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Comment. Math. Helvetici 53 (1978) 408-428 Birkhâuser Verlag, Basel

Verzerrungsaussagen bei quasikonformen Abbildungen mit
ortsabhângiger Dilatationsbeschrankung und ein Extremalprinzip
der Elektrostatik in inhomogenen Medien

Herrn Prof. Dr. A. Pfluger zum 70 Geburtstag gewidmet

Reiner Kùhnau

§1. Einleitung

Wie in zahlreichen Beispielen in der Literatur belegt, ist die Théorie der

Extremalprobleme bei quasikonformen Abbildungen mit ortsabhângiger
Dilatationsbeschrankung aufs engste verknùpft mit der Difïerentialgleichung

div(pgrad<£) 0. (I)

Dièse Difïerentialgleichung spielt auch in zahlreichen Situationen der
mathematischen Physik eine Rolle [1]. Dies gibt hier Anlass zu folgenden
Untersuchungen.

Bringt man ein Dielektrikum in ein vorgegebenes elektrostatisches Feld, so

entstehen sogenannte "scheinbare Ladungen", insbesondere dort, wo die
Dielektrizitâtskonstante als Ortsfunktion p(z) einen Sprung erleidet. Dièse
scheinbaren Ladungen lassen sich durch eine Integralgleichung berechnen. In
vorliegender Mitteilung soll fur sie eine Extremalcharakterisierung hergeleitet
werden. Die Situation ist dabei âhnlich wie beim GauBschen Prinzip minimaler
Energie zur Charakterisierung der auf Leiteroberflâchen in elektrostatischen
Feldern entstehenden Ladungen (vgl. zu diesem Fragenkreis des GauBschen bzw.

hiermit zusammenhângenden Thomsonschen Prinzips z.B. die in [16] angegebene
Literatur).

Da zahlreiche Extremalprobleme vom Grôtzschschen Typ bei quasikonformen
Abbildungen mit ortsabhângiger Dilatationsschranke Extremalfunktionen besit-

zen, die sich als komplexes Potential elektrostatischer Felder bei ortsabhângiger
Dielektrizitâtskonstante auffassen lassen, erhalten wir damit neue Charak-

terisierungen dieser quasikonformen Extremalfunktionen und also auch der

zugehôrigen extremalen Werte des betrefïenden Funktionals. Dies gelingt
zunâchst in solchen Fâllen, bei denen das zugehôrige quadratische Differential ein
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vollstândiges Quadrat ist. Durch die Méthode der zweiblàttrigen
Ûberlagerungsflàche erhâlt man anschliessend wie in den Arbeiten von H.
Grôtzsch auch einige andere Fâlle. Man bekommt z.B. Ungleichungen fur das

bekannte Grunskysche oder das Golusinsche Funktional. Die entstehenden

Ungleichungen liefern in Spezialfâllen auch einige in der Literatur schon angegebene

asymptotische Abschâtzungen.

§2. Bezeichnungen und Voraussetzungen

Die Funktion p(z) erfûlle nebst

0<m^p(z)^M<oo (2)

der Einfachheit halber im folgenden einschlàgige, die Anwendung des GauBschen

Integralsatzes unmittelbar ermôglichende Glattheitsvoraussetzungen. Etwa sei

p(z)=l in dem z o° im Innern enthaltenden Gebiet ©', dessen Rand S aus

endlich vielen getrennt liegenden geschlossenen analytischen Jordankurven be-
stehe. Im Komplement © mit dem Inhalt I sei p(z) mit hôlderstetigen partiellen
Ableitungen erster Ordnung versehen, dabei jeweils in einem an S angrenzenden
Uferstreifen konstant. Mit ® bezeichnen wir einen grossen Kreis |z| R, mit ®R
das Innere. n bzw. n' sei die Innen- bzw. Aussennormale bei 2 und $.

Wir betrachten weiters, falls zusâtzlich p(z) ^ 1 fur aile z ist, die Klasse SI aller

quasikonformen Abbildungen w w(z) der Vollebene auf sich, deren Dilatation
stets ^p(z) ist und die in Umgebung von z °° (wo zwangslâufig Konformitât
vorliegt) gemâss

(3)

hydrodynamisch normiert sind. Ist speziell p(z) Q>l in ©, dann sprechen wir
von der Abbildungsklasse 5to.

§3. Eine Variationscharakterisierung gewisser elektrostatischer Potentiale bzw.

quasikonformer Extremalfunktionen

1. Es soll hier eine Variationscharakterisierung fur diejenige quasikonforme
Abbildung ge(z) der Vollebene auf sich hergeleitet werden, fur die e~l6g0(z) die
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Difïerentialgleichung

/, *¦£ mit v j^ (4)

erfûllt und die in z <» durch

g9(z) 2 + ^+--- (5)

hydrodynamisch normiert ist. Wir setzen

<f>*(z) »e[îe-»&(z)] <po(z) + <P*U) mit <po(z) ÎRefc-'z],

<pl(z) Stm[ie-"zl (6)

Da <f>*(z) dann (1) erfûllt, erkennt man leicht die Deutung von <£*(z) als

elektrostatisches Potential und die Deutung von e~iege(z) als komplexes Potential
im Sinne von [11].

Daneben betrachten wir aile durch

(C + ^ ds Bogenlânge) (7)

definierten Funktionen 4>, wobei ijl(Ç) auf 2 erklârt ist und cr(£) in © mit <r 0 in
eioem Umgebungsstreifen von 2. Derartige (réelle) Funktionenpaare nennen wir
kn folgenden "zulâssig", falls

f (8)

und falls noch die bekannte Voraussetzung der Hôlderstetigkeit wie in der
klassischen Potentialtheorie vorliegt, so dass die Differentiationsregeln angewandt
werden kônnen.

BekanntHch gilt auf 2

z)ds[ +
^JaU)K(C,z), ^

;,z)ds{-rr([
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mit dem Neumannschen Kern (vgl. [4])

/-4 (10)
7T dnz

Insbesondere ist

dn dn

Ferner ist fur ze&

A</> -27rcr. (12)

Es gibt genau ein Paar von zulàssigen Funktionen /a jz*, cr cr*, fur die
<!> <t>* wird. Zunàchst sind \i und a nâmlich gemàss (11), (12) durch <\> eindeutig
bestimmt. Und wenn man umgekehrt /ll* und a* durch

^^Ç (13)

definiert und in (7) dièse offenbar zulàssigen Funktionen einsetzt, entsteht eine
Funktion <f> mit A(</> -</>*) 0 fur z&2, Stetigkeit von (f>-<t>* und der Normalab-
leitung hiervon lângs 2 und <j>-<f)*—>0 fur z—»o°, was <f>^<j)* nach sich zieht.

2. Neben (13) gilt noch auf 2 wegen (4)

Dabei sei p der innere Randwert von p(z) im jeweiligen Punkt von 2. Eliminiert
man d</>*/dn aus (9) mit Hilfe von (13) und (14), so kommt fur ze2

J§)^\' ^{Z) H Ço{z) +1 ^)K& z) ds\\
(15)

Weiters ergibt sich aus (1) und (12)

grad p grad <f>* 2ttp<t* (16)
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und also nach (7) fur ze®

27rp(z)or*(z) grad p(z) -grad <po(z)-grad p(z)- I ju,*(£) grad2 log \z - (\ dsc

- grad p(z) • | J <r*(Q grad2 log \z - (\ d£ dv. (17)

In (15), (17) Ziegf ein Integralgleichungssystem fur /li*, <t* uor. Falls p(z)
stûckweise konstant ist, entfâllt (17) und in (15) liegt eine Integralgleichung fur
li*(z) vor (es ist dann cr* 0). Dièse findet sich (im râumlichen Analogon) in [3]
sowie bei [1] (S. 170 ff.). Falls umgekehrt keine Sprunglinien bei p(z) auftreten,
entfâllt (15) und in (17) liegt eine Integralgleichung fur cr* vor (es ist dann
/Lt* O). Dièse wurde (wiederum im râumlichen Analogon) in [2] angegeben; vgl.
noch zu diesen Integralgleichungen [5] (auch einige sich zeitlich anschliessende

Arbeiten des gleichen Verfassers und die Darstellung in [6]), [21].
3. Bei der Herleitung unserer Extremalcharakterisierung gehen wir aus von

- J[ p(<t>* ^~<^) <** + j J (p grad 4>) dx dy

j I p(grad <^*-grad <£)2 dx dy-2 \ \ p grad 4>(grad <t> -grad <£*) dx dy (18)

^ -2 p grad <^>(grad </> - grad <j>*) dx dy

=2 f p<KS~^r)ds+2\f div(p grad ^dxdy'

Eine entsprechende Beziehung folgt fur das innerhalb ® gelegene Teilstûck von
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©'. Addiert man dièse zu (18), entsteht

/ Js V / Je V dn' an'

d<t> a^*

)® V an ^ dn/ Js FV an ^an

*\ J f /a^ d<j>*\ J f /a^» ac/>*
"Ms + 2 pc/>/--f- ds + 2 4>7^-tt

n / Je \ôn an / Jfi \an an

+ 4> div (p grad $) dx dy,

und bei Benutzung von (14)

(f>—r ds 4- (/> div (p grad </>) dx dy.

Hier strebt fur R —> & das erste Intégral nach 0. Nach Umformung des zweiten
Intégrais und Benutzung von (11) bzw. (13) erhâlt man im Grenzfalle

0 ^ f (4>*2tt/a - ^2-Tr/Lt*) ds - \ f (^*A</> - </>A<£*) dx dy

+ J P(j>^ds+{ <f>^ ds+lU div (p grad <f>)dxdy. (19)

Falls kein Integrationsgebiet angegeben, ist hier und fûrder die ganze z-Ebene
darunter zu verstehen (in Wirklichkeit verschwindet allerdings der Integrand
jeweils in einer Umgebung von z °°, so das die Intégrale nicht uneigentlich
sind). In (19) steht das Gleichheitszeichen genau fur </> </>*.

Da auch

- J J dy,

wobei hier die linke Seite fur R—»<» nach 0 strebt, folgt durch Subtraktion von
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(19) und zusâtzlicher Benutzung von (12) bzw. (13)

2tt\ <PoM-^ + 2tt <pocrdxdy+ p<\>—ds+\ </>—; ds
h J J h dn )q dn

+ \<l>di\(pgrad<f>)dxdy^27r\ <poix* ds + 2<îr\ \<pocr*dxdy. (20)

Hierbei ist noch

ip<f>—ds+\ <\>—-ds+ $ div (p grad <j>) dx dy
dn Jq dn J

f d(p f d(p f f f d<p0
1 p<p— ds+\ <p— dsH- I I <p div (p grad (p) dx dy + J pcpo—uds

+ j I
<p0 div (p grad <p0) dx dy + J

plç0 -^4- <p-^j

l
+ hp div (p grad <p0) dx dy + hp0 div (p grad <p) dx dy

id<p f d<p f f
p<p — ds + (p—ds+\\ ç[-27rp<r + (grad p)(grad <p)] dx dy

dn )q dn J J

+ 2| p<p-^ ds + 2 <p div (p grad <po)dxdy

1

p<p -^ ds + j <p^ ds + I I <p[-2<rrpar + (grad p)(grad <p)] dx dy

<p^?-(p0^) ds +2||<p(grad p)

x (grad <p0) dx dy.

Hierbei ist das vorletzte Intégral ûber fi gleich dem Negativen der ersten beiden
Terme von (20).
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Die redite Seite von (20) berechnet sich noch zu

2tt çoM* ds + 2tt <poa* dx dy

2tt <poii* ds- \(pob<l>* dxdy

lim f (<po — -</>*—)ds lim f [^*d(»mie-ie2) + (3rn/e-l0ge) d(p0]
R^°° h \ dn dn J r-~ J^

'2iege(i2 -27r9îee-2^aie. (21)

Wir erhalten damit, wenn wir auch noch die fur g?+w/2(2:) -ige(iz) ent-
stehende Ungleichung anschreiben, als Ergebnis den

SATZ 1. Fur aile gemàss (8) zulâssigen Paare von Funktionen /ll, a gilt

\\(p-l)dxày-[ P9%ds-l ^ds-l[ (p-Dv^ds

[-27rpcr + (grad p)(grad <p) + 2(grad pXgrad q>0)] dx dy ^ 2irdiee~216 ale

+ J J
<p[-27rpo- + fgrad-Vgrad <p) + 2fgrad-Vgrad <p'o)

I dxdy. (22)

wobei links das Gleichheitszeichen genau fur /ui /bt*, cr cr* steht.

Dabei ist noch <po> ^o gemàss (6), <p nach (7), d<p/dn bzw. 5<p/ân' nach (9), grad <p

durch den aus (7) durch Differentiation unter dem Integralzeichen entstehenden
Ausdruck zu ersetzen, so dass die âusseren Seiten der Ungleichung (22)
vollstândig als ein nur von /ut, a abhângendes Funktional erscheinen. Rechts in
(22) besteht auch Gleichheit fur genau ein Paar pt, o-, das sich analog zu (6), (13)
aus gî+7r/2(z) berechnet.

§4. Folgerungen ans Satz 1

Explizit sieht Satz 1, wenn die am Schluss des vorigen §3 genannte Ersetzung
von ç usw. wirklich vorgenommen wird, in einem Spezialfall so aus.
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FOLGERUNG 1. Ist p(z)=Q>l in ©, dann gilt fur aile gemâss

f fids O (23)

zulâssigen /x stets

(Q-1)•!+2(Q-l)jJM£)^^log|z-f| «fa, dsf

V(z)m(£) log \z-(\ dsz dsc

ss

sa

as

fiS

ss

+ irl 1—— 11 /n(f)jLL(i7)| I K(r\, z) • log \z —1\ dsz Ids^ds^ (24)

ss

mit Gleichheit genau fur jjl /x* im linken Teil der Ungleichung.

Dabei wurde <r 0 gesetzt, was gemâss der dann nach (13) vorliegenden
Bedingung cr* 0 sinnvoll ist.

Es muss ofïenbar bei der Nebenbedingung (23) stets

- (O +1) ju,(z)ju,(f) log \z - Ç\ dsz dsc + (O -1)
22 SS

xU Kbi,z)'log\z-t\dsx]dscds^O (25)

sein, da andernfalls die linke Seite von (24) nicht nach unten beschrânkt wàre-
man kann ja ix noch mit einem beliebigen Faktor multiplizieren, d.h. fi durch fit
mit konstantem t ersetzen. Sucht man zu festem /ut den Minimalwert der ent-
stehenden Funktion von t, dann entsteht
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FOLGERUNG 2. Unter den Voraussetzungen von Folgerung 1 und bei „ >"
in (25) gilt auch

U K(*i,z)log\z-C\dst]dscds^\ 1^27r9lee-2l0aie (26)

mit Gleichheit genau fur

Entsprechend lâsst sich auch die rechte Seite von (24) umschreiben. Es sei

noch bemerkt, dass der in (24) und (26) auftretende, durch Faltung von K(tj, z)
und log|z —f| entstehende Kern nâher von Carleman untersucht wurde-vgl. [4],
S.27/28.

Setzt man speziell in (22) ju a 0, so ergibt sich

FOLGERUNG 3. Es gilt fur aile reellen 6 stets

-l)^dy. (27)

Das Gleichheitszeichen kann in (27) offenbar fur p^ 1 niemals stehen. Jedoch
ist Ungleichung (27) fur "kleine" Werte von p - 1 asymptotisch scharf (wie analog
die unten folgenden Ungleichungen). Dies steht in Ûbereinstimmung mit asym-
ptotischen Darstellungen fur a10 in [10b], S.14,[20], S.433, [15], wo ein anonymes
Fehlerglied auftritt.

Nach [12] ist bei den Abbildungen von SI (vgl. §2) der genaue Wertebereich
der Koeffizienten ax eine abgeschlossene Kreisscheibe, wobei die ge als Extremal-
funktionen auftreten. Daraus ergibt sich nach Folgerung 3 die

FOLGERUNG 4. Der Rand Kreislinie) des genauen Wertebereichs der

Koeffizienten ax bei den Abbildungen der Klasse 21 liegt bei p& 1 in dent zum
Nullpunkt konzentrischen offenen Kreisring mit den Radien

und ±||(p-i)dxdy. (28)
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Speziell fur die Klasse Eq sind dièse Radien damit

-h)1 und hQ~l)-L (29)

Die wenigen Fâlle von Funktionen p(z), fur die der genaue Wertebereich von
ax bisher als geschlossener Ausdruck verliegt, sind in [18] zusammengestellt.

Man vgl. zu (28) bzw. (29) verwandte Ungleichungen in [17]. Aus (8) in [17]
ergibt sich z.B. statt der ersten in (28) genannten Grosse die kleinere (also

grôbere)

Andererseits kann man (28) zu einer Abschâtzung der in [17] eingefûhrten
"quasikonformen Spanne" S bezûglich der Dilatationsschranke p(z) benutzen:

S^~\Up-l)dxdy. (30)

m

Das ergânzt die in [17] angegebene Ungleichung

(31)
ttJJ p+

die ùbrigens besser ist als die aus dem linken Term in (28) entstehende

Abschâtzung.
Durch den bekannten Prozess der Bildung der zweiblâttrigen

Ûberlagerungsflâche fliesst aus Folgerung 4 weiter die

FOLGERUNG 5. Bei den Abbildungen w w(z) der Klasse SI ist bei p# 1

zu fïxiertem zx der genaue Wertebereich von w(zx) eine abgeschlossene Kreisscheibe,
deren Rand vollstândig in dem zu zx konzentrischen offenen Kreisring mit den

Radien

une JLfffr-i)*^ (32)2ttJJvf '\z-zt\

liegt.
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Man kann die zweite GrôBe in (32) nach einem Hilfssatz von E. Schmidt
weiter abschâtzen und erhâlt

|w(zO-Zi|^(Q-l)VÎ/^ fur w(z)€«fQ. (32')

Fur den Spezialfall, es ist p(z) 1 fiir \z\ > 1, p(z) Q > 1 fur \z\ < 1, so dass in
21 die Klasse Z(Q) der Q-quasikonform fortsetzbaren Abbildungen der bekann-
ten Klasse £ vorliegt, lautet (32) mit den ûblichen Bezeichnungen fur die

vollstândigen elliptischen Intégrale erster und zweiter Gattung so:

und 27r-1(O-l)|z1|tE(|21|-1)-(l-|21|-2)-K(|21|-1)] fiir |Zl|>l,
27r-1(l-Q-1)-E(|z1|) und 2ir"1(Q- 1)-E(!zi|) fur {z^l. (33)

Das ergibt sich aus

xdy J4\
-zi| U-

dxdy J4\zx\ [E(\Zin - (1 - \Zl\-*). K(\Zin] fur \Zl\>l,
J) fur jzxlâl. (33')

Zur Berechnung werden Polarkoordinaten eingefiihrt. (33) wurde als asym-
ptotische Abschâtzung schon in [19] (im Fehlerglied etwas unschârfer in [20])
angegeben. (33') ergibt sich auch durch Vergleich von (32) mit [19]. Die
zugehôrige scharfe (naturgemâss erheblich kompliziertere) Abschâtzung des

Funktionals w(zx) in der Klasse £(C?) wurde in [19] angegeben.
Aus Folgerung 5 ergibt sich durch eine lineare Transformation, die zx nach <*>

schaflEt, weiter die

FOLGERUNG 6. Bei den Abbildungen der Klasse % ist der Rand des

genauen Wertebereichs abgeschlossene Kreisscheibe) des Funktionals

w'^z^/w'iz^ zu fixiertem zx bei p& 1 (aber p l in Umgebung von zx) vollstàndig
in dem zum Nullpunkt konzentrischen offenen Kreisring mit den Radien

1 ff/1 l\ dxdy 1 fr 1X dxdy
T~ U— l i5 und T- I I (p— 1); s (34)

gelegen.

Hierbei ist die Normierung (3) in z °° und sogar die an sich dort gemachte
Voraussetzung p 1 in Umgebung von z <» offenbar ûberflûssig, also nur die

Forderung oo-»oo wesentlich.
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Aus Folgerung 6 erhâlt man dann auch Abschâtzungen der Rundungsschranke
in der Klasse £(Q) (s.o.) bzw. S(Q) Abbildungen der Klasse S mit Q-
quasikonformer Fortsetzung nach |z|>l bei oo-»oo). Der genaue, wenngleich
erheblich kompliziertere Wert dieser Rundungsschranke fur £((2) wurde in [19]
angegeben.

§5* Verallgemeinerungen

1. Ersetzt man in §3 die Funktion <p0 durch

<po(z) 9te i£ xkzk/k L xk komplexe Konstanten,

ferner die Funktion <£*(z) durch

t l (36)
k=i fc

wobei die Hilfsfunktionen N(k) und M(k) mit ihren Entwicklungskoeffizienten bkl

bzw. ckl wie in [13] zu definieren sind, so erhâlt man einen Satz, der zu Satz 1

analog ist. Wir wollen uns damit begnûgen, diesen nur entsprechend Folgerung 3

zu formulieren. Statt (21) erhâlt man jetzt

2A <poti* ds + 2ir\ \(poa*dxdy (37)

- Iim3mf l k
n

-2ttSRc %

Somit ergibt sich wegen

f f(p-D j- I lxkzk dxdy=

SATZ 2. Es gilt fur aile Système komplexer Konstanten xk fur die
Entwicklungskoeffizienten bkl und cki der Funktionen N(k) und M(lc) stets unter den in §2
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genannten Voraussetzungen

l -^z16-^1"1 dx dy ^ 2^a*e ^g^x^ftw + x^Cw) (38)

Dz*-1?-1 dxdy.
k,l l

©

Nun ist nach [13] der genaue Wertebereich des aus den gemâss

-logW(z)~w(^= £ aklz~kCl inUmgebungvonz oo (39)
z~£ k,i i

fur die Abbildungen w(z)e 21 definierten Koeffizienten akl gebildeten Funktionals

n

X XkWki (40)
k,l l

eine abgeschlossene Kreisscheibe mit dem Mittelpunkt bzw. Radius*

n n

£ xkxifcki bzw. ^ xkxtckl.
k,l l k,l l

Damit ergibt sich aus Satz 2, da man die xk durch e~lOxk ersetzer; kann, die

FOLGERUNG 7. Der Rand Kreislinie) des genauen Wertebereichs des

Funktionals (40) bei den Abbildungen der Klasse 21 liegt bei p^l in dem zum
Nullpunkt konzentrischen offenen Kreisring mit den Radien

7- î xkx,\Up-l)zk-lz"dxdy.

* Druckfehler in [13]: In (54) ist xkxt zu ersetzen durch xkxt (gleiches Versehen in der klassischen
Arbeit von H. Grunsky, Math. Z. 45, dort in der Hauptungleichung (38) bzw. im Ûbergang von (44)
zu (45)). Ferner ist in [13] in (12) und (13) 7^, zu ersetzen durch yky,.
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Man kônnte hieran noch âhnlich Bemerkungen wie nach Folgerung 4
anschliessen. In [18] findet sich eine Zusammenstellung der wenigen bisher
bekannten Fâlle von Funktionen p(z), fur die der genaue Wertebereich von (40)
als geschlossener Ausdruck bekannt ist.

2. Ersetzt man in §3 die Funktion <p0 durch

<po(z) 3te £ 7k log (z - zk), yk komplexe Konstanten, £ |yk| # 0, (42)
î

ferner die Funktion <f)*(z) durch

n

<t>*(z) 91e £ [jk log p(z ; zk9 «>) + yk log q(z ; zk, oo)], (43)
i

wobei die Hilfsfunktionen p(z;zk,<*>) und q(z;zk, <») wie in [13] zu definieren
(und nicht mit p(z) zu verwechseln) sind, so erhâlt man wieder einen Satz, der zu
Satz 1 analog ist. Auch hier soll dieser nur entsprechend Folgerung 3 formuliert
werden. Ferner setzen wir zur Vereinfachung noch voraus, dass in einer
Umgebung der (verschieden annehmbaren) Punkte zk gilt p(z) l. In den
Ûberlegungen von §3 ist jetzt ® zu ersetzen durch den geschlossenen Weg, der
entsteht, wenn zu ® noch kleine die zk umschlingende Kreise sowie dièse mit ®
verbindende doppelt durchlaufene Strecken hinzugenommen werden. Statt (21)
erhâlt man jetzt

2tt\ <poti* ds + 2jr\ \<po(r* dxdy

-27r9te £ \ykyi log
pUk ; *b ^ + y^ log q(zk ; zb «)]. (44)

k,i=iL Zk~zi J

Somit ergibt sich wegen

I dxdy

SATZ 3. Es seien yu..., yn nicht zugleich verschwindende komplexe
Konstanten. Ferner seien zu...,zn untereinander verschiedene Punkte, in deren

Umgebung jeweils fur die Funktion p(z) (nebst den allgemeinen Voraussetzungen
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von §2) gelte p(z)^ 1. Dann ist

t f (45)

(p-Utt-t^

Nun ist nach [13] fur die Abbildungen w(z)g?1 der genaue Wertebereich des

Funktionals

2, TkTilog (46)
kJ l zk ZI

eine abgeschlossene Kreisscheibe mit dem Mittelpunkt bzw. Radius

£ gP Zk'Zh— bzw. £ yky, log q(zk;z/y oo).

Damit ergibt sich aus Satz 3, da man die yk durch e~ieyk ersetzen kann, die

FOLGERUNG 8. Der Rand Kreislinie) des genauen Wertebereichs des

Funktionals (46) bei den Abbildungen der Klasse % liegt bei p&l in dem zum
Nullpunkt konzentrischen offenen Kreisring mit den Radien

Hieraus fliesst speziell fur n 1 die

FOLGERUNG 9. Der Rand Kreislinie) des genauen Wertebereichs des

Funktionals

log w'(Zl) (48)
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bei den Abbildungen der Klasse % liegt bei p&l (aber p l in Umgebung von
z Zx) in dem zum Nullpunkt konzentrischen offenen Kreisring mit den Radien

2tt J J V p/lz-Zxl2 2tt |z-zx|

Dies zeitigt weiter wie bei H. Grôtzsch durch die Méthode der zweiblàttrigen
Ûberlagerung die

FOLGERUNG 10. Der Rand Kreislinie) des genauen Wertebereichs des

Funktionals

(2l#z2) (50)

bei den Abbildungen der Klasse 2t liegt bei p& 1 in dem zum Nullpunkt konzentrischen

offenen Kreisring mit den Radien

„„„ -Lff(p-i) -y i-
(51)

2tt J J |z-z||z-z||z-Zi||2-z2| 2tt J J |z-z1||z-z2

Dabei seien Zx und z2 verschiedene und sonst irgendwo gelegene Punkte, in
deren Umgebung insbesondere jetzt nicht p 1 sein muss.

Haben wir es speziell mit der Abbildungsklasse X(Q) zu tun, dann erhâlt man
wie in [20] mit der ûblichen Bezeichnung K(k) fur die vollstàndigen elliptischen
Intégrale erster Gattung aus (51) bei z2 0

K(k)dk und -(Q-l) K(k) dk fur |zx|^l,

f1/|zi' 1 2

j [K(l/k)lk]dk\ und -(0-1) (52)

' Zl
{2G-f ['

Zl [K(l/k)/k]dkï fur \Zl\ < 1

(G Catalansche Konstante). Durch Stûrzung fâllt uns hiermit die nachstehende

Folgerung zu, die ein Résultat von S. L. KruskaF [9], [10] (fur |zj|^l) bzw. O.
Lento [20] (fur |zi|>l) verschârft.
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FOLGERUNG 11. Der Rand des genauen Wertebereichs abgeschlossene

Kreisscheibe) des Funktionals

log[w(z)/z] (zfest) (53)

bei den Abbildungen der Klasse S(Q) (s.o.) liegt bei Q> 1 in dem zum Nullpunkt
konzentrischen offenen Kreisring mit den Radien

|z| 2 f|z|2 / 1 \ f|z| 2 f|z|- 1-- K(k)dk und -(0-1) K(k)dk fur
7T \ U/Jo TT Jo

und -(0-1) (54)

x J2G + [
Z

[K(l/k)/k] dk\ fur \z\ > 1.

Wegen der wenigen bekannten Fàlle, in denen der genaue Wertebereich des

Funktionals (48) bzw. (46) als geschlossener Ausdruck bekannt ist, vgl. man [12]
bzw. [13] und die in [18] angegebene Literatur. Der genaue Wertebereich des

Funktionals (50) bzw. (53) lâsst sich nach [14] prinzipiell fur die Klasse £(Q) bzw.

S(Q) berechnen. Jedoch ist der Formelaufwand betrâchtlich.
Setzt man in Folgerung 7 noch n 2, yx 1, y2 -1 und fiïhrt anschliessend

den Grenzûbergang z2->zx durch, so erhàlt man die

FOLGERUNG 12. Der Rand Kreislinie) des genauen Wertebereichs der fur
z- zx genommenen Schwarzschen Ableitung

{w, z} (55)

bei den Abbildungen der Klasse 21 liegt bei p^l (aber p l in Umgebung von
z zO in dem zum Nullpunkt konzentrischen oflenen Kreisring mit den Radien

3 f f/ l\ dxdy 3 f(\ iX dxdy

Der genaue Wertebereich von (55) ist explizit nur in wenigen Fâllen
bekannt—vgl. [12], [13], [18]. Man vgl. auch unscharfe Abschàtzungen von (55)
und (50) in [7].
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Es liessen sich noch wie in [13] aus Folgerung 7 durch Grenzûbergang u.â.
zahlreiche andere Aussagen ûber verwandte Funktionale gewinnen, was der Léser
aber mûhelos selbst vollziehen kann.

§6. Zusatzbemerkungen

1. Die in §3 fur die Ebene vorgetragene Ûberlegung lâsst sich auch auf den
Raum ûbertragen bei Ersetzung der logarithmischen Potentiale durch die ent-
sprechenden râumlichen Potentiale. Man erhâlt so wieder eine Extremalcharak-
terisierung gewisser elektrostatischer Grundpotentiale. Eine Deutung im Zusam-
menhang mit quasikonformen Abbildungen entfàllt dann allerdings.

2. Fasst man die Minimierung der linken Seite von (22) als Variationsproblem
fur /ut,o" auf, so entsteht als notwendige Bedingung fur das Verschwinden der
ersten Variation (15), (17). Variationsprobleme dièses Typs wurden in [8]
betrachtet.

3. Es sei hier auf die Môglichkeit hingewiesen, mit den Mitteln der sog.
modernen Potentialtheorie auf Grund der Extremaleigenschaft auf die Existenz

von jLt*, er* und damit der Funktion ge(z) zu schliessen.

4. Man kann die Auswirkung von Symmetrisierungs- und âhnlichen geome-
trischen Prozessen auf die linke Seite von (22) und damit ale studieren.

5. Die Ungleichungen

log
w(zl)-w(z2)

\z-zl\\z-z2\

(57)

(58)

die zunâchst nach Folgerung 5 bzw. 10 fur die Abbildungen w(z) der Klasse SI

gelten, sind auch fur die Abbildungen von ® richtig, deren Dilatation im Punkte z
stets ^p(z) ist und die jeden Randpunkt von © fest halten; zx und z2 seien dabei
Punkte im Innern von ©. Denn dièse Abbildungen lassen sich durch die Identitàt
zu einer Abbildung der Klasse % ergânzen.

6. Bemerkenswert ist noch, dass die Intégrale in (34), (49) und (56)
beschrânkt bleiben, falls zx jeeignet gegen geeignete Spitzen strebt, wenn man
solche in der Berandung von © zulasst und p(z)= O in © setzt. Ferner bleiben
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dièse Intégrale beschrânkt bei Annâherung an Randpunkte von ©, bei denen

p(z)-l hinreichend stark nach Null strebt. Man beachte den engen Zusam-
menhang dièses Sachverhaltes mit dem Teichmùller-Wittichschen Verzer-
rungssatze.
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