark 4 Randol asked if there is a corrresponding resuit for surfaces of
variable curvature. We point out in this note that the answer is yes, viz., if M is a

compact orientable surface whose Gauss curvature function K satisfies the
inequalities

-1<K<-k2<0 (2)

where k is a positive constant, then A7 satisfies the inequality

(R) A7 > (2L7/k) sinh {k arecosh tanh

(Note that when k 1 the two inequalities coincide.)
The proof will consist of two parts: (i) we show the validity in the universai

covering of M, M, of the construction given in Figure 3 in [2] (without the
symmetry about the vertical géodésie) and then show, as in [2], that the top latéral
géodésie in Figure 3 can intersect at most one of the side geodesics; (ii) will then
consist of a comparison argument in the universal covering M.

1. The Sturmian estimâtes

For the moment M will be any orientable complète 2-dimensional Rieman-
nian manifold. For p e M we will dénote the tangent space to M at p by Mp, and
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440 ISAAC CHAVEL AND EDGAR A FELDMAN

the tangent bundle by TM. For £ fi, &> e Mp, (&» £2) will dénote the inner
product of & and £2> and |£| the norm of £ For any difïerentiable path 7 : R—» M,
7' will dénote the velocity vector field along 7. The exponential map of TM to M
will be denoted by exp. The map is defined by the property that for any £ e TM,
the path

is the géodésie for which 7^(0) is the point in whose tangent space £ is found, and

7^(0) £ We assume a fixed orientation of M is chosen and define t : TM-> TM to
be the rotation in each tangent space of tt/2 radians.

Let 7:R-»M, |7'| 1 be a géodésie in M, and define u:R2—> M by

i?(x, y) expyi/y'(x). (3)

We dénote the coordinate tangent vector fields along v by dxv, dyv, and invariant
differentiation (in the Levi-Civita connection of the Riemannian metric) with
respect to x and y by Vx and Vy respectively. The standard arguments yield

|dyu| l, Vydyv 0, (4)

(dxv,dyv) 0.

If we set

t] (dxv, -l dyv) V<ax, dx) VE(x, y)

then Jacobi's équation of géodésie déviation reads as

with initial conditions

tj(x,0) 1, dyr,(x,0) 0

for ail x e R. The standard Sturmian arguments verify the following

LEMMA. If the Gauss curvature K of M satisfies (2) on M for some given

k>0, then

cosh Ky =s t|(jc, y) < cosh y 5)
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for ail (x, y)eR2. For ail xeR, y >0 we hâve

k sinh Ky <dyr)(x, y)< sinh y, (6)

and for ail x e R, y < 0 we hâve

k sinh Ky > dyTj(x, y) > sinh y. (7)

In particular u is of maximal rank on ail of R2. Furthermore if y is a covering
of its image in M then t> is a covering of M by R2.

2. The picture in the universal covering of M

We now let M be our compact orientable surface (thus complète) satisfying
the inequalities (2) for some given k>0. Note that the Gauss-Bonnet theorem
implies that M has genus >2. Let y :R—» M, |y'| 1 be a simple closed géodésie
in M of length L7, Le., y{x^) y(x2) if and only if x2-Xi is an intégral multiple of
Lr Then y is a covering of its image y(R) in M and the map v defined by (3) is

periodic in x with period L7, and is a covering of M-the universal covering.
Now for sufficiently small d>0, v |Rx(-d, d) is a covering of its image, a

cylinder in M, with deck transformation group LTZ-the group of y :R—» y(R).
Let d0 be the largest such d>0, Le., d0 is the distance from y(R) to its focal eut
locus. The left inequality of (5) then implies

Ay A(i;(RX(-d0, do)))>(2Ly/K) sinh *d0. (8)

So our job is to estimate d0 from below.
We note that since v is of maximal rank on ail of R2 there must exist xu x2

such that either

v(xt, d0) v(x2, d0), y(xa) ^ y(x2) (a)

or

v(xu -d0) u(x2, -d0), y(xj) ^ y(x2) (b)

or

v(xl9 do)=u(x2, -d0), (c)
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Le., there exist two distinct geodesics emanating from points of y, orthogonal to y,
which meet at distance d0 along the geodesics. In the first two cases they emanate
from the same side of the géodésie and in the third from opposite sides. By an

argument of W. Klingenberg [1, Lemma 1] they meet smoothly, i.e.,

dyv(xl9 d0) -dyv(x2, d0), (a ')

dyv(xu -d0) -dyv(xu -d0), b'

dyv(xl9 d0) dyv(x2, -d0), (cr)

respectively, The first two cases are geometrically the same so we shall only
consider (a) and (c).

We now endow R2 with the Riemannian metric for which v is a Riemannian
covering. Then the translation

(9)

is a deck transformation of v and an isometry of R2 in its new metric. When

referring to R2 with the metric lifted from M via v we shall dénote R2 by M.
For convenience assume x1 0, and let F be the géodésie in M given by

F(x) (x, 0), let (ou o>, û>2 be the geodesics in M given by

<ot(y) (-LY/2, y), a>2(y) (LJ2, y), o>(y) (0, y),

and let a be the géodésie in M through (0, d0), orthogonal to <o at (0, d0) and
oriented from left to right through (0, d0). Then there exist maximal a, j3 > 0 and

a smooth function /: (-a, j3) -» R such that o-(x) (x,y(x)). From the Lemma and
Section 3 we hâve y strictly convex, i.e., y">0.

We now claim that it is impossible that both a, j8 > Ly/2, i.e., that cr intersects
both û>! and <o2. We start with case (a).

Assume that a intersects a>x at coCyx) and a)2 at û>2(y2)- Let o^ be the path in M
consisting of a composed, if yt # y2, with <o2 from <o2(y2) to û>2(yx). Then the

projection of <ru vicr^, is a pieeewise smooth géodésie loop in M homotopic to 7,
with 1 or 2 corners, depending on whether yt — y2 or yt 5* y2 respectively.

At F(x2) draw c5(y) (x2, y) and lift v(at) to âx in M through <ô(d0). Then the

velocity vector of crj at a>(d0) is orthogonal to <ô and, by (a'), oriented from right
to left. The smooth segment of ât, containing ô>(d0) is, of course, géodésie in M
and remains transverse to the foliation {x const} in M including the limit of the

velocity vector field at the endpoints of the segment.
Let pt be the lift of o>1(y1), p2 the lift of o>2(y2), and p3 the lift of o>2(yi); and
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Figure 1

for peM let x(p), y(p) dénote its coordinates. Next let 2X be the géodésie

segment of âu containing <o(d0), i.e., Connecting px to p2, 22 the segment
Connecting p2 to p3, and 23 the translate of 2l9 Ly units to the right (i.e., via (9)).

We now start our argument. Since 2t is oriented from right to left, we hâve

x(p2)<x(pl). On the other hand, u(<Ji) viaj is homotopic to y which implies p3
is the image of px under the deck transformation (9). Thus,

x(Ps) *(Pi) + Lyy y(p3)

In particular, p2 ^ p3 and o- must hâve 2 corners. If we started with 1 corner then
we already hâve the desired contradiction.

We think of p traveling along X2 from p2 to p3. As mentioned partially)
above, any géodésie is either always transverse to the foliation {x const} in M, or
always tangent to it. When transverse, it is the graph of a convex function. Thus as

p leaves p2 it may not leave vertically or to the left, if it is to connect with p3.
So p moves to the right as it leaves p2. If it leaves above Xx then to reach p3 it

must cross the géodésie determined by JSt which is impossible (e.g., by Gauss-
Bonnet formula). So p leaves p2 moving to the right below 2X.

Let / be the line in M tangent to 23 at p3. If p approaches p3 above / then 22
intersects 23 at 2 points, which is impossible. If p approaches p3 below / then the
angles of ât at p2 and p3 from the terminal velocity vector to the initial one at
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<O2(y2)

Figure 2

each corner, are of the same sign. (Recall: the discontinuities of the velocity
vector field are corners not cusps.)

But the corresponding angles at the corners of at hâve opposite sign (Figure
2) - a contradiction, since ât is the isometric image of <r1 by some élément in the
deck transformation group.

The proof for case (c) is as in [2, Case #2].

3. The comparison argument

We now restrict ourselves to M as in §2, viz., the metric in M is lifted from M
via v and its Gauss curvature therefore satisfies (2). We apply the apparatus of §2

with v now being the identity map.
Let a be any géodésie in M; as mentioned, if a is transverse to the foliation of

M, {x const}, at one point then it is always transverse to the foliation.
When a is transverse to the foliation, we can then write a as the graph of a

function y(x). Standard calculation then shows that

y"(x) Ey^
2E

(10)

y'(0) 0, so y"(jc)>0 in some neighborhood of 0. We wish to show that y"(x)>0
in the entire domain of y. We will restrict our attention to x > 0, as the other case
follows in a similar manner. Let y(x) be the angle the curve (x, y(x)) makes with
the line y-*(x, y), i.e., tan(tr/2-7(x)) y'(x). It suffices to show y'(x)<0. Let
Rx be the géodésie quadrilatéral bounded above by the graph of y(x), below by
the x-axis, on the left by the y-axis, on the right by the line y -* (x, y). Applying
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the Gauss-Bonnet formula to Rx, we obtain the équation
rx / ry(s)

?-y(x)=-[ K(x,y)v(x,y)dxdy=-\(\ K(s,t)V(s,t)dt)ds (11)

thus,

K(x,0r?(x,r)dr<0. (12)

Now let Mx be the hyperbolic plane of constant curvature — 1, l1: TM1 —> TMX
the rotation of tangent spaces to M1 by tt/2 radians, yx'.R —>Mu |yi|= 1 a

géodésie,
*>i(*> y)= exp ytiyi(x), i7i (dxvu -t 5yUi).

Then, of course,

t?i(x, y) cosh y, dyTh(x, y) sinh y.

Replace for the moment the inequality (2) by

-1<K<-k2<0 (2')

and consider the geodesics or, t in M, Mj respectively, defined by

cr(x) v(x, y)(x)), r(x) t>x(x, y^x))

and such that

We now wish to show that y(x)^yx(x) for ail x where yi(x) is defined. One again

only considers the case x>0. Let yx(x) be the analogous angle function for the

curve (x, yi(x)), and note that it suffices to show

y1(x)<y/(x) for x where yi(x) is defined. (13)

(13) clearly holds for x in a small neighborhood of 0. Thus if it is to fail we can
find some number xo>0, such that y(x)<yx(x) for xg[0, x0], yi(*)<y'(*), xe
[0, x0) and y^Xo) y'(*o). Hence

- K(x0, t)t\{x0, t)dt= cosh r dr.



446 ISAAC CHAVEL AND EDGAR A FELDMAN

But (2') and the inequalities of the lemma show this to be impossible. Thus the
domain of y(x) is at least as large as that of yi(x).

This in turn implies that as in [2],

d0 ^ arccosh ((tanh (LJ2))-1). 14

If we are given (2), then for every e > 0, (2') is valid for -1 - e in places of - 1.

One writes the lower bound for d0 in this normalization (cf. (13) below), and lets

e|0. Then (11) remains valid under the assumption (2). Substituting (11) into (8),
we obtain (R).

4. Conclusion

A close look at the estimate for d0 shows that we only used the fact that the

genus of M was ^2 (this hypothesis is used in case (c). cf. [2]), and the assumption
We may therefore formulate the estimâtes as follows.

THEOREM. Let M be a compact Riemann surface of genus ^2 whose Gauss

curvature satisfies

for some constant 8 > 0. Then for any simple closed géodésie y of length Ly, the
distance d0 from y to its focal eut locus is estimated by

J ^arccosh((tanh(8LJ2)-1)
a^ __ \\b)

and if we hâve k e [0, 8] such that

-ô2<K<-k2<0 (17)

on ail of M then the area Ay is estimated by

Kl 8/k J
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when k > 0, and

arccosh ((tanh (8LJ2))-1)

when k 0.
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