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Quadruple points of 3-manifolds in S$*

MicsuaeL H. FREEDMAN™

A folk theorem (see Banchoff [B]) says that the number of normally triple
points of a closed surface normally immersed in 3-space is congruent modulo two
to its Euler characteristic. In general, a normal immersion of a compact n-manifold
in an n + 1-manifold will have a finite number, 6, of (n + 1)-tuple points. 6, taken
mod 2, is well defined under bordism of both the immersion and ambient
manifold. An attractive place to try to evaluate 6 is on the abelian group,
“‘(oriented bordism of immersed n-manifolds in $”**, connected sum)” = B,, since
B, is naturally isomorphic to the stable homotopy group =,. Counting (n+1)-
tuple points determines a homomorphism, 6, : 7, = Z,. The figure eight immer-
sion of a circle shows that 6, is an isomorphism; Banchoff’s proof shows that 6, is
the zero map; the main result of this paper is that 6, is the unique epimorphism
my=2,,— Z,. Thus, we show that a (actually any) oriented 3-manifold may be
generically immersed in $* with an odd number of quadruple points. Like Smale’s
inversion of S?, our proof is abstract and does not yield an example.

A pleasing conjecture is that 6, is the stable Hopf invariant for all n.

§1. B, is the n™ Stable Stem

All terminology will be smooth; the spheres, S', are given a standard orienta-
tion. Let X be a compact oriented n+ 1-manifold with boundary components

divided into "X and 0*X. (X;9°X,0'X) 9—— (S"*'x[-1,+1]; S""'x—1,
S"*1x1)is called an immersed bordism between f/o~X and f/a* X if f is a relative
immersion. Let B, be the set of immersions, g, of compact oriented n-manifolds,

M, modulo the equivalence relation of immersed bordism. B, is a group under
connected sum of ambient spheres away from the immersions.

* The author is partially supported by an NSF grant.
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386 MICHAEL H. FREEDMAN

Since vM 9—=— S"*! s trivialized by the orientations, g determines a triviali-
zation of 7(X)@e'. According to Smale-Hirsh theory immersions exist (and are
unique up to regular homotopy) which induce arbitrary trivializations of 7(M)®
¢! and 71(X)®e!. Consequently B, ={trivializations of t(M)®De'}/
{trivializations which extend to trivializations of 7(X)® ¢!, where 38X = M}. The
Pontryagin-Thom construction determines a homomorphism i, : B, — m,.

Since m;(S0, SO(n+1))=0 i=<n, a stable trivialization of »,, determines a
trivialization of 7(M)®e';s0 i, is epic. Since m;(S0,S0(n+2))=0 i=n+1, a
stable trivialization of vy determines a trivialization of 7(X)® e'; so i is monic.

THEOREM 1. B, &,

§2. Generic immersions

Let G:M — S"*! be an immersion of a compact manifold. g determines

maps g :\(—-,-xa?l;i—J— big diagonal) — (S"*'x - - - xS™*"). g (small diagonal)=
l-

M; is the i-tuple set of g~'. It is easy to see that the M, are compact. An

argument using the Thom-transversality theorem shows that g may be C”

approximated by an immersion g with g; transverse to the small diagonal for all i;

such immersions will be called normal. M, = g;* (small diagonal) is an orientable

: x - xM . o :
submanifold of “———~—"but does not have a prefered orientation since either

i-copies
Mx---xM  S"*'x---xS"*' L : : .
. . or — will not inherit an orientation from its factors.
i-copies i-copies

Since an immersion is locally 1—1 the symmetric group S(i) acts freely on M;; let
N; be the quotient manifold. When i=n+1 these considerations applied to
f: X — S"*'x[—1, 1] show that the number of n + 1-tuple points of g determine a
well defined homomorphism 6, : B, — Z,.

The condition that g is a normal immersion has this equivalent form: every
point in S"*! should have a chart which intersects g(M) in the [ hyperplanes
x,=0,X,=0,...,x,=0, 1=j,, <...,<jj=n+1. (For an open dense set of
points ! will be zero.) \

§3. The computation of 0,

Here is the program for computing 6. Starting with a generic immersion of an
oriented 3-manifold, g: M — S* we find N, naturally immersed in S* with a
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normal bundle having twisted (if N, is nonorientable) Euler class zero. Lemma 2
shows that the Hopf invariant of [g]e B;=m;, H[g], is congruent to the Euler
characteristic x(N,). In lemma 4 we replace N, by a surface N, with the same
Euler characteristic (mod 2) and also immersed in S* with twisted Euler class
zero. When g has an even number of quadruple points, we show that the above
immersion is regularly homotopic to a generic immersion with an even number of
double points. It follows from a theorem of Whitney’s [ W] that a generically
immersed surface in S* with an even number of double points and with twisted
Euler class zero must have even Euler characteristic. So when 6,[g]=0, N,
admits an immersion with the above properties. Hence x(N,)= x(N,) =0 (mod 2).
Now by Lemma 2 65[g]=0 implies H[g]=0, ie. ker(H)>ker(6;). Since
H:my— Z, is an epimorphism, so is 05:7; — Z,. Knowing m;=Z,, now com-
pletely determines 6;.

Let m:Mx ---xM— M be the projection from the i-fold product of an
oriented n-manifold to the first factor. The following commutative diagram shows
that the restriction of 7 to M, is an immersion.

0—> 7(M,)—> 7(4)

l(ﬂ/M.)* la*

0—> (M) —=> 7(S"*)

A is the small diagonal of (S"*!)'. g, is an immersion so (g|)x: 7(M;)— (4) is an
injection. a is the restriction of projection to the first factor; ay is an isomorph-
ism and therefore (#/M,)y is an injection as desired.

Let h be the map making the diagram:

o

n+1
Mi'—"_") S A

/
proj. /h

/
N.

1

commute. g0s is an immersion, so h is an immersion.

LEMMA 1. The normal 2-plane bundle vy,q*2, g»+1= v, has a section.

Proof. The normal bundle vy, 4.y is trivialized by (say) the normal vector, v.
gx(v) determines a linearly independent pair of vectors v, and v, in v,,. v+,
defines the desired section.
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COROLLARY 1. If n=3 then x(v,)=0€ H*(Ny; Zisea) Where the
coefficients are twisted by w,(7(N,)) when N, is nonorientable.

We need to ask the question: When is there an imbedding i: M, — N,X R"™!
making the diagram

i / j
/ proj
7 proj
M, N, commute?

If £ is the line bundle associated to (Mz_v;g N,), i will exist if ™' has geometric

dimension =n—2. Since dim (N,) =n—1 this will happen if the Stiefel-Whitney
class w,_1({YH=0

From now on we consider the case n=3. Here M,225 N, is a two fold
covering of a possibly non-orientable surface by an orientable surface. If

w,(7N,) # 0, MZ—I—JEL N, is the orientation covering so w,({)=w,(7N,). In this

case (D 7N, is trivial since w({D7N,)=w,({)+w(7N,)=0 and w,({+7N,)=
wi(0) - wi(TNL) + wo(TNL) = wy (&) - wi(TN,) + (w,(TN,))*=0. As a result ' = 7N,.
If wi(tNy)=0, w,({BID™N,)=w()+w, (=0, wy({DI{DTN,)= wi({)*+
wo(TNL) = w(0)* +w(7N,)>*=0+0=0. So (' = ¢+ 7N,. In both cases w,({™") =
w,(TN,), but w,(7N,)[N,] is congruent modulo 2 to the Euler characteristic x(N,)
s0 wo({"HI[N,]= x(N,)(mod 2). We now prove:

CLAIM. If i’ is a generic immersion making the preceeding diagram com-
mute, then #(double points (i'))= x(N,) (mod 2).

Proof. If the Euler characteristic of every component of N, is even then
w,-1({™") =0 and, as stated above, i’ may be chosen to be an imbedding. Any two
choices for i’ are regularly homotopic so #(doublepoints (i'))=0 (mod 2) for any
generic i’. For the general case we must consider the following example:

([x, y, 2z, (x, YD)
RP?2x R?

/ l proj
proj

S?2—> RP?

x5, 2) — [x,y, z]

Note that ([0, 0, 1], (0, 0)) is the only multiple value for i’ and that i’ is normal.
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To remove a generic double point of an arbitrary i’ one forms the connected sum
N,# RP? at [0,0, 1]e RP? and (the projection of the double point of i') € N,.
Thus a generic double point of i’ over a component of N, may be removed at the
expense of lowering the Euler characteristic of that component by 1. This reduces
the claim to the case first considered.

LEMMA 2. The Hopf invariant H[g]= x(N,) (mod 2).

Proof. We use the following definition of the Hopf invariant of a € . By the
Freudenthal suspension theorem there is an a'€ m,, ., (S™*') which stablizes to a.
Let a:S*"*! — §"*! represent a’ and be transverse to *e S™*!. a~'(*) is a framed
submanifold of dimension n in $>"*'. Any frame vector determines a self-linking
number L(a™'(*), a~'(*)) which, modulo 2, is the Hopf invariant.

" g n g : :
The composition g':M G—> S""'=—— §""'xX R"™' is a framed immersion.
s—> s X0

The number of double points of a generic immersion, g, approximating g’ is
easily seen to be congruent modulo 2 to the self-linking number of a generic

framed imbedding approximating g": M g—s Sl SN R™ By our defini-
s—— sXx0

tion this self-linking number modulo 2 is H[g]. We will show #(double
points &)= x(N,) (mod 2).
£ can be chosen so that the diagram

S4X R?
g \l)roj
M —=> §*

commutes. The douple points of g are the double points of g/:7(M,)—
gom(M,) X R?. There is a generic immersion j: M, — N, X R? making

m(M,) = gom(M,) X R?
T/ hy> d

Mz——> Nszz
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commute. Our characterization of g being generic implies that h, only identifies 0
and 1-simplexes of N,. So the number of double points of j is equal to the
number of double points of 3. Lemma 2 now follows by setting j=i' in the
discussion immediately preceding its statement. 1

If g:M 9— S*is a generic immersion of an oriented 3-manifold, h,: N, 9> S*
though not usually generic does have singularities of a special kind. As an analogy
it is helpful to imagine the singularities of the double point set of a generically
immersed surface in 3-space. The next lemma considers the case: q has no
quadruple points. We analyse the singularities of h, to show that h, is regularly
homotopic to a normal immersion with an even number of double points.

LEMMA 3. If g has no quadruple points then h,:N, 9> S* is regularly
homotopic to a generic immersion with an even number of double points.

Proof. Let T be the subset of S* in the image of three distinct points under g.
T is a finite family of circles. h,/:N—h3;'(1)— S* is an imbedding since
gow/:M,— M is 2—1 on M,N(gxg) " (TxT). From our characterization of
generic maps, we see that some normal open 3 —disk (=d>) to T in S* may be
parametrized to meet h,(N,) in a {x,-axis U x;-axis}< R>. Consider the distortion
depicted below as a standard model for separating the sheets of h,(N,) in a
neighborhood of a point on T. h, is moved slightly in the normal directions to T.

Specifically if the x,, x, and x,-axes are generated by the vectors x, =(1, 0, 0),

Xp-axis X7-axis X3-axis
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x,=(0,1,0) and x5 =(0, 0, 1) the curves in diagram 1 are geodesic arcs X, X,, X3,
on the unit sphere determined by the condition that their midpoints be (0, —/2/2,
J2/2), (~2/2,0,-+2/2) and (—v2/2,v2/2,0) respectively. Let 6 be the 3x3
matrix with these vectors as its rows.

If the model on the left for h,(N,) N d? is transported around a circle, ¢, of T
the resulting monodromy of the axes may be represented by a 3 X3 —orthogonal
matrix, M, with the property that two entries in each row are zero and the
remaining entry is 1. The i-th row indicates to which axis (and with which
orientation) the i-th axis is transported. (We note that v, is orientablé so
Det (M) = +1). If the model on the right is invariant under the linear transforma-
tion (also denoted by M) defined by right multiplication by M, then our model
may be used to separate the sheets of h,(N,) along all of C. In general, though,
separating these sheets along C will result in a finite number of generic double
points; our present purpose is to calculate this number in terms of M. Put
x;M= %,, %,, Or X5 as x;M = +x,, £Xx,, or +x,. The model on the right is invariant
under M iff x;M =_x,.T/I for i=1, 2, and 3; if the above equality fails to hold we
will see that D(M)=Y7_, (1—(x;6M)-(x;M8))(mod 2) (- denotes vector dot pro-
duct) measures the failure. Note that x,0 Lx, and x,M0 1L X, M. Since M is
orthogonal x;0M L X M, as a result x,M and x;M@ both lie in the plane P,
perpendicular to x;M and must have one of four possible coordinates (restricting
our coordinate system to this plane) in that plane: (+/2/2, +4/2/2). The number,
(1—=(x;6M) - (x;M#)), is equal (mod 2) to the number of times a transverse arc, v,
in P, from x,6M to x;M6 must cross the coordinate axes. The arc y; determines a
homotopy from %M to x,M through geodesic arcs. Using the model on the right
for most of C and then “‘splicing in”’ this homotopy at the end we may separate
the sheets of h,(N,) along all of C with generic double points resulting from
transverse crossings of the coordinates axes by v, It follows that h, is regularly
homotopic to a general immersion with Y D(M) double points, where the sum is
taken over each circle component to T.

We complete the proof of Lemma 3 by showing that for every admissible
M,D(M)=0 (mod?2). DIM)=1-3}7_,(x,0M) - (x;M0)=1-37,_,(6M); (mod2).
Put (M), =|(M),]. All the non-zero terms in the last sum are +1/2, replacing M
by M reverses an even number of these signs so we have D(M)=
1 —-Zi,,-=1(01\71)i,-(1\710),-,- (mod2). If M is a simple transposition 6M =(6M)T =
MT9T=—-M6 so D(M)=1+Y3,_(0M)2=1+Y2,_,(0)2=1+3=0. If M is a cycle
of order 3, one checks that M =M@ so again D(M)=0 (mod 2). The lemma
follows. 1

When g has an even # 0 number of quadruple points, we perform some
oriented 0-surgeries to enlarge our ambient manifold S* to #(S' X S*). We note

k -copies
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that if one chose to, this freedom could be built in from the start; our bordism
group, B,, is isomorphic to ‘“bordism of immersions of oriented 3-manifolds in
stably framed 4-manifolds”. An oriented O-surgery is the operation of removing
an imbedded S°x D" from an oriented n-manifold and gluing back D' X S$" ' in a
standard manner so as to obtain a new oriented manifold. The notion is often
generalized to an operation on a pair, (oriented n-manifold, oriented (n-1)
dimensional submanifold). Below we will perform oriented 0-surgery with S°x0
imbedded on a pair of generic quadruple points of a immersed 3-manifold in S*;
for this an additional but obvious extension of the notion is required. Rather than
give an abstract definition, we have written out the results of our 0-surgery on
(5% g(M)).

Let q,4/,. .., q. q% be the quadruple points of g arbitrarily paired. For each
pair (g;, q!) we perform an oriented 0-surgery on S* and a corresponding modifi-
cation of g In terms of the image of g the result of a single surgery is: (S%,
image(g) — (S°X D?, $°X (U pyperptanes X1 =0, x, =0, x3=0, x,=0)

U(D1XS3,D1X(SSO U x1=0,x2=0,x3=0,x4=0>

hyperplane
Call the new immersion §: M — #,S'x S3.

If within each chart, D*, about a quadruple point of g the positive direction
along the 4 axes is consistently determined by the difference of the orientations on
S* and M, the new manifold M will be oriented, and in fact diffeomorphic to
M #}%, (8% §?),. Let M, and N, correspond to M, and N,. As proved for N,, N,
is immersed (by h,) in #, (S'X S?) with x(v;)=0. N, abstractly is the result of

4
(2)k =6k O-surgeries on N,. Since a 0-surgery does not change the Euler
characteristic modulo 2, x(N,)= x(N,) (mod 2). We are ready to prove:

LEMMA 4. If g has an even number of quadruple points, there is a surface N,
satisfying:
1) x(N)=x(N;) (mod 2)
2) N, is generically immersed in S* with an even number of double points; call
its normal bundle v.
3) x(v)=0¢€ Hz(N2§ Z wisted)-

Proof. The N, constructed above is immersed in V, (S*x S?) with the above
normal bundle condition. The proof of Lemma 3 shows how to regularly homotop
this immersion to satisfy condition 2. N,— V, S'x S* Framed surgery on k



Quadruple points of 3-manifolds in S* 393

circles in (V, (S'x $*)—image (N,)) returns the ambient manifold to S* without
affecting the normal bundle of N,. I

A theorem of Whitney’s [ W] says that if a compact surface, Q, is imbedded in
$* with normal bundle » and x(v)=m - generator € H*(Q; Z,eq) then m=
2x(Q) (mod 4). The introduction of a double point changes the twisted Euler class
x(v) by £2 - generator. As a result, Whitney’s theorem stated for immersions of Q
in S* becomes: m=2x(Q)+2(#double points of Q) (mod 4). If g has an even
number of quadruple points Whitney’s theorem for immersions and Lemma 4
show that x(N,) and therefore x(N,) is even. Lemma 2 now says that H[g]=0.
Thus we have 6;[g]=0 implies H[g]=0, i.e. ker(H) > ker(0;). Since H: 7, — Z,
is well known to be an epimorphism, 05: m; — Z, is also epic. Since my,=Z,,, 05 is
completely determined, we have proved:

THEOREM. 6,:7;— Z, is the unique epimorphism.

§4. Remarks and problems

Remark 1. Since the J;-homomorphism: 75(S0) — ; is onto, every element
of B, is realized by an immersed 3-sphere. In particular there is a generic
immersion of S in $* with an odd number of quadruple points.

Remark 2. There is no local argument for converting quadruple points of
M 9> S* to double points of M 5> S*X R? as inspection of the immersion
4(T?) o T* obtained by omitting successive circle factors will show. It seems to
be necessary to work down through the strata to prove our theorem, so analogous
computations for n >3 are likely to be more difficult.

Remark 3. In this paper we have gone to great trouble to express the Hopf
invariant in terms of the lowest dimensional strata of a generic immersion
g:M>— S* and our arguments have been special to the dimensions involved.
There is, however, a simple way in every dimension of reading off the Hopf
invariant from the highest dimensional strata, the double point set. If £ is the line

bundle associated to Mz-li’i(i) N,, H(g)=0 iff w,_,(¢"")=0 on all but an even
number of path components of N,. This is easily seen by comparing our definition
of Hopf invariant with our solution to the “question” preceding corollary 2.

PROBLEM 1. Is there a generic immersion of S* in S* with a single
quadruple point?
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PROBLEM 2. Explicitly construct a generic immersion of S$* in S* with an
odd number of quadruple points.

PROBLEM 3. Compute 6, for n> 3.

Conjecture. 0, is the stable Hopf invariant.
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