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Comment. Math. Helvetici 53 (1978) 395-407 Birkhduser Verlag, Basel

Riemannsche Flichen mit grosser Kragenweite™

PETER BUSER

Einleitung

Wenn im folgenden von Flichen die Rede ist, so ist immer eine kompakte
Riemannsche Fliche F vom Geschlecht g=2 gemeint. Auf dieser gibt es genau
eine mit der konformen Struktur vertrégliche Metrik der konstanten Kriimmung
K=-1. Alle Grossen wie die Distanzfunktion d(p, q), die Weglange I(y), das
Lebesguemass vol D usw. beziehen sich stets auf diese Metrik.

Unter der Kragenweite u(F) verstehen wir die Léinge der kiirzesten nicht
konstanten geschlossenen Geodatischen auf F. Flachen mit grosser Kragenweite
haben ein interessantes Verhalten in Bezug auf das Spektrum des Laplace-
Beltrami-Operators A = —div grad: Bezeichnet Ag(x) die Anzahl der Eigenwerte
im Intervall (0, x), gezdhlt mit ihren Vielfachheiten, so hat H. Huber entdeckt,
dass das Verhiltnis Az(3+ €)/Ap(3) fir jedes £ > 0 beliebig gross wird, sobald nur
w(F) hinreichend gross ist [4]. Dabei gibt es nach Randol [7] zu jedem [>0
Flichen mit w(F)= [ und beliebig vielen Eigenwerten in (0, §), sofern es iiberhaupt
eine Fliche mit w(F)=1 gibt. Huber hat aber in [4] die Existenz solcher Fldachen
mit Hilfe einer zahlentheoretischen Ueberlegung sichergestellt. Dennoch kann
man sich kompakte Flichen mit grossem u(F) gerade wegen der Bedingung
K =—1 nur schwer vorstellen, und man gewinnt in [4] den Eindruck, dass diese
eher eine Besonderheit darstellen. Das tun sie nicht: In der vorliegenden Note
konstruieren wir Beispiele auf mehr geometrischem Wege, um den folgenden Satz
zu zeigen:

Fiir alle 1>0 und fiir alle natiirlichen g>e'’* gibt es eine kompakte

Riemannsche Fliche F vom Geschlecht g mit u(F)= L. (A)

Es gibt also viele Flichen mit grosser Kragenweite. Dies trifft aber noch in
einer anderen Hinsicht zu: Es sei F, eine vorgegebene Fliche vom Geschlecht
g=2. Die Menge T, aller sogenannten markierten Riemannschen Flachen vom

* Diese Arbeit wurde im Rahmen des Sonderforschungsbereichs 40 Theoretische Mathematik
geschrieben.
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396 PETER BUSER

selben Geschlecht g bildet bekanntlich einen dem R®¥° homéomorphen met-
rischen Raum, den Teichmiillerraum [1]. Wir werden zeigen, dass die Abbildung
F — u(F) auf T, stetig ist; genauer gilt fiir je zwei Flichen F, F, € T,:

| (F) = w(Fo)| < (e” ™ = 1) u(Fy). (B)

Dabei ist p die Abstandsfunktion im Teichmiillerraum (siche Abschnitt 4). Besitzt
nun F, eine grosse Kragenweite, so auch alle Flachen in einer Umgebung von F,.

Das Geschlecht in (A) ist recht gross. Bezeichnen wir mit g= g...(I) das
kleinste Geschlecht, das eine Fliche mit Kragenweite | haben kann, so lasst sich
sofort eine untere Schranke fir g.;.(I) angeben: Da [ gleich dem doppelten
Injektivitidtsradius ist, ist fiir einen beliebigen Punkt p € F die Kreisumgebung
U ={q € F|d(q, p) <l/2} homéomorph zum Einheitskreis der Ebene. Folglich ist
4m(g—1)=vol F>vol U=2m [§*sinh tdt. Das liefert zusammen mit (A) die
beiden Ungleichungen

se"” <gma(D<1+e"". (©)

Im Beweis von (A) wird wesentlich ein Resultat von P. Erdés iliber kubische
Graphen benutzt [2]. Im Beweis von (B) verwenden wir einen Verzerrungssatz
von Hersch [3] fiir quasikonforme Abbildungen. Der Zusammenhang zwischen
den Riemannschen Flichen und der Graphentheorie wird im ersten Abschnitt
hergestellt.

1. Y-Stiicke und kubische Graphen

Als erstes konstruieren wir zu jedem />0 eine gewisse Standardfliche Y(l)
der Signatur (0, 3); das ist eine kompakte berandete Fliche, die entsteht, wenn
man aus der Sphire $® das Innere von drei disjunkten abgeschlossenen Kreis-
scheiben entfernt. Y(I) soll so mit einer Metrik der konstanten Kriimmung K = -1
versehen werden, dass die Rinder Geoditische der Linge [ sind. Zu diesem
Zweck betrachten wir ein in der hyperbolischen Ebene H liegendes kompaktes
rechtwinkliges geoditisches Sechseck D, von welchem drei paarweise disjunkte
Seiten o;:[0, 1]— H die Linge /2 haben sollen. Die ¢; umlaufen D im positiven
Sinne (Figur 1).

Die Linge des gemeinsamen Lotes 7;:[0,1]—> H von o;,_; und o,
(i=1,2,3; mod 3) lisst sich mit Hilfe der hyperbolischen Trigonometrie ausrech-
nen: Das Sechseck kann in sechs kongruente Spitzecke pqq'p’ (das sind
geoditische Vierecke mit drei rechten Winkeln und einem spitzen Winkel ¢)
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Figur 1

zerlegt werden mit der spitzen Ecke im Schwerpunkt von D. Dabei ist hier
¢ =m/3 und q' = l/4. Fir Spitzecke gilt allgemein [6] p. 78:

sinh p’ = cosh p -sinh g, cos ¢ =sinh g -sinh q’, 1)

cosh q' = cosh p -sin ¢.

7, besitzt die Lange I(1;) =2q. Aus (1) folgt wegen ¢ = m/3:

l(7;) = 2 arsinh (2)

1
2 sinh l/4°
Fiir den Abstand d(o;, 7;) zweier einander gegeniiberliegender Seiten erhilt man
aus (1)

d(o;, 7)> /4. (3)

Fiir die Herstellung von Y(!) nimmt man von D noch ein zweites Exemplar D'
und identifiziert =;(t) mit 7/(t), t€[0,1]; i=1,2,3. Auf der so hergestellten
Fliche Y(!) bilden die drei Koordinatensysteme {Y;, ¢;} einen differenzierbaren
Atlas, in welchem sogar alle Ueberlappungsabbildungen lokale Isometrien sind,
wenn Y, =Y()—(r,_; U, gesetzt wird, und wenn ¢ |p=id, ¢ |p=
Spiegelung von H an der Geoditischen 7; bedeutet. Folglich lasst sich die Metrik
von H mittels dieser Karten auf Y(!) iibertragen. Man erhidlt K = —1. Die Réinder

o;(2t) , wenn te[0,1]

- 3
o/(2-2t), wenn tel[3 1] (i=1,2,3)

%(t)={

sind Geoddtische der Léange L
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Mehrere Exemplare von Y(I) konnen nach dem Muster eines vorgegebenen
Graphen zusammengesetzt werden: Es gelten folgende Bezeichnungen: |G| ist die
Anzahl der Knotenpunkte des Graphen G. Jede die beiden Knoten x und vy
verbindende Kante (x, y) denke man sich aus einer von x und aus einer von y
ausgehenden Halbkante zusammengesetzt. Die Valenz v(x) eines Knotens x ist
die Anzahl der von x ausgehenden Halbkanten. G heisst reguldr vom Grad r,
wenn v(x)=r fiir alle x. Ein zusammenhédngender regularer Graph vom Grad 3
heisst kubisch. Die Linge eines Weges in G ist die Anzahl seiner Kanten. Der
Abstand 8(x, y) ist die Linge des kiirzesten Weges, der x mit y verbindet. Ein
Kreis ist ein einfachgeschlossener Weg ohne Doppelpunkte. Endlich versteht man
unter der Taillenweite T(G) von G die Liange des kiirzesten Kreises in G, sofern
G iiberhaupt Kreise besitzt.

Es sei nun g=2 und G ein (zusammenhidngender) kubischer Graph mit den
Knotenpunkten y,, k=1,...,2g—2. Von jedem y, gehen die Halbkanten ¢, ;
aus; i=1,2,3. Von Y(l) widhlt man lauter identische Exemplare Y,; k=
1,...,2g—2, mit den Réndern v, ;; i=1,2,3. Sind nun ¢; und ¢,; zwei
Halbkanten, die zusammen eine Kante des Graphen bilden, so verklebt man Y,
mit Y, entlang der Rinder v,; und v,; durch die Identifikation

Yiei(8) = yij(a—1). (4)

Dabei sind die Randkurven der Y-Stiicke auf R periodisch fortgesetzt gedacht.
a € R ist ein Parameter. Damit in (4) kein Streit entsteht, wer umparametrisiert
werden muss, kann man verabreden, dass (k, i) in der lexikographischen Ordnung
vor (l,j) kommt. Auf diese Weise erhilt man zunichst eine differenzierbare
orientierbare kompakte Fliche F vom Geschlecht g. Es ist aber leicht einzusehen,
dass es auf F einen Masstensor gibt, der auf allen Y, mit dem dort bereits
definierten ibereinstimmt. Mit diesem Masstensor versehen wird F zu einer
Riemannschen Fliche. Die v, ; kann man als Wege in F auffassen; sie sind
geschlossene Geoditische der Linge [, wir bezeichnen sie als Nahtstellen. Jeder
Naht von F ist in natiirlicher Weise eine Kante des Graphen zugeordnet und
umgekehrt.

2. Graphen mit grosser Taillenweite

Die Herstellung von Flichen mit grosser Kragenweite beruht nun auf der
Existenz von kubischen Graphen mit grossem T(G). Diese wurde erstmals von H.
Sachs [8] nachgewiesen. Sachs benétigt Graphen mit einer sehr grossen Anzahl
Knoten. P. Erdés gelang es daraufhin, diese betrichtlich herabzudriicken [2]. Wir
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formulieren sein Resultat in einer fiir unsere Zwecke ausreichenden leicht
abgeschwichten Form. Dazu definieren wir fiir alle t € N eine Zahl g, durch

2, t=1,2
g=3t+1, t=3,4,5 (S)
20, t=6.

Nun lautet der Satz von Erdos:

Fiir alle t e N und fiir alle g=g, gibt es einen kubischen Graphen G mit
|G|=2g—2 Knotenpunkten und Taillenweite T(G) = t. (6)

Beweis. Fir t=<4 findet man sofort Beispiele. Wie man solche fir t=35
herstellen kann, zeigt Figur 2, und zwar zunéachst

Figur 2

fir g=2n (n=3) nach dem durchgezogenen Teil der Figur (im inneren (2n—1)-
Eck wird immer ein Knoten iibersprungen); aber dann auch fiir g=2n+1, indem
man jeweils noch die Knoten a, b und die Kante (a, b) hinzufugt.

Nun sei ¢t =6. Man beginnt mit einem Kreis von 2g—2=2""'-2 Knoten, also
mit einem zusammenhéngenden reguliren Graphen G vom Grad 2. Dieser besitzt
eine Taillenweite 2'*!—2>t. Die Anzahl Kanten in G wird schrittweise erhoht,
bis schliesslich jeder Knoten die Valenz 3 besitzt, ohne dass je die Taillenweite
kleiner als t wird. Wir nehmen jetzt an, G sei noch nicht kubisch. Fiir den Beweis
von (6) geniigt es zu zeigen, dass man die Kantenzahl um eins erhéhen kann, ohne
die Bedingung T(G)=t zu verletzen. Dazu bemerken wir, dass es mindestens
zwei Knoten x und y gibt, fiir die v(x) = v(y) =2, denn allgemein ist die Anzahl
der Knoten mit ungerader Valenz in einem Graphen immer gerade, und G besitzt
eine gerade Anzahl Knoten.
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Wenn 6(x, y)=t—1, so fiige man die Kante (x, y) zu, dadurch kann kein Kreis
kiirzer als t entstehen. Sei nun 8(x, y)<t—2. Die Menge A aller Knoten z mit
8(x,z)<t—2 und 8(y,z)<t—2 besteht aus hochstens 2) i 52 =g —-2<g—1
Knoten. Jeder davon kann hochstens mit zwei Knoten ausserhalb A verbunden
sein. Von jedem Knoten ausserhalb A gehen aber mindestens zwei Halbkanten
aus, sodass auf jeden Fall zwei nicht in A liegende Knoten X, y bereits durch eine
Kante verbunden sind. G’ sei der Graph, der aus G durch Loschen der Kante
(x, y) entsteht. G" wird gebildet, indem man in G’ die beiden (noch nicht
vorhandenen) Kanten (x, X) und (y, y) hinzufiigt. Es muss noch gezeigt werden,
dass T(G")=t: Aus T(G)=t folgt 6(x,y)=t—1 in G, und aus &, y€ A folgt
8(x,x)=t—1, 6(y,y)=t—1. Ein Kreis K in G", der schon in G vorhanden ist,
hat eine Linge =t. Wenn K kein Kreis von G ist, so sei etwa (x, X) eine Kante
von K. Dann gibt es einen Teilweg W von K, der weder (x, X) noch (y, y) enthilt,
aber X mit einem der Knoten x, y, y verbindet. W gehort auch zu G, also besitzt
W eine Lange =t— 1. Jeder Kreis in G” besitzt demnach eine Lange =t, q.e.d.

3. Beweis von (A)

Es sei m = m(l) die natiirliche Zahl

1, wenn 0<I<?2
m=m(l)=1 2, wenn 2<I<11 (7)
\ [%ﬁ-], wenn 1>11,

wobei das Klammersymbol die Bedeutung [x]=max{z€Z|z=<x} hat. Weiter
bezeichnet a(l) die nur stiickweise stetige Funktion

[ 1, wenn 0<I[<?2
) 1
= S, A— <l<
a(l) arsinh {2 Sinh /8 }, wenn 2<[=<11 (8)
— arsinh e~ V4™, wenn 1>11,
. m

und schliesslich ¢ = t(l) die natiirliche Zahl

t=t(1)=[rll)]+1' 9)
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Dann gilt fiir die in (5) eingefiihrte Funktion g, die Ungleichung

g <1+[e"]. (10)

Beweis. Fiir 0<]<2 ist die Behaupfung klar, da in diesem Fall t=2. Wenn
2<|<4, ist sogar t+1<2+1/a(l)=2+1 arsinh™' {1/(2sinh i)} <e'’*, wie man
leicht bestitigt. Um [€(4,11] zu betrachten, kann man

a, = (4n1n2)'? (n=5,...,44)
setzen und nachrechnen, dass fir diese n
ta, 1) <n. (11)

In den Intervallen [a,, a,,1] N (0,11] ist #(I) monoton wachsend. Man erhalt
deshalb wegen (11) die Folge von Ungleichungen g <2'<2"®)<2" = ¢%/*<
e'*. Da nun as<4 und a,,> 11, ist damit (10) fiir [ €(0, 11] bewiesen.

Fiir /> 11 beachten wir zunichst, dass die Funktion

¥(x):=2x arsinh e 2

in (0, ) genau ein relatives Extremum besitzt: Ist nimlich y = arsinh e 2, so ist
¥Y(x)=X(y) mit X(y)=—4ylInsinhy, ye(0,arsinh1). Wegen X"(y)=—8ctgh
y +4y sinh™? y <-4 ctgh y <0 und wegen lim,, X(y) = 0= X(arsinh 1), besitzt X
genau ein relatives Extremum, dieses ist ein Maximum. Dasselbe muss fir ¥
gelten wegen der Monotonie von y = y(x). Weiter ist ¥(3)> ¥(*3¥)=1.424 ... . Es
gilt deshalb

¥(x)>pB:=1.424, xe[3,2]. (12)

Nach Definition von m ist [/2m =% und [/2(m + 1) <%. Es gilt aber auch [/2m <%,
denn andernfalls folgte zundchst m <2 und daraus [ <%, obwohl I>11 voraus-
gesetzt ist. Somit ist (12) auf x = l/2m anwendbar, und es folgt la(l)=2¥(l/2m)>
2. Wegen [>11 und 121(1-(2In2)/B)>4-In2 erhdlt man daraus
(1+la()-In2<1?/4 fiir [>11, womit nun (10) fiir alle | bewiesen ist.

Es sei nun [>0, g=g, fest vorgegeben und G ein kubischer Graph der
Taillenweite T(G)=t mit 2g—2 Knotenpunkten (sieche (6)). Von Y(I) werden
2g—2 Exemplare anhand von G zu einer Riemannschen Flache F vom Ges-
chlecht g zusammengesetzt. Fiir den Parameter « in (4) soll dabei gelten

a = m/m(l). (13)
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Fiir den Beweis von (A) geniigt es wegen (10) zu zeigen, dass w(F)=Il. Da die
Nahtstellen geschlossene Geoditische der Linge [sind, geniigt es weiterhin zu
zeigen, dass keine weitere geschlossene Geoditische o eine kiirzeste solche sein
kann. Um den Verlauf von o zu verfolgen, werden wir ein paar mal die
hyperbolische Ebene H zusammen mit einer festen lingentreuen Ueberlagerungs-
abbildung H — F heranziehen.

Besitzt o Doppelpunkte, so kann ¢ nicht am kiirzesten sein, denn ¢ besitzt in
diesem Fall ein nicht nullhomotopes geschlossenes Teilsegment, in dessen freier
Homotopieklasse sich eine kiirzere geschlossene Geoditische als o befindet. Von
nun an sei o ohne Doppelpunkte vorausgesetzt. Dann kann ¢ nicht auf einem
einzigen Y-Stiick verlaufen, da sonst o einer Naht gleich wire, was wir bereits
ausgeschlossen haben. Man findet deshalb eine Folge t,=0<¢,<---<t,=1 und
eine zugehorige Folge von Nahtstellen v,,..., y, = v, (Wo einzelne auch mehr-
fach auftreten konnen), die so beschaffen sind, dass o(t,)ey, (v=0,...,n) und
so, dass o keine weiteren Nahtstellen iiberquert; dh. jedes Segment o, := 0 |, , .
verlauft jeweils auf einem einzigen Y-Stiick, das wir mit Y, bezeichnen. Auch
hier konnen einzelne Y-Stiicke mehrfach auftreten.

Wenn es vorkommt, dass y,_; = v,, so iberquert o, das gemeinsame Lot = der
beiden von v, verschiedenen Rénder von Y,. Das folgt daraus, dass die
Krimmung auf Y, negativ, o, Geoditische ist, und dass wegen t=2 keine zwei
Rinder von Y, miteinander verheftet worden sind. Aus (3) erhélt man [(o,) > /2.
Ersetzt man o, durch den kiirzeren der beiden Teilbogen von v,, welche die
beiden Punkte o(f,_;) und ¢(t,) miteinander verbinden, so entsteht eine ge-
brochene Geoditische o', die nicht null-homotop sein kann, da sonst o’ als
Ueberlagerungsweg ein geoditisches Zweieck in H besitzen wiirde. In der freien
Homotopieklasse von o' befindet sich eine geschlossene Geoditische, die
wiederum kiirzer ist als o.

Von nun an konnen wir annehmen, dass vy,_, # v, fiir alle v. Bezeichnet s, die
der Naht vy, zugeordnete Kante des Graphen G, und durchlduft man diese Kanten
der Reihe nach von v=1 bis v=n, so entsteht ein Kantenzug s, in welchem
s,—1 7 8, fiir alle v. Deshalb enthélt s einen Kreis, dessen Lange nicht kleiner sein
kann als die Taillenweite ¢t des Graphen. Also gilt fiir die Anzahl n der Segmente
g, von o

n=t. (14)

Wir zeigen, dass unter den verbleibenden Umstinden

l(o)>], (15)
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womit dann (A) bewiesen sein wird. Fiir den Beweis von (15) wird es geniigen,
wenn wir zeigen, dass fiir je m = m(l) aufeinanderfolgende Segmente (siehe (7)),
also 0.B.d.A. fiir 04,..., 0,

i I(o,)> ma(]), (16)

denn durchlduft man o m mal, so legt man einen Weg der Linge ml(o) zuriick,
der nach (14) aus mindestens ¢t m-Tupeln von aufeinanderfolgenden Segmenten
zusammengesetzt ist, wobei jedes solche m-Tupel eine Liange >m a(l) besitzt. Es
folgt mit (9) l(o)>ta(l)= 1.

Zum Beweis von (16) betrachten wir zuerst den Fall [ <2. Nach (2) sind je zwei
Rinder von Y(l) um den Betrag 2q voneinander entfernt mit sinh q-sinh l/4 =3.
Wegen | <2<4 arsinh v} ist [/4<gq, also ist o, > /2, wie behauptet. Von nun an
sei [>2: Es bezeichnet G:[ty, t,,]—> H einen Ueberlagerungsweg von o |, , ;.
Weiter seien a, die durch ¢(t,)ea, (v=0,..., m) eindeutig definierten Ueber-
lagerungswege der vy,. Da o, doppelpunktfrei ist, gibt es eine Homotopie auf Y,,
welche o, in das gemeinsame Lot von vy,_; und v, tberfiihrt, wobei Anfangs- und
Endpunkt auf den Randern von Y, frei beweglich sind, diese aber nie verlassen.
Die Homotopie kann man in die Ueberlagerungsebene H liften. Also ist der
Abstand von a,_; zu a, gleich 2q (siche (2)).

A, sei der auf a, liegende, A’,, der auf a,,, liegende Fusspunkt des
gemeinsamen Lotes von a, und a,,, (v=0,...,m—1). H wird durch die
Verlingerung von ¢ in eine linke und in eine rechte Halbebene zerlegt. Wir
parametrisieren die a, in der Form t — at+ 8 ;a, B € R so um, dass ||d,||= 1, dass
alle a, von links nach rechts laufen und so, dass a,(0) = A,. Dann ist wegen (4)
und (13)

A= a,,(s,,zl—-—z—l;) mit einem s, €Z.

Nehmen wir zuerst an, dass nicht alle s, gleich null sind. In diesem Fall ist der
Abstand d, von A/, und A, grosser oder gleich ((/2)—(l/2m)), und das gemein-
same Lot von a,_; und a,,, besitzt eine Liange 2r (Figur 3), wobei nach (1) und
(2) sinh r = cosh d/2 sinh 2q > 2cosh d,/2 sinh q = cosh ((//4) — (l/4m))/sinh l/4. Hier
gilt also schon l(o,)+ (g,.1)=2r>ma(l).

Es verbleibt noch der Fall, dass alle s, = 0. Hier fillen wir das gemeinsame Lot
von a, nach a,, und betrachten dessen Mittelpunkt M. Um den Abstand von
M nach a,, abzuschidtzen, betrachten wir zuerst folgende allgemeine Situation
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dy+1

Figur 3

(Figur 4): a, b zwei nach rechts laufende Geoditische in H. A €a und Beb die
beiden Fusspunkte des gemeinsamen Lotes von a nach b. N € a liege rechts im
Abstand d von A, N’ liege rechts im selben Abstand d von B auf b. C ein Punkt
in der A nicht enthaltenden Halbebene von H — b. Dann gilt

d(C, N)<d(C, N), (17)

wie man sich anhand der Figur 4 aus den Symmetrieeigenschaften und der
negativen Kriimmung von H sofort klar macht.

Fir die Punkte M, := a,(—(/4m)2k—m+1)), k=[(m/2)]+1,...,m—1 gilt
auf Grund von (17) d(M, a,,) = d(Miim2)3+1> Q) * - - =d(M,,,_4, a,,):=T. Wegen
dM,,_, A,._1)=1l/4—1/4m erhdlt man wie vorhin 27> ma(l), also ebenfalls
1o |4, ) = 2d(M, a,,) > m a(l), womit (16) und dadurch (A) bewiesen ist.

C
AN
\\ \\ b
L W
\\ SN
_Bb__’_//@
2 d \\
: d
A NG
\
a

Figur 4



Riemannsche Flachen mit grosser Kragenweite 405

4. Beweis von (B)

Aus der Teichmiillertheorie ist folgendes bekannt [1]: Es sei M eine kompakte
orientierte topologische Fliche vom Geschlecht g=2. Zwei konforme Strukturen
auf M heissen markierungs-aequivalent, wenn es einen zur Identitdt homotopen
Homoéomorphismus von M in sich gibt, der die beiden Strukturen ineinander
iiberfilhrt. M zusammen mit einer solchen Aequivalenzklasse konformer Struktu-
ren heisst eine markierte Fliache; diese bilden den Teichmiillerraum T,. Es gilt: 1)
Zu F,F,eT, gibt es genau eine K-quasikonforme Abbildung ¢:F— F, mit
minimalem K= K(F, Fy)=1. 2) Mit der Distanzfunktion p(F, F;)=In K(F, F,)
wird T, ein zu R°*”° homdéomorpher metrischer Raum.

Zum Beweis von (B) sei 6 > 1;F, Fye T, mit p(F, Fy) <In 8. Dann gibt es eine
K-quasikonforme Abbildung ¢ : F— F, mit 1< K <34. Beziiglich zwei konformer
Ueberlagerungsabbildungen #:H — F und m,: H— F, lasst sich ¢ zu einer K-
quasikonformen Abbildung ¢ : H— H so heben, dass das Diagramm

P
H—H

F2sF,

kommutativ ist. qb braucht nicht tiberall differenzierbar zu sein, und dort, wo eine
Differentialabbildung ¢4 existiert, kann das Verhiltnis |¢4X]|/|X], X € TH be-
liebig gross werden, sodass man iiber die Lingen eines Weges und seines Bildes
unter d) i.A. nichts aussagen kann. Aber es gibt Verzerrungssitze:

Ist E={zeC||z|<1} und f: E — E K-quasikonform mit f(0)=0, so gilt die
folgende Verallgemeinerung des Schwarzschen Lemmas [3] oder [5] pp. 66 und
67:

f@N=v (g o), zeE-fo)

wobei v:(0,1)— (0,) eine stetige monoton fallende Funktion ist mit dem
asymptotischen Verhalten

—-l-—lni+0(r2), fir r—0

27 r

v(r)=
/4

m+ o(1-r), fir r—1.
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Fasst man nun ¢ als Abbildung von E — E auf, E versehen mit der hyper-
bolischen Metrik ds®>=4 |dz|?/(1—|z[*)? so folgt hieraus fiir den Abstand zweier
Punkte

d($(p), $(q))<Kd(p, q)+0(1). (18)

Es sei 0:[0, 1] > F eine kiirzeste geschlossene Geoditische, dh. es ist u(F) =
I(¢). Da ¢oo nicht nullhomotop ist, gibt es eine geschlossene Geoditische
09:[0,1]}— F,, die zu ¢oo frei homotop ist. Bezeichnet ¢ mit mod = o einen
Ueberlagerungsweg von o, so ist cj;o& Ueberlagerungsweg von ¢ oo beziiglich m,,
und es gibt einen Ueberlagerungsweg o, von o, derart, dass

d(Go(n), ¢ ° 5(n)) = d(ao(0), $(c(0))):=d
fiir alle n e N. Wegen (18) ist

nu(Fo) < nl(oo) = d(64(0), 5o(n)
<d(¢°3(0), $ o G(n))+2d
< K d(6(0), 6(n))+0(1)+2d

= nKl(c)+0(1) = nKu(F)+0(1),
also

p(Fo)< Ku(F)+0(1/n).

Mit n — « folgt

1 1
I»"(F)BE N(F0)>E n(Fo).

Indem man die Rollen von F und F, vertauscht erhilt man aus dieser letzten
Ungleichung die Behauptung (B) unmittelbar.
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