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Pseudoconcave homogeneous surfaces

B. GiLican” and A. HUCKLEBERRY®

0. Introduction

The purpose of this note is to list all pseudoconcave, 2-dimensional,
homogeneous complex manifolds (pseudoconcave homogeneous surfaces). One
would expect such manifolds to have compactifications as almost homogeneous
surfaces. This turns out to be the case, but one can not proceed directly, because
there are pseudoconcave surfaces which are not compactifiable [6].

It was noted in [5] that the only pseudoconcave Lie groups are the compact
ones. With one type of exception this is also the case for pseudoconcave
homogeneous surfaces: Other than the compact homogeneous surfaces, the only

pseudoconcave homogeneous surfaces are the Hirzebruch surfaces with their excep-
tional divisors removed.

1. Historical remarks

For our purposes a homogeneous complex manifold is the quotient space of a
connected, complex Lie group G by a closed subgroup H. Homogeneous algeb-
raic surfaces were of course studied by the Italians (e.g. see [2]). The simply-
connected, compact (not necessarily algebraic) homogeneous surfaces were clas-
sified by Wang [24]. Later on Tits [23] classified all compact homogeneous
surfaces. Using Kodaira’s work and going through the cases of transcendence
degree of the function field as well as the possibilities for an Albanese fibration,
Potters [20] gave a complete list of almost homogeneous compact surfaces.
Almost homogeneous means that a connected, complex Lie group of automorph-
isms has an open orbit. In the case of compact Kéhler manifolds there is a very
good classification by Borel and Remmert [9]: Every compact homogeneous

1 Partially supported by NRC Operating Grant A-8739.
2 Partially supported by NSF Grant MCS 75-07086A01.
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430 B. GILLIGAN AND A. HUCKLEBERRY

Kahler manifold is the product of a homogeneous projective rational manifold
with a complex torus.

The purpose of the above remarks is to point out that quite a lot is known in
the compact case. The non-compact case appears to be more complicated.
Nevertheless in the ‘““‘Stein direction” there are a number of interesting results.
For example, when G is either reductive or nilpotent, Matsushima ([16], [17])
gave very good descriptions of the Stein quotients G/H. More generally, if G is
reductive and G/H is holomorphically separable, then Barth and Otte [7] point
out that the homogeneous space G/H is a Zariski open subset of an affine
algebraic variety.

It is easy to see (e.g. [10]) that given a homogeneous space G/H there is a
complex Lie group J containing H so that the fibration G/H — G/J (the “‘separa-
tion”” map) identifies exactly the points which the holomorphic functions identify
(i.e. p, qe G/H, p~q& f(p)=f(q) Vfe ©0(G/H)). Hence 0 (G/J) separates points
on G/J. If for example G is reductive, then the Barth—Otte theorem tells us that
G/J is Zariski open in an affine algebraic variety. It would be reasonable to hope
that € (JJH)=C. This is in fact the case when G/J is Stein [10] or when G/H is
itself a complex Lie group [18]. However, for example, one can construct
homogeneous spaces which are simply C*-bundle spaces over C*\{0, 0} such that
the holomorphic functions live on the base [7]. Even so, it is still quite reasonable
to study homogeneous spaces G/H with 0 (G/H)=C as well as the other extreme
where O(G/H) separates points. In some special cases (e.g. when G is nilpotent)
one can classify G/H when O (G/H)=C(see [11] and [8]). But even for solvable G
we do not know what these manifolds are. Thus the stronger curvature assump-
tion of pseudoconcavity seems warranted.

DEFINITION. A complex manifold X is called pseudoconcave if it contains a
relatively compact open subset W with dW defined® by a C>-function ¢ whose
Levi form restricted to the complex tangent plane of oW at any pedW has at
least one negative eigenvalue.

Pseudoconcave manifolds are close relatives of compact manifolds (e.g.
0(X)=C, and certain cohomology groups are finite dimensional). The reader can
find the basic properties derived in [1]. Pseudoconcave quotient spaces arise quite
naturally. For example; if the isotropy subgroup of a point p in a compact
complex space X acts transitively on X\{p}, then X\{p} is a (strongly) pseudocon-
cave homogeneous space. Andreotti and Grauert [3] observed that the Siegel
upper half plane modulo the modular group is pseudoconcave. More generally,

3 “Defined” means that W corresponds to {¢ <0}, dW ={¢ =0} and de#0 on W,
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any bounded symmetric domain modulo an arithmetic subgroup is pseudoconcave
[20]. Applying finiteness and transcendence degree theorems ([1],[4]), these
results have numerous interesting ramifications.

2. Statement of the result and a quick sketch of the proof

Our main result is the following:

THEOREM. Let X be a pseudoconcave, 2-dimensional, complex manifold
which admits a transitive complex Lie group of holomorphic automorphisms (i.e.
X = G/H, where H is a closed subgroup of G). Then X is one of the following:

(1) A compact 2-dimensional torus;

(2) The product of P, with an elliptic curve;

(3) A homogeneous Hopf surface;

(4) A homogeneous rational manifold (i.e. P, xP, or P,);

(5) A Hirzebruch surface 3, n=1,2,..., with its exceptional divisor® re-

moved.

The reader should note that the only non-compact possibilities occur in (5).
Cases (1), (2) and (4) are well-known. The homogeneous Hopf surfaces are
formed by dividing C*\{0, 0} by a discrete finitely generated abelian group of
linear transformations I'. The group I" contains one copy of Z which is generated
by a dilation (z,, z,) = (az,, @z,), where |a|> 1. The torsion part is generated by
diagonal matrices whose entries are roots of unity. These facts are routinely
derivable from the explicit remarks of Kodaira ([14], p. 694 f).

Our method of proof is to use the adjoint action of G on a Grassmann
manifold. This identifies G/Ng(H®) with the orbit of G on the point correspond-
ing to the Lie algebra h of H sitting as a subspace of the Lie algebra g of G. This
combined with the Albanese fibration was the main tool of Borel and Remmert
[9]! Letting N: = Ng(H®), this fibration G/H — G/N allows us to study G/H in
three separate cases depending on the dimension of G/N.

If G/H is 0-dimensional, then X is isomorphic to a complex Lie group S
modulo a properly discontinuous subgroup I'. Since in this case S must be
2-dimensional, it is quite easy to write down all possible such quotients, and, using

4Every 3, contains a unique exceptional rational curve T, with T, T, =-n We note that
3 \T, is the same as P,\{point}, so we redefine X, to be P,.



432 B. GILLIGAN AND A. HUCKLEBERRY

the remark of [5], to show that the only possibility for a pseudoconcave S/I is a
complex torus.

If G/N is 1-dimensional, then the fiber N/JH°/H/H° is either C, C*, or an
elliptic curve. The base G/N must be P,, because N contains the radical of G. If
in this case G/H is a torus bundle over P,, then it is either a product or a Hopf
surface. The C*-bundle is eliminated by the pseudoconcavity, and a C-bundle
compactifies to a Hirzebruch surface by adding an exceptional®® rational curve at
infinity.

If G/N is 2-dimensional, then G/H is a covering space over the pseudocon-
cave G/N. By using Andreotti’s function field theorem, we compactify G/N to an
algebraic variety V in the Grassmann manifold. We then extend the action of G
to the minimal desingularization V of V. For pseudoconcavity reasons it is again
easy to show that V is a Hirzebruch surface. In particular we see that G/N is
simply connected! So G/H = G/N and the classification is finished.

3. Details of the proof

We follow the outline given above, introducing preparatory material as we
need it. The basic tool is the action of G on the Grassmann ([23], [9]): Let
ad: G - Hom (g, g) be the adjoint representation. For a closed subgroup H we
consider its Lie algebra ) to be a point in the Grassmann manifold G, of
k-planes in n-space, where k:=dim¢c H and n:=dim. G. For ge G it is clear
that ad (g) acts on G, ,. We consider the map g — ad (g)(h) which sends G to its
orbit on §j. Let N: = Ng(H°) be the normalizer of the connected component H° in
G, then N is also a closed subgroup of G with G/N being canonically identified
with this orbit. We have the fibration

G/H—— G/N- G,

where the fiber NJH°/H/H® of a is a complex Lie group modulo a discrete
subgroup. ‘

Case 1. Suppose dim¢e G/N = O.‘ Then X can be realized as a simply-
connected, complex Lie group S modulo a discrete subgroup I'. If S is abelian,

5 We use the word exceptional for a curve which can be blown down, but the quotient may be
singular. Differing slightly from [13], we identify 3, with P,.
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then S/T" is again an abelian Lie group which, since it is pseudoconcave, must be a
torus [5]. If S is non-abelian, then it has C? as its underlying manifold with group
structure given by

(ay, by)(a,, by)=(a,;+a,, e*b,+b,).

PROPOSITION. Let S be a 2-dimensional, complex Lie group and let I’ be a

discrete subgroup of S. Then S/I" can be realized as an abelian Lie group modulo a
finite subgroup.

Proof. This is clear if S itself is abelian. Thus we may assume that S is C* with
the above non-abelian structure. Let T:={(2win, b)e'|neZ}. Then T is a
normal subgroup of I' which acts on the left as a group of translations. An
elementary calculation shows that the derived group I''V is contained in T,:=
{(0, b) e I'} which acts discontinuously as a group of translations of the second
variable. If there exists a non-trivial h = (0, ¢) € T,, then for g:=(a,-b) e I" we see
that

g "hg" = (0, e™"c). *)
It is also of use to note that
g" =(na, b(1—e")(1—e*)™). (**)

If I' is abelian, then we use a simple affine transformation (see [22]) to
facilitate a description of S/I": Let g:=(a, b)e I' and suppose that e*# 1. Thus we
may make the change of variables (zy, z,) = (z;, 2,—b(1—€*)™") so that in this
new system (using the old letters) g(z,, z,) =(z,+a, e®z,). If h is an arbitrary
element of I, then h(z,, z,)=(z;+c, e‘z,+t(h)), where h=(c,d) in the old
system and t(h)=d+b(1—e°)(1—e*)”'. The statement that g and h commute
amounts to (e* —1)t(h) =0. Thus ¢(h) =0 for all h € I". Hence the general element
h eI is defined by h(z,, z,) =(z, + ¢, €°z,). The restriction of I" to the z,-axis is a
faithful representation. Thus I is free abelian having rank at most 2.

Let q:C?>— S/I" be the quotient map. If I" has rank 2, then q{z,=0} is an
elliptic curve E. But h(E) is also an elliptic curve for all heS. If h(zy, z,)=
(zy+c, ez, +t(h)), then h{z,=0}={(z,,t(h))]|z,€C}. Now q(z,,t(h))=
q(z4, t(h)) iff there is an fel such that f(z,,t(h))=(z},t(h)) (.e. (z;+c,
et(h)) =(z/, t(h))). In particular, for h(E) = qh{z, =0} to be a torus it would be
necessary for I' to contain a rank 2 subgroup with e =1 for all h in that group.
This is of course impossible. Even if rank I" = 1, the same argument shows that I"
would have to contain a rank 1 subgroup I'* whose elements act on C? by
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(z4, 2,) = (2, +2min, z,), neZ, and such that I'/T"* is finite. Thus S/I" is C*xC
modulo a finite abelian group.

In summary we have shown above that if I" is abelian then either S/I" is C*x C
modulo a finite group or e® =1 for all g=(a, b)e I In the latter case '=T, I'
acts as a lattice on C?, and S/I" is obviously realizable as a complex Lie group,

It remains to consider the non-abelian case. In this situation we know that T,
contains a non-trivial element (0, ¢). Thus if there exists some g =(a, b)e I witha
not a root of unity, then (*) implies that g"hg™ (or g™"hg") has a cluster point.
Since I' is a discrete group, this is impossible and consequently for every
g =(a,b)eI" we know that a =2miq for some qe Q. In particular this says that
I/T is a torsion group. Considering two separate cases, we show that I/ T is finite.

First, assume that rank T,=1. So there exists ceC such that T,=
{(0, nc)| neZ}. Take h=(0,c)e T, and g = (2miq, b)e I'. Then

ghg 'h™'=(0, c(e?*™ - 1))e T.,.

This is only possible if g is an integer or an integer plus 3. Therefore IT is
certainly finite in this case.

If rank T,=2, then we note that given a class in I/T we can pick a
representative g =(2iq, b) where |b|<M and M is some a priori bound deter-
mined by I'. Furthermore if Ngq=m e€Z, then g~ = (2mim, 0)e T. Hence we may
additionally pick a representative h = (27rir, b) with |r|<|m|. If I/ T were infinite
then we could therefore find infinitely many different elements of I" in a compact
region of C2. This is contrary to the fact that I is discrete. Hence I'/ T is finite and

S/T is the quotient by a finite group of automorphisms of the space C*/T which is
obviously realizable as a complex Lie group.

COROLLARY. Let X=S/I' be a homogeneous space where S is a 2-
dimensional complex Lie group and I is a discrete subgroup. If X is pseudoconcave,
then it is a compact torus.

Proof. By the above proposition, X has an abelian Lie group G as a finite
cover. Thus G is also pseudoconcave. But [5] implies that G is a torus, and
therefore X is likewise,

Case 2. Suppose dime G/N=1. Then the fact that X has no non-constant
holomorphic functions implies that O(G/N)=C and consequently G/N is a
compact Riemann surface. We now apply a theorem of Borel and Remmert ([9],
p. 435): The base G/N is rational (i.e. it is P;) and N is connected. Consequently
X is a bundle space over P, whose fiber is either C, C* or an elliptic curve. The
C* case can be eliminated rather easily, because such bundles are classified by
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their Chern numbers. If the Chern number is n>0 then the bundle has a
non-trivial section s, and if z is a fiber coordinate, then sz ™" is a well-defined
holomorphic function on X. If n <0, then the dual bundle has a section s and sz"
does the job.

The case of an elliptic curve as a fiber is handled classically [23], being a
product in the Kéahler case and a homogeneous Hopf surface otherwise. It only
remains to consider C-fiber bundles over P,. Call such a bundle space E. We note
that E has a natural compactification E which comes from adding the section s at
infinity. It is clear that the automorphisms of E extend to E. Thus E is a compact,
rational, almost homogeneous surface which is a P,-bundle over P,. Hence Eisa
Hirzebruch surface, where we blow down the fixed set when its self intersection
number is — 1. This finishes Case 2.

Case 3. Suppose dimc G/N =2. Let W be the relatively compact set in G/H
which displays its pseudoconcavity, and let 2:= a(W), where a: G/H — G/N is
the fibration map. Certainly 002 < a(0W). Thus 2 is pseudoconcave in the
following more general sense: Given p € 32, there is an open neighborhood U of
p in G/N so that every function holomorphic on UN {2 extends to a function
holomorphic on U. One finds such a U by taking q € 9W with a(q) = p. Then one
constructs a neighborhood U of q in G/H which is small enough so that « | U is
biholomorphic, and such that U has the extendibility property required of U.
Finally one defines U as a(U). For a normal complex space Y containing a
relatively compact open set having this more general pseudoconcave property,
Andreotti [1] proved the following:

The field 8(Y) of meromorphic functions on Y is an algebraic function field having
transcendence degree t(Y) at most dim Y over C.

It follows that we have Andreotti’s transcendence degree theorem for Y:=
G/N. But Y is contained in G, ,, which is in turn contained in some Py. We now
follow a standard proof of Chow’s Theorem: Let V be the smallest compact
algebraic variety which contains Y (i.e. V is the intersection of all such varieties
which contain Y). It is clear that V is irreducible. Suppose k : =dim¢ V>2. Then
KWV)=C(f,, ..., f)lg], where f,,...,f. are algebraically independent rational
functions on V and g is some algebraically dependent function of maximal
degree. Since t(Y)=2, there exists a polynomial PeC[X,,..., X;] so that
P(fi,...,fi,)=0 on Y. But f,,...,f. are algebraically independent on V. So
VNO{P(f,,...,f.)=0} is an algebraic subvariety of dimension k—1 which con-
tains Y. This contradicts the minimality of V and implies that dim¢ V =2. Thus
there is an irreducible, 2-dimensional, compact, algebraic subvariety of G, ,, which
contains G/N as an open subset.
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Now G acts on the whole Grassmann manifold. So for ge G it follows that
g(V) is an algebraic subvariety of G, ,. But g(V)NV contains Y as an open
subset. Consequently g( V)=V, and we have extended the action of G to all of V.
We now need the following:

LEMMA. Let g be a biholomorphic map g: V — V of a 2-dimensional analytic
space.Let p: V — V be the minimal desingularization of V. Then there is a unique
biholomorphic map §:V — V so that

£,

<— <
TE=— <

—_
4
is commutative.

Proof. The maps p: V— Vand gop: V— V are both minimal resolutions of
the singularities of V. Thus the lemma follows directly from the uniqueness of a
minimal resolution in dimension 2 (e.g. see [15]).

Hence every automorphism g of V is ur iquely liftable to an automorphism g
of the minimal desingularization V of V. Thus G/N can be compactified to a
non-singular algebraic surface V where the group G acts and renders it almost
homogeneous.

It is easy to see that an open orbit is the complement of a proper analytic
subset (e.g. [21]). Thus Y = G/N is Zariski open in V. Let S:= V\'Y be the fixed
set. The only algebraic, almost homogeneous surfaces V such that @(V\S)=C
are rational surfaces. One can see this by looking at Potter’s classification [21]
where the only case which needs checking is that of the P,-bundles over elliptic
curves. These are so explicitly described that constructing non-constant
holomorphic functions on the complement of the fixed set is a triviality. For
example in Type II (see p. 252 of [21]), the function f([w,:w,],2z):=
exp (2miw,(w,b)™") is well-defined and holomorphic on the complement of S.

In summary we have shown that G/N compactifies to a Hirzebruch surface 3,
by adding the fixed rational curve T, which has self-intersection number —n and
(possibly) finitely many more points. The group G, assuming that it is acting
effectively, is therefore contained in the stabilizer of the set of the finitely many
points which were added.

If S=(J, then V= G/N is compact rational and is either P, X P, or P,. Every
compact rational almost homogeneous surface can be blown down to some 3.
Thus the minimality of V implies that it is a Hirzebruch surface. The only
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exceptional curve in 3, is T,. Hence, when it is not empty, S consists of T, plus
isolated points. However, by a very general theorem of Oeljeklaus [19], if S
contains an isolated point, then V=P,.

It is shown in [13] that 3,,\T,, is homeomorphic to S*x(S*\{p}) and
35n+1\T5, 41 is homeomorphic to P,\{p}. Thus G/N is simply-connected. Hence
G/H = G/N and our homogeneous space is in class (4) or (5) of the theorem.

REFERENCES

[1] ANDREOTTI, A. Théorémes de dépendance algébrique sur les espaces complexes pseudo-concaves,
Bull. Soc. Math. France 91 (1963), 1-38.

[2] ——, On the complex structures of a class of simply-connected manifolds, Algebraic Geometry and
Topology (A Symposium in honor of S. Lefschetz) Princeton University Press, Princeton, New
Jersey (1957), 53-77.

[3] —— and GRAUERT, H., Algebraische Kérper von automorphen Funktionen, Nachr. Akad. Wiss.
Gottingen (1961), 39-48.
[4] ——, ——, Théorémes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math.

France 90 (1962), 193-259.
[S] —— and HUCKLEBERRY, A., Pseudoconcave Lie groups, Compositio Math. 25 (1972), 109-115.
[6] — and S1u, Y. T., Projective imbeddings of pseudoconcave spaces, Ann. Scuola Norm. Sup. Pisa
(3) 24 (1970), 231-278.
[7] BarTH, W. and OTTE, M., Invariante holomorphe Funktionen auf reduktiven Liegruppen, Math.
Ann. 201 (1973), 97-112.
[8] , ——, Uber fast-uniforme Untergruppen komplexer Liegruppen und auflosbare komplexe
Mannigfaltigkeiten, Comment. Math. Helv. 44 (1969), 269-281.
[9] BoreL, A., and REMMERT, R., Uber kompakte homogene Kihlersche Mannigfaltigkeiten, Math.
Ann. 145 (1962), 429-439.
[10] GiLLiGAN, B., and HUCKLEBERRY, A., Remarks on non-compact homogeneous manifolds (to
appear).
[11] ——, ——, On non-compact complex nil-manifolds (to appear).
[12] Grauert, H., Uber Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146
(1962), 331-368.
[13] HirzeBrucH, F., Uber eine Klasse von einfach-zusammenhangenden komplexen Mannigfaltig-
keiten, Math. Ann. 124 (1951), 77-86.
[14] KoDAIRA, K., On the structure of compact complex analytic surfaces II, Amer. J. Math. 88 (1966),
682-721.
[15] LAurer, H., Normal two-dimensional singularities, Annals of Mathematics Studies 71, Princeton
University Press, Princeton, New Jersey (1971).
[16] MATsUSHIMA, Y., Espaces homogénes de Stein des groupes de Lie complexes I, Nagoya Math. J. 16
(1960), 205-218.
[17] ——, Espaces homogénes de Stein des groupes de Lie complexes II, Nagoya Math. J. 18 (1961),
153-164.
[18] MormMoTO, A., Non-compact complex Lie groups without non-constant holomorphic functions,
Proceedings of the Conference on Complex Analysis, Minneapolis (1964), 256-272.
[19] OeLsexLAuS, E., Ein Hebbarkeitssatz fiir Automorphismengruppen kompakter komplexer Man-
nigfaltigkeiten, Math. Ann. 190 (1970), 154-166.
[20] PIATETSKI-SHAPIRO, 1., Automorphic functions and the geometry of classical domains, Gordon and
Breach, New York (1969).




438 B. GILLIGAN AND A. HUCKLEBERRY

[21] POTTERS, J., On almost homogeneous compact complex analytic surfaces, Inv. Math. 8 (1969),
244-266.

[22] Suwa, T., Compact quotient spaces of C? by affine transformation groups, J. Diff. Geo. 10 (1975),
239-252.

[23] Trrs, J., Espaces homogénes complexes compacts, Comm. Math. Helv., 37 (1962), 111-120.

[24] WaNG, H. C., Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954),
1-32.

B. Gilligan

Dept. of Mathematics

University of Regina

Regina (S4S 0A2), Saskatchewan
Canada

A. T. Huckleberry

Dept. of Mathematics
University of Notre Dame
P. O. Box 398

Notre Dame, IN 46556
U.S.A.

Received September 12, 1977

Added in proof.

The Proposition in Case 1 is false as stated; a corrected version appears in the thesis
of J. Snow. The point is to eliminate the parallelizable case S/T in the classification.
Since S is solvable, this follows immediately from a general theorem of Huckleberry
and D. Snow (Three fibrations for pseudoconcave homogeneous manifolds, to
appear). However as S is 2-dimensional, one may eliminate this case directly.
Since £ (§/I'=C, there is a proper normal subgroup L of S with closed orbits in
S/T, yielding the homogeneous fibration S/I'— S/L - I'=T [8, Satz 3.2]. Clearly T
is a torus. One checks quite easily (see later in the paper) that there are no

pseudoconcave homogeneous C or C* bundles over an elliptic curve. Thus S/I" must
be compact and a fortiori S is abelian.
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