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Cylinders on surfaces

Isaac CHAVEL AND EDGAR A. FELDMAN®

In [2] B. Randol has shown that if M is a compact Rieman surface with metric
of constant curvature —1, and v is a simple closed geodesic on M of length L.,
then the area, A, of the largest topological cylinder swept out by geodesics of
identical length perpendicular to and centered on v, satisfies

A,=2L, csch(L,/2) (1)

In Remark 4 Randol asked if there is a corrresponding result for surfaces of
variable curvature. We point out in this note that the answer is yes, viz., if M is a
compact orientable surface whose Gauss curvature function K satisfies the
inequalities

-1=K=-«%?<0 (2)
where «k is a positive constant, then A, satisfies the inequality
- (R) A, =(2L,/x) sinh {k arccosh (( tanh (L./2))"")}

(Note that when x =1 the two inequalities coincide.)

The proof will consist of two parts: (i) we show the validity in the universal
covering of M, M, of the construction given in Figure 3 in [2] (without the
symmetry about the vertical geodesic) and then show, as in [2], that the top lateral
geodesic in Figure 3 can intersect at most one of the side geodesics; (ii) will then
consist of a comparison argument in the universal covering M.

1. The Sturmian estimates

For the moment M will be any orientable complete 2-dimensional Rieman-
nian manifold. For pe M we will denote the tangent space to M at p by M,, and
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440 ISAAC CHAVEL AND EDGAR A. FELDMAN

the tangent bundle by TM. For § &, &, e M, (&, &) will denote the inner
product of &, and &,, and |¢| the norm of & For any differentiable path y:R— M,
v' will denote the velocity vector field along y. The exponential map of TM to M
will be denoted by exp. The map is defined by the property that for any £é€ TM,
the path

ve(t) =exp t&
is the geodesic for which +,(0) is the point in whose tangent space ¢ is found, and
v:(0) = £ We assume a fixed orientation of M is chosen and define « : TM— TM to

be the rotation in each tangent space of /2 radians.
Let y:R— M, |y'|=1 be a geodesic in M, and define v:R*— M by

v(x, y) = exp yvy'(x). (3)
We denote the coordinate tangent vector fields along v by d,v, d,v, and invariant
differentiation (in the Levi-Civita connection of the Riemannian metric) with

respect to x and y by V, and V, respectively. The standard arguments yield

lo,o|]=1, V,9,0=0, 4)
(9,0, 9,0)=0.

If we set
n = (8,0, —1 3,0) = v(3,,8,) = VE(x, y)

then Jacobi’s equation of geodesic deviation reads as
@n+Kn=0

with initial conditions
n(x,0)=1, a,m(x,0)=0

for all x€R. The standard Sturmian arguments verify the following

LEMMA. If the Gauss curvature K of M satisfies (2) on M for some given
k>0, then

cosh ky=n(x, y)=<cosh y (5)



Cylinders on surfaces 441
for all (x, y)eR>2. For all xeR, y>0 we have
k sinh ky =<d,m(x, y)<sinh y, (6)
and for all xeR, y<0 we have
k sinh ky =d,n(x, y) = sinh y. (7

In particular v is of maximal rank on all of R?. Furthermore if v is a covering
of its image in M then v is a covering of M by R?

2. The picture in the universal covering of M

We now let M be our compact orientable surface (thus complete) satisfying
the inequalities (2) for some given « >0. Note that the Gauss-Bonnet theorem
implies that M has genus =2. Let y:R— M, |y'| =1 be a simple closed geodesic
in M of length L, i.e., y(x,) = y(x,) if and only if x,— x, is an integral multiple of
L,. Then v is a covering of its image y(R) in M and the map v defined by (3) is
periodic in x with period L., and is a covering of M —the universal covering.

Now for sufficiently small d >0, v |RX(—d, d) is a covering of its image, a
cylinder in M, with deck transformation group L,Z -the group of y:R— y(R).
Let d, be the largest such d >0, i.e., d, is the distance from y(R) to its focal cut
locus. The left inequality of (5) then implies

A, =A(WRX(—d,, dy))) =(2L,/x) sinh kd,. (8)
So our job is to estimate d, from below.

We note that since v is of maximal rank on all of R? there must exist x,, X,
such that either

v(xy, do) = v(x5, do), Y(x,) # y(x) (a)

or

v(xy, —do) = v(x5, —dy), y(x;) # y(x3) (b)

or

v(x;, do) = v(x,, —dp), (<)
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i.e., there exist two distinct geodesics emanating from points of vy, orthogonal to v,
which meet at distance d,, along the geodesics. In the first two cases they emanate
from the same side of the geodesic and in the third from opposite sides. By an
argument of W. Klingenberg [1, Lemma 1] they meet smoothly, i.e.,

dy0(xy, do) = —0,0(x2, do), (a’)
ayU(xl, —do) = —ayv(xl, _do), (b’ )
ayv(xl’ dO) = ayv(-x2’ *do)’ (cr)

respectively, The first two cases are geometrically the same so we shall only
consider (a) and (c).

We now endow R? with the Riemannian metric for which v is a Riemannian
covering. Then the translation

(x,y)=>(x+L,y) 9)

is a deck transformation of v and an isometry of R? in its new metric. When
referring to R? with the metric lifted from M via v we shall denote R? by M.

For convenience assume x,=0, and let I be the geodesic in M given by
I'(x)=(x, 0), let w;, w, w, be the geodesics in M given by

o (y)=(-L,2,y), wxy)=(L,J2,y), w(y)=(0,y),

and let o be the geodesic in M through (0, d,), orthogonal to w at (0, d,) and
oriented from left to right through (0, d;). Then there exist maximal «, 8 >0 and
a smooth function f:(—«, B) — R such that o(x) =(x,y(x)). From the Lemma and
Section 3 we have y strictly convex, i.e., y">0.

We now claim that it is impossible that both a, > L /2, i.e., that o intersects
both w, and w,. We start with case (a).

Assume that o intersects ; at w(y;) and w, at w,(y,). Let o, be the path in M
consisting of o composed, if y, #y,, with w, from w,(y,) to w,(y,). Then the
projection of oy, v(o,), is a piecewise smooth geodesic loop in M homotopic to v,
with 1 or 2 corners, depending on whether y, =y, or y, # y, respectively.

At I'(x,) draw &(y) = (x,, y) and lift v(o;) to &, in M through @(d,). Then the
velocity vector of o; at @(d,) is orthogonal to @ and, by (a’), oriented from right
to left. The smooth segment of &,, containing @(d,) is, of course, geodesic in M
and remains transverse to the foliation {x = const} in M including the limit of the
velocity vector field at the endpoints of the segment.

Let p, be the lift of w,(y,), p, the lift of w,(y,), and p, the lift of w,(y,); and
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Figure 1

for pe M let x(p), y(p) denote its coordinates. Next let 3, be the geodesic
segment of ¢, containing ®(d,), i.e., connecting p; to p,, 2, the segment
connecting p, to p;, and 35 the translate of X,, L, units to the right (i.e., via (9)).

We now start our argument. Since X, is oriented from right to left, we have
x(p,) <x(p,). On the other hand, v(&,) = v(o,) is homotopic to y which implies p;
is the image of p; under the deck’transformation (9). Thus,

x(p3) = x(p;) + L, y(ps) = y(p1)-

In particular, p, # p; and o must have 2 corners. If we started with 1 corner then
we already have the desired contradiction.

We think of p traveling along 3, from p, to p;. As mentioned partially)
above, any geodesic is either always transverse to the foliation {x = const} in M, or
always tangent to it. When transverse, it is the graph of a convex function. Thus as
p leaves p, it may not leave vertically or to the left, if it is to connect with ps.

So p moves to the right as it leaves p,. If it leaves above 3, then to reach p; it
must cross the geodesic determined by 3, which is impossible (e.g., by Gauss-
Bonnet formula). So p leaves p, moving to the right below %,.

Let I be the line in M tangent to 3; at p,. If p approaches p; above I then 3,
intersects 3, at 2 points, which is impossible. If p approaches p; below [ then the
angles of &, at p, and p; from the terminal velocity vector to the initial one at
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each corner, are of the same sign. (Recall: the discontinuities of the velocity
vector field are corners not cusps.)

But the corresponding angles at the corners of o; have opposite sign (Figure
2) — a contradiction, since &, is the isometric image of o; by some element in the
deck transformation group.

The proof for case (c) is as in [2, Case #2].

3. The comparison argument

We now restrict ourselves to M as in §2, viz., the metric in M is lifted from M
via v and its Gauss curvature therefore satisfies (2). We apply the apparatus of §2
with v now being the identity map.

Let o be any geodesic in M; as mentioned, if o is transverse to the foliation of
M, {x = const}, at one point then it is always transverse to the foliation.

When o is transverse to the foliation, we can then write o as the graph of a
function y(x). Standard calculation then shows that

wor_ 1.0 YE
y (x)-E,{2+ E }+ T (10)
y'(0) =0, so y"(x)>0 in some neighborhood of 0. We wish to show.that y"(x)>0
in the entire domain of y. We will restrict our attention to x >0, as the other case
follows in a similar manner. Let y(x) be the angle the curve (x, y(x)) makes with
the line y — (x, y), i.e., tan (/2 — y(x)) = y'(x). It suffices to show y'(x)<0. Let
R, be the geodesic quadrilateral bounded above by the graph of y(x), below by
the x-axis, on the left by the y-axis, on the right by the line y — (x, y). Applying
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the Gauss-Bonnet formula to R,, we obtain the equation

T x y(s)
5~ y(x)= —j K(x, y)n(x,y)dxdy = —L ( K(s, )n(s, t) dt)ds (11)

thus,

y(x)

Yx)=| K )n(x 1) dt<0. (12)

Now let M, be the hyperbolic plane of constant curvature —1, ¢, : TM, — TM,
the rotation of tangent spaces to M, by #/2 radians, y;:R— M,,|y;|=1 a
geodesic,

v(x, y) =exp )’Ll'Yll(x), M1 = (9,01, —t 3yv1>-

Then, of course,

N1(x, y) =cosh y, d,m;(x, y) =sinh y.
Replace for the moment the inequality (2) by

—1<K=-k2<0 (2)
and consider the geodesics o, T in M, M, respectively, defined by

o(x) =v(x y)(x)), 7(x)=0y(x, ys(x))

and such that
y(0) = y,(0)=d,>0, y'(0) = y4(0)=0.

We now wish to show that y(x) <y,(x) for all x where y,(x) is defined. One again
only considers the case x=0. Let y,(x) be the analogous angle function for the
curve (x, y;(x)), and note that it suffices to show

v1(x)<9y'(x) for x where y,(x) is defined. (13)

(13) clearly holds for x in a small neighborhood of 0. Thus if it is to fail we can
find some number x,>0, such that y(x)=y,(x) for x€[0, x,], v.(x)<v'(x), x e
[0, x,) and 7y;(xo) = ¥'(x,). Hence

y(x,) ¥1(x)
J — K(x¢, t)m(x,, t)dt=L cosh t dt.
0
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But (2') and the inequalities of the lemma show this to be impossible. Thus the
domain of y(x) is at least as large as that of y,(x).
This in turn implies that as in [2],

do=arccosh ((tanh (L./2))7Y). (14)

If we are given (2), then for every £ >0, (2') is valid for —1— ¢ in places of — 1.
One writes the lower bound for d, in this normalization (cf. (13) below), and lets
£0. Then (11) remains valid under the assumption (2). Substituting (11) into (8),
we obtain (R).

4. Conclusion
A close look at the estimate for d, shows that we only used the fact that the

genus of M was =2 (this hypothesis is used in case (c). cf. [2]), and the assumption
—1=K=0. We may therefore formulate the estimates as follows.

THEOREM. Let M be a compact Riemann surface of genus =2 whose Gauss
curvature satisfies

-82=K=0 (15)

for some constant 8> 0. Then for any simple closed geodesic y of length L., the
distance d, from vy to its focal cut locus is estimated by

do= arccosh ((tar;h (6L./2)") : (16)

and if we have k €[0, 8] such that
-8?2<K=-k2=<0 (17)

on all of M then the area A, is estimated by

A 2L, " {arccosh ((tanh (8L,/2))‘1)}
YTk sin &/x

(18)
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when k>0, and

arccosh ((tanh (8L./2))™")
o

A,=2L,

when k =0.
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